一种环丙基取代的苯并呋喃类化合物的晶型及其制备方法
文献发布时间:2024-04-18 19:58:21
本发明主张如下优先权:
CN202110214161.0,申请日:2021年02月25日。
本发明涉及一种环丙基取代的苯并呋喃类化合物的晶型及其制备方法,具体涉及式(I)化合物的晶型及其制备方法。
胰腺腺胆碱泡细胞,膜上存在乙酰受体(AchR)和胆囊收缩素受体(CCKR),2种受体都依赖Ca
酒精,结石等因素能诱导Ca
在发达国家,结石和酒精使用阻塞胆总管是导致急性胰腺炎的最常见原因,占70-80%。胆石症引起的胰腺炎是由导管阻塞和胆汁酸对胰腺腺泡细胞的作用引起的。胆结石允许胆汁回流到胰管系统,并且一旦进入胰腺腺泡细胞,胆汁酸通过CRAC通道激活钙进入这些细胞,通过不受调节的消化酶活化,细胞因子产生和炎症细胞对胰腺的浸润引起急性胰腺炎和胰腺外分泌细胞坏死。酒精使用是急性胰腺炎的第二大常见原因,但酒精和胰腺炎之间的相关性尚不完全清楚。虽然酒精的使用通常与急性和慢性胰腺炎有关,但酒精本身并不会导致胰腺炎。相反,似乎酒精的代谢副产物可能是某些患者的疾病的原因。研究人员已经证明,特殊的乙醇代谢物称为脂肪酸乙酯(FAEEs),可诱导钙离子细胞内细胞内钙的持续释放,从而激活CRAC通道,由此产生的高细胞内钙水平与胆结石相同而诱发疾病。
发明内容
本发明提供了式(I)化合物的A晶型,
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.892±0.200°,17.583±0.200°,18.959±0.200°,22.113±0.200°,25.029±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.892±0.200°,12.617±0.200°,16.793±0.200°,17.583±0.200°,18.959±0.200°,22.113±0.200°,25.029±0.200°,26.512±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.892±0.200°,11.883±0.200°,12.617±0.200°,13.206±0.200°,16.793±0.200°,17.583±0.200°,18.018±0.200°,18.959±0.200°,22.113±0.200°,25.029±0.200°,25.858±0.200°,26.512±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.474°,8.892°,9.571°,10.288°,10.533°,11.076°,11.883°,12.617°,13.206°,13.653°,14.886°,15.788°,16.301°,16.793°,17.583°,18.018°,18.959°,19.574°,19.981°,20.661°,20.964°,21.651°,22.113°,23.031°,23.747°,24.107°,25.029°,25.414°,25.858°,26.512°,28.797°,30.039°,31.672°,32.596°,35.275°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.616°,4.474°,8.892°,9.571°,10.288°,10.533°,11.076°,11.883°,12.617°,13.206°,13.653°,14.886°,15.788°,16.301°,16.793°,17.583°,18.018°,18.959°,19.574°,19.981°,20.661°,20.964°,21.651°,22.113°,23.031°,23.747°,24.107°,25.029°,25.414°,25.858°,26.512°,28.797°,30.039°,31.672°,32.596°,35.275°。
在本发明的一些方案中,上述A晶型,其XRPD图谱基本上如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.A晶型的XRPD图谱解析数据
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在138.4℃±3℃和163.4℃±3℃处具有吸热峰的峰值。
在本发明的一些方案中,上述A晶型的DSC图谱基本上如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在140.0℃±3℃时失重达3.33%。
在本发明的一些方案中,上述A晶型的TGA图谱基本上如图3所示。
本发明还提供式(I)化合物的B晶型,
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.797±0.200°,17.578±0.200°,18.811±0.200°,21.997±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389±0.200°,8.797±0.200°,11.786±0.200°,17.578±0.200°,21.997±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389±0.200°,8.797±0.200°,9.473±0.200°,11.786±0.200°,15.710±0.200°,16.739±0.200°,21.997±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389±0.200°,8.797±0.200°,13.168±0.200°,16.739±0.200°,17.578±0.200°,18.811±0.200°,21.997±0.200°,26.443±