掌桥专利:专业的专利平台
掌桥专利
首页

具有行和列寻址的超声成像设备

文献发布时间:2023-06-19 18:27:32


具有行和列寻址的超声成像设备

本专利申请要求法国专利申请FR20/05636的优先权,该申请通过引用并入本文。

技术领域

本公开涉及超声成像领域,并且更具体地,旨在提供一种包括具有行和列寻址的超声换能器的阵列的设备。

背景技术

超声成像设备通常包括多个超声换能器和连接到换能器的电子控制电路。在操作中,换能器组件被放置在希望获取其图像的身体前面。电子设备被配置为向换能器施加电激励信号以使换能器向待分析的身体或物体发射超声波。由换能器发射的超声波被待分析的身体(通过其内部和/或表面结构)反射,并且然后返回换能器,换能器将它们转换回电信号。电响应信号由电子控制电路读取,并且可以被存储和分析,以从中推断出与所研究身体有关的信息。

在二维图像采集设备的情况下,超声换能器可以被布置成线性阵列,或者在三维图像采集设备的情况下可以被布置成阵列。在二维图像采集设备的情况下,所采集的图像表示被研究身体在平面中的横截面,该平面一方面由线性阵列的换能器的对准轴定义,并且另一方面由换能器发射方向定义。在三维图像采集设备的情况下,所采集的图像表示由阵列的换能器的两个对准方向和换能器的发射方向所定义的体积。

在三维图像采集设备中,可以区分被称为“完全填充”的设备,其中阵列的每个换能器可单独寻址,以及被称为行列寻址或RCA的设备,其中阵列的换能器可按行和按列寻址。

完全填充的设备在传送和接收模式下的超声波束成形方面提供了更大的灵活性。然而,阵列的控制电子器件是复杂的,在M行乘N列的阵列的情况下,所需的传送/接收信道数等于M*N。此外,信噪比通常相对较低,因为每个换能器暴露于超声波的表面积较小。

RCA型设备使用算法对不同的超声波束进行成形。相对于完全填充的设备,波束成形可能性可以降低。然而,阵列的控制电子器件被大大简化,在M行和N列的阵列的情况下,所需的传送/接收信道的数量减少到M+N。此外,由于在传送和接收阶段期间行或列中换能器的互连,信噪比得到了改善。

此处更具体地考虑了具有行列寻址(RCA)的三维图像采集设备。

发明内容

一个实施例的目的是提供一种具有行列寻址的三维超声图像采集设备,克服了已知设备的全部或部分缺点。

为此,一个实施例提供了一种超声成像设备,其包括按行和按列布置的多个超声换能器,每个换能器包括下部电极和上部电极,其中:

-在每一行中,该行中的任何两个相邻换能器分别使它们的下部电极和它们的上部电极相互连接,或者使它们的上部电极和它们的下部电极相互连接;和

-在每一列中,该列中的任何两个相邻换能器分别使它们的下部电极和它们的上部电极相互连接,或者使它们的上部电极和它们的下部电极相互连接。

根据一个实施例:

-在每一行中,该行中的任何两个相邻换能器使它们各自的下部电极彼此电绝缘以及使它们各自的上部电极彼此电绝缘;以及

-在每一列中,该列中的任何两个相邻换能器使它们各自的下部电极彼此电绝缘以及使它们各自的上部电极彼此电绝缘。

根据一个实施例,每个超声换能器是包括悬挂在空腔上方的柔性膜的CMUT换能器,换能器的下部电极被布置在空腔的与柔性膜相对的一侧上,并且换能器的上部电极被布置在柔性膜的与空腔相对的一侧上。

根据一个实施例,换能器的空腔形成在刚性支撑层中,并且每个换能器使其上部电极经由穿过刚性支撑层的导电元件电连接到相邻换能器的下部电极。

根据一个实施例,每个换能器的下部电极由掺杂半导体材料制成。

根据一个实施例,金属层部分在每个换能器的下部电极下方延伸,与换能器的下部电极的下表面接触。

根据一个实施例,在每个换能器中,柔性膜由半导体材料制成。

根据一个实施例,在每个换能器中,电介质层在空腔的底部换能器的下部电极的上表面。

根据一个实施例,每个换能器是PMUT换能器。

附图说明

前述特征和优点以及其他特征和优点将在以说明而非限制的方式给出的具体实施例的公开内容的其余部分中参考附图详细描述,其中:

图1是示意性地和部分地示出具有行列寻址的阵列超声成像设备的示例的俯视图;

图2A是沿着图1的平面A-A进一步详细示出图1所示设备的实施例的示例的横截面图;

图2B是沿着图1的平面B-B的对应横截面图;

图3是示意性地和部分地示出具有行列寻址的阵列超声成像设备的实施例的俯视图;

图4A是沿着图3的平面A-A进一步详细示出图3所示设备的实施例的示例的横截面图;

图4B是沿着图3的平面B-B的对应横截面图;

图5A是沿着图3的平面B-B进一步详细示出图3的设备的实施例的另一个示例的横截面图;

图5B是沿着图3的平面B-B的对应横截面图;

图6A至图6K是示出制造图4A和图4B所示类型的设备的方法的示例的步骤的横截面图;以及

图7A至图7C是示出制造图5A和图5B所示类型的设备的方法的示例的步骤的横截面图。

具体实施方式

在各个附图中,相同的特征由相同的附图标记指定。特别地,在各种实施例中共同的结构和/或功能特征可以具有相同的附图标记,并且可以设置相同的结构、尺寸和材料特性。

为清晰起见,仅详细示出和描述了有助于理解本文所述实施例的步骤和元件。特别地,所描述的成像设备的各种可能的应用尚没有被详细说明,所描述的实施例与超声成像设备的通常应用兼容。特别地,施加到超声换能器的电激励信号的特性(频率、形状、振幅等)没有被详细说明,所描述的实施例与超声成像系统中当前使用的激励信号兼容,其可以根据所考虑的应用,并且特别是根据要分析的身体的性质和期望获取的信息的类型来选择。类似地,还没有详细说明施加到由超声换能器递送的电信号以提取与待分析的身体相关的有用信息的各种处理,所描述的实施例与超声成像系统中当前实施的处理兼容。此外,没有详细说明用于控制所述成像设备的超声换能器的电路,该实施例与用于控制具有行列寻址的阵列超声成像设备的超声换能器的所有或大多数已知电路兼容。此外,没有详细说明所述成像设备的超声换能器的形成,所述实施例与所有或大多数已知超声换能器结构兼容。

除非另有说明,当提及两个元件连接在一起时,这表示除了导体之外没有任何中间元件的直接连接,并且当提及两个元件耦合在一起时,这表示这两个元件可以被连接,或者它们可以经由一个或多个其他元件被耦合。

在以下公开内容中,除非另有规定,当提及绝对位置限定符,诸如术语“前”、“后”、“上”、“顶”、“底”、“右”等,或提及相对位置限定符,诸如术语“上方”、“下方”、“上部”和“下部”等,或提及方向限定符,诸如“水平”、“垂直”等时,参考图中所示的方向。

除非另有规定,否则表述“大概”、“大致”、“基本上”和“大约”表示在10%以内,优选在5%以内。

图1是示意性地和部分地示出具有行列寻址的阵列超声成像设备100的示例的俯视图。

图2A和图2B分别是图1的设备100沿着图1的平面A-A和B-B的横截面图。

设备100包括多个超声换能器101,其被布置为M行L

在图1中,显示了四行L

设备100的每个换能器101包括下部电极E1和上部电极E2(图2A和2B)。当在其电极E1和E2之间施加适当的激励电压时,换能器发射超声波。当换能器接收到给定波长范围内的超声波时,它在其电极E1和E2之间递送代表接收波的电压。

在该示例中,换能器101是带有膜的电容式换能器,也称为CMUT换能器(“电容式微机械超声换能器”)。

在换能器阵列的每一列C

在设备100的每一列C

在所示示例中,形成列电极的条带103由掺杂半导体材料制成,例如掺杂硅的半导体材料。此外,在该示例中,形成行电极的条带105由金属制成。例如,在俯视图中,下部条带103彼此平行,以及上部条带105彼此平行并垂直于条带103。

在图1的示例中,设备100包括例如由半导体材料(例如,硅)制成的支撑衬底110。超声换能器101的阵列被布置在衬底110的上表面上。更具体地,在该示例中,电介质层112(例如,氧化硅层)形成衬底110和超声换能器101的阵列之间的界面。电介质层112例如在支撑衬底110的整个上表面上连续延伸。例如,层112通过其下表面与衬底110的上表面接触,基本上跨越衬底110的整个上表面。