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389±0.200°,8.797±0.200°,9.473±0.200°,11.786±0.200°,13.168±0.200°,15.710±0.200°,16.739±0.200°,17.578±0.200°,18.811±0.200°,21.997±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389±0.200°,8.797±0.200°,11.786±0.200°,13.168±0.200°,16.739±0.200°,17.578±0.200°,18.811±0.200°,20.617±0.200°,21.997±0.200°,24.970±0.200°,25.804±0.200°,26.443±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.797±0.200°,17.578±0.200°,21.997±0.200°,和/或4.389±0.200°,和/或9.473±0.200°,和/或10.172±0.200°,和/或10.356±0.200°,和/或10.953±0.200°,和/或11.786±0.200°,和/或12.569±0.200°,和/或13.168±0.200°,和/或13.454±0.200°,和/或13.991±0.200°,和/或14.828±0.200°,和/或15.710±0.200°,和/或16.231±0.200°,和/或16.739±0.200°,和/或17.949±0.200°,和/或18.811±0.200°,和/或19.577±0.200°,和/或19.875±0.200°,和/或20.617±0.200°,和/或20.849±0.200°,和/或22.875±0.200°,和/或23.704±0.200°,和/或24.165±0.200°,和/或24.970±0.200°,和/或25.449±0.200°,和/或25.804±0.200°,和/或26.443±0.200°,和/或26.942±0.200°,和/或27.841±0.200°,和/或28.731±0.200°,和/或29.022±0.200°,和/或29.525±0.200°,和/或30.033±0.200°, 和/或30.962±0.200°,和/或31.747±0.200°,和/或32.609±0.200°,和/或33.12±0.200°,和/或33.979±0.200°,和/或34.568±0.200°,和/或35.104±0.200°,和/或35.421±0.200°,和/或36.374±0.200°,和/或37.075±0.200°,和/或38.979±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.389°,8.797°,9.473°,10.172°,10.356°,11.786°,12.569°,13.168°,13.991°,15.710°,16.739°,17.578°,17.949°,18.811°,19.577°,19.875°,20.617°,20.849°,21.997°,24.970°,25.804°,26.443°,26.942°,27.841°,28.731°,30.033°,30.962°。
在本发明的一些方案中,上述B晶型,其XRPD图谱基本上如图4所示。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.B晶型的XRPD图谱解析数据
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在165.7℃±5℃处具有吸热峰的起始值。
在本发明的一些方案中,上述B晶型的DSC图谱基本上如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线在150℃±3℃时失重达1.14%。
在本发明的一些方案中,上述B晶型的TGA图谱基本上如图6所示。
本发明还提供A晶型或B晶型在制备治疗急性胰腺炎药物中的应用。
技术效果
本发明化合物具有较好的PK性质及治疗急性胰腺炎的作用,其晶型稳定、引湿性良好、受光热影响小。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的DSC图谱,热流小于0的峰为吸热峰,热流大于0的峰为放热峰。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
化合物依据本领域常规命名原则或者使用
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D2PHASER X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
光管电压:30kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:3-40deg
步径:0.02deg
步长:0.5秒
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~15mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如表3所示:
表3.引湿性评价分类
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
图1为式(I)化合物A晶型的Cu-Kα辐射XRPD谱图;
图2为式(I)化合物A晶型的DSC谱图;
图3为式(I)化合物A晶型的TGA谱图;
图4为式(I)化合物B晶型的Cu-Kα辐射XRPD谱图;
图5为式(I)化合物B晶型的DSC谱图;
图6为式(I)化合物B晶型的TGA谱图;
图7为式(I)化合物A晶型的DVS谱图;