下部电极条带103被布置在电介质层112的上表面上,例如与电介质层112的上表面接触。条带103可以通过电介质条带121彼此横向分离,电介质条带121例如由氧化硅制成,平行于条带103延伸并且具有与条带103基本相同的厚度。

每个换能器101包括形成在刚性支撑层127中的空腔125和悬挂在空腔125上方的柔性膜123。层127例如为氧化硅层。层127被布置在由交替的条带103和121形成的组件的上表面(例如,基本上为平面)上。在每个换能器101中,空腔125位于换能器的下部电极E1的前面。

在所示示例中,每个换能器101包括在其下部电极E1前面的单个空腔125。作为变型,在每个换能器101中,空腔125可以被划分为多个基础空腔,例如,在俯视图中被布置为行和列的阵列,通过层127的部分形成的侧壁彼此横向分离。

在所示示例中,在每个空腔125的底部,例如由氧化硅制成的电介质层129覆盖换能器的下部电极E1,以防止柔性膜123和换能器的下部电极E1之间的任何电接触。作为变型,为了确保这种电绝缘功能,可以在膜123的下表面覆盖电介质层(未示出)。在这种情况下,可以省略层129。

在每个换能器101中,覆盖换能器空腔125的柔性膜123例如由掺杂或未掺杂的半导体材料(例如硅)制成。

在每个换能器101中,换能器的上部电极E2被布置在换能器的柔性膜123的上表面上并与之接触,与空腔125和换能器的下部电极E1垂直对齐。作为变型,在半导体膜的情况下,每个换能器101的上部电极E2可以由实际的膜形成,在这种情况下,可以省略层105。

例如,在设备100的每一行L

对于换能器101的阵列的每一行L

此外,对于换能器101的阵列的每一列C

为了简化,设备100的传送电路和接收电路以及开关没有在图中示出。此外,没有详细说明这些元件的形成,所描述的实施例与具有行列寻址的阵列超声成像设备的传送/接收电路的通常实施例兼容。作为非限制性示例,传送/接收电路可以与申请人于2019年6月18日提交的法国专利申请第19/06515号中描述的那些相同或相似。

图1的设备的局限性与以下事实有关,即下部电极条带103与衬底110之间的电容耦合远高于上部电极条带105和衬底110之间的电容耦合。这导致了设备的行L

图3是示意性地和部分地示出具有行列寻址的阵列超声成像设备300的实施例的示例的俯视图。

图4A和图4B分别是图3的设备300沿着图3的平面A-A和B-B的横截面图。

设备300具有与前述设备100共同的元件。这些共同元件将在下文中不再详细说明。在其余的描述中,将仅强调相对于设备100的不同之处。

与设备100一样,设备300包括多个超声换能器101,其被布置成M行L

如在设备100中,设备300的每个换能器101包括下部电极E1和上部电极E2。为了简化,图3中仅显示了上部电极E2。

设备300与设备100的不同之处主要在于设备的换能器101的下部电极E1和上部电极E2的互连方案。

在设备300中,在换能器101的每一行L

类似地,在换能器101的每一列C

因此,在设备300的每一列C

在该示例中,相邻换能器的上部电极E2和下部电极E1之间的电连接由连接元件311(例如,由金属制成)形成,垂直穿过横向分离换能器空腔125的电介质层127的部分。更具体地,在图4A和图4B的示例中,每个连接元件311从换能器101的上部电极E2的下表面垂直延伸到相邻换能器的下部电极的上表面。

在设备300中,在俯视图中,电介质区域121形成连续的栅极,该栅极完全包围每个电极E1,并将每个电极E1与相邻换能器的电极E1横向分离。类似地,在俯视图中,每个电极E2被电介质区域(可能是空气或真空)完全包围并与相邻换能器的电极E2横向分离。

例如,在俯视图中,每个柔性膜123被电介质区域完全包围并与相邻换能器的膜123横向分离。作为变型,柔性膜123可以由电介质材料制成,例如,氧化硅。在这种情况下,相邻换能器的膜可以形成连续层。

设备300的操作与前述设备100的操作基本相同,通过将分别布置在换能器101的下表面侧和上表面侧的设备100的列导体103和行导体105分别替换为列导体303和行导体305,并且交替地穿过该行或该列的换能器的下部电极E1和上部电极E2。

因此,对于换能器阵列101的每一行L

此外,对于换能器阵列101的每一列C

设备300的优点是,行导体305与衬底110的电容耦合和列导体303与衬底110的电容耦合基本相同。这使得能够对称化设备的行L

图5A和图5B分别是沿图3的平面A-A和B-B的横截面图,示出设备300的另一个实施例。

图5A和5B的变型与前面关于图3、图4A和图4B描述的变型的不同之处主要在于,在该变型中,在设备的每个电极E1下,延伸有金属层部分501,例如由与设备的上部电极E2相同的金属制成。层501通过其上表面与电极E1的下表面接触。例如,层501通过其下表面与电介质层112的上表面接触。在该示例中,每个连接元件311从换能器101的上部电极E2的下表面垂直延伸到相邻换能器101的金属层部分501的上表面。

该替代实施例的优点在于,在换能器的下部电极E1由半导体材料制成的情况下,它能够提高换能器的下部电极E1水平处的导电行元件和导电列元件305和303的电导率。

图6A至图6K是示出制造图4A和图4B所示类型的设备的方法的示例的步骤的横截面图。

图6A示出SOI型(“绝缘体上半导体”)结构的半导体层的部分厚度的氧化步骤。

初始结构包括支撑衬底10(例如,由半导体材料制成,例如,由硅制成)、覆盖衬底10上表面的电介质层12(例如,由氧化硅制成)和覆盖电介质层12上表面的半导体层14(例如,单晶硅层)。电介质层12和上半导体层14例如各自以基本恒定的厚度在衬底10的整个上表面上连续延伸。在该示例中,电介质膜12通过其下表面与衬底10上表面接触,并且半导体层14通过其下表面与电介质层12的上表面接触。

图6A更具体地示出半导体层14的上部的氧化步骤。在该步骤中,层14的上部被转化为电介质材料层14a,例如氧化硅(在初始层14由硅制成的情况下)。层14的下部14b的性质保持不变。

例如,通过干热氧化方法执行层14上部的氧化。半导体层14的初始厚度例如在50nm至3μm的范围内。氧化后的绝缘层14a的厚度例如在10至500nm的范围内,例如大约50nm。

图6B示出在绝缘层14a中形成对应于CMUT换能器的空腔125的局部腔的步骤。

空腔125从绝缘层14a的上表面朝向层14b垂直延伸。在所示示例中,空腔125是贯穿的,即,它们出现在半导体层14b的上表面上。

空腔125可以通过蚀刻形成,例如,通过等离子体蚀刻。蚀刻掩模可被用于限定空腔125的位置。

图6C示出例如由硅制成的第二半导体衬底20的上表面的氧化的步骤。在该步骤中,在衬底20的上表面侧上形成例如由氧化硅制成的电介质层22。可以通过干热氧化防法进行氧化。在该步骤期间形成的电介质层22的厚度例如在50nm至1μm的范围内,例如大约100nm。

图6D示出将包括衬底20和电介质层22的组件转移到图6A和图6B步骤结束时获得的结构的上表面上的步骤。更具体地,在所示示例中,衬底20相对于图6C的方向被翻转,并被转移到图6B的结构上,使得层22的下表面与层14a的上表面接触。这两个结构通过层22的下表面与层14a的上表面的直接键合或分子键合而彼此键合。因此,电介质层22从它们的上表面封闭空腔125。

图6E示出从其与电介质层22相对的表面,即从图6E的方向上的上表面,对衬底20进行薄化的步骤。例如,通过研磨来进行薄化。薄化之前衬底20的初始厚度例如为大约700μm。薄化之后,衬底的厚度可以在300nm至100μm的范围内。

图6F示出从薄化的衬底20的上表面形成填充有电介质材料(例如氧化硅)的绝缘沟槽121的步骤。沟槽121(图6F中的黑色)对应于图4A和图4B的电介质区域121。沟槽121完全穿过衬底20,穿过其整个厚度,并出现在绝缘层22的上表面上。沟槽121例如通过对衬底20进行深度反应离子蚀刻而形成,并且然后用电介质材料填充。由沟槽界定的衬底20的部分对应于换能器的电极E1。

图6G示出例如由硅制成的第三半导体衬底30的上表面的氧化的步骤。在该步骤期间,在衬底30的上表面侧形成例如由氧化硅制成的电介质层32。该氧化可以通过干热氧化方法执行。在该步骤期间形成的电介质层32的厚度例如在100nm至10μm的范围内,例如大约2μm,例如在2至10μm范围内。作为变型,层32可以通过在衬底30的上表面上沉积绝缘材料(例如,氧化硅)来形成。此外,作为变型,衬底30可以是由电介质材料(例如玻璃)制成的衬底,或者高电阻率的半导体衬底,例如,未掺杂或轻掺杂的硅衬底。

图6H示出将图6F的结构转移到图6G的结构上的步骤。在所示示例中,图6F中的结构相对于图6F的方向被翻转,并被转移到图6G的结构上,使得电极E1的下表面和电介质区域121的下表面与电介质层32的上表面接触。这两个结构通过电极E1的下表面和电介质层32的上表面上的电介质区域121的直接键合而彼此键合。

图6I示出去除衬底10和初始结构的电介质层12的后续步骤。因此,只有半导体层14b被保持在空腔上方,以形成换能器的膜123。

图6J示出在半导体层14b和电介质层14a和22的一个或多个后续结构化步骤结束时获得的结构,一方面在半导体层14中界定换能器的柔性膜123,并且另一方面在电介质层14a和22中形成通向换能器的电极E1的上表面的开口41。

图6K示出在图6I的结构的整个上表面上沉积金属层43的后续步骤,并且然后例如通过光刻和蚀刻对金属层43进行结构化,以界定换能器的上部电极E2。

在该示例中,图4A和图4B的结构的连接元件311对应于覆盖开口41的侧面并与开口41底部处的电极E1的上表面接触的层43的部分。图4A和图4B的结构的衬底110和电介质层112分别对应于衬底30和电介质层32。形成空腔125的侧壁和底部的图4A和图4B的结构的电介质区域127和129对应于层14a和22。

图7A至图7C是示出制造图5A和图5B所示类型的设备的方法的示例的步骤的横截面图。

该方法的初始步骤与前面关于图6A至图6G所描述的步骤相同。

图7A示出从图6F的结构开始,在以下连续附加步骤结束时获得的结构:

-形成横向绝缘的导电通孔51,垂直穿过半导体层20的整个厚度,并出现在电介质层22的上表面上;

-在结构的上表面上沉积金属层53,金属层53通过其下表面与电极E1的上表面和导电通孔51的上表面接触;以及

-局部去除金属层53,例如电介质区域121的前面,以使电极E1彼此电绝缘。

图7B示出从图6G的结构开始,在以下连续附加步骤结束时获得的结构:

-在结构的上表面上沉积金属层61,金属层61通过其下表面与电介质层32的上表面接触;以及

-局部去除金属层61以限定多个彼此绝缘的金属部分,该金属部分以与图7A的结构中的金属层53中限定的金属部分相同或类似的布置来布置。

该方法的其余部分类似于前面关于图6H至图6K所描述的。

图7C示出该方法结束时获得的结构。应当注意,在该变型中,图7A的结构与图7B的结构的键合是金属层53的与半导体层20相对的表面(即,其在图7C的方向上的下表面)与金属层61的与衬底30相对的表面(即,其在图7B的方向上的上表面)之间的直接金属对金属键合。

下部电极E1前面的金属层61和53的部分的堆叠对应于图5A和图5B的结构的金属层部分501。绝缘导电通孔51对应于图5A和图5B的结构的连接元件311。

已经描述了各种实施例和变型。本领域技术人员将理解,这些不同的实施例和变型的某些特征可以被组合,并且本领域技术技术人员将想到其他变型。特别地,所述实施例不限于本公开中提及的材料和尺寸的具体示例。

此外,所述实施例不限于以上所述CMUT换能器的结构的具体示例,也不限于以上所述CMUT换能器制造方法的具体示例。特别应当注意,所提供的解决方案可以应用于通过表面微加工形成的CMUT换能器。

还应注意,所描述的实施例不限于图中所示的示例,其中设备的换能器的行和列是直线的,并且其中行与列是正交的。作为变型,设备的换能器的行和/或列是非直线的。此外,换能器的行和列可能分别不相互平行。此外,换能器的行可能不与列正交。

更一般地,所描述的实施例可适用于具有下部电极和上部电极的任何类型的超声换能器,并且适用于根据行列寻址进行控制,例如,压电换能器(例如,PMUT(“压电微机械超声换能器”)类型的换能器。

技术分类

06120115572915