图8为式(I)化合物的血清淀粉酶(AMY)水平的测试结果;
图9为式(I)化合物的血清脂肪酶(LPS)水平的测试结果。
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:化合物CC-6的制备
步骤1:化合物BB-3-2的合成
在预先干燥过单口瓶中加入原料BB-3-1(2g,11.49mmol)和无水二氯甲烷(50mL),随后加入三乙胺(3.49g,34.48mmol,4.80mL),N,N-二甲氨基吡啶(140.43mg,1.15mmol),2,6-二氟苯甲酰氯(4.46g,25.29mmol,3.19mL),在40℃下反应3小时,直接减压浓缩得到粗品,通过快速柱层析(石油醚:乙酸乙酯=10:1-5:1)纯化得到BB-3-2。MS(ESI)m/z:453.9[M+H]
步骤2:化合物BB-3的合成
在预先干燥过的烧瓶中加入原料BB-3-2(5g,11.01mmol)和溶剂四氢呋喃(60mL),甲醇(60mL),随后加入氢氧化钠水溶液(2M,24.56mL),在25℃下,搅拌1小时,向体系中加入50mL水,乙酸乙酯萃取(150mL×3),合并有机相,20mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品,通过硅胶柱层析(石油醚:乙酸乙酯=3:1-2:1)纯化得到BB-3。MS(ESI)m/z:314[M+H]
步骤3:化合物6-1的合成
在预先干燥过的烧瓶中加入原料3-2(0.1g,422.84μmol)和溶剂乙腈(2mL),随后加入试剂对甲苯磺酸(218.44mg,1.27mmol),亚硝酸钠(58.35mg,845.69μmol),碘化钾(175.48mg,1.06mmol),在25℃下,搅拌0.5小时,向体系中加入10mL饱和碳酸氢钠水溶液,乙酸乙酯萃取(30mL*3),合并有机相,5mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品,通过硅胶柱层析(石油醚)纯化得到6-1。
步骤4:化合物6-2的合成
在预先干燥过的烧瓶中加入原料6-1(0.07g,201.51μmol)和溶剂二异丙胺(2mL),随后加入试剂二氯(双三苯基膦)钯(7.07mg,10.08μmol),碘化亚铜(3.84mg,20.15μmol),三苯基膦(5.29mg,20.15μmol),在25℃下,搅拌0.5小时,随后加入环丙基乙炔(13.32mg,201.51μmol,16.71μL),在70℃下,搅拌12小时,向体系中加入5mL水,乙酸乙酯萃取(20mL*3),合并有机相,5mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品,通过硅胶柱层析(石油醚)纯化得到6-2。
步骤5:化合物6-3的合成
在预先干燥过的微波管中加入原料6-2(0.05g,175.09μmol)和无水乙醇(3mL),随后加入试剂对甲苯磺酸一水合物(33.31mg,175.09μmol),在125℃下,微波反应1小时,直接减压浓缩,通过硅胶柱层析(石油醚)纯化得到6-3。
步骤6:化合物6-4的合成
在预先干燥过的烧瓶中加入原料6-3(0.1g,368.27μmol),双联频哪醇硼酸酯(140.28mg,552.41μmol)和无水二氧六环(2mL),随后加入乙酸钾(108.43mg,1.10mmol),[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(30.07mg,36.83μmol),在100℃下,搅拌12小时,向体系中加入5mL水,乙酸乙酯萃取(20mL*3),合并有机相,5mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到6-4。MS(ESI)m/z:319[M+H]
步骤7:化合物CC-6的合成
在预先干燥过的烧瓶中加入原料6-4(0.1g,313.87μmol),BB-3(65.72mg,209.25μmol)和溶剂二氧六环(2mL)/乙腈(1mL)/水(0.5mL),随后加入试剂碳酸钾(57.84mg,418.49μmol),[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(17.09mg,20.92μmol),在100℃下,搅拌2小时,向体系中加入5mL水,乙酸乙酯萃取(30mL*3),合并有机相,5mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品,通过制备HPLC(柱子:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(10mM NH
实施例2:式(I)化合物的制备
合成路线:
步骤1:
向反应液中加入原料化合物CC-6(24.7g,58.01mmol)和N,N-二甲基乙酰胺(250mL),然后依次加入二叔丁基氯甲基磷酸酯(37.51g,145.02mmol),碳酸铯(47.25g,145.02mmol)和碘化钾(962.91mg,5.80mmol),反应液在40℃搅拌16小时。向反应液中加入2000mL水和300mL乙酸乙酯,搅拌3小时后,乙酸乙酯(300mL×3)萃取,合并有机相并用无水硫酸钠干燥,减压浓缩得到粗产品。粗产品用二氯甲烷和正庚烷(二氯甲烷:正庚烷=1:6,600mL)重结晶,减压浓缩得到粗产品,再用乙酸乙酯和正庚烷(乙酸乙酯:正庚烷=1:5,100mL)打浆,过滤,滤饼用乙酸乙酯和正庚烷(乙酸乙酯:正庚烷=1:5)洗涤,收集滤饼真空除去残留溶剂得到化合物18-2。MS(ESI)m/z:438[M-209]
步骤2:
向反应瓶中加入化合物18-2(2.0g,3.09mmol)和乙腈(10mL),然后加入磷酸氢二钠和柠檬酸的缓冲溶液(pH=3,10mL),反应液在50℃搅拌16小时。反应液降温后过滤,然后加入400mL乙酸乙酯和400mL去离子水,静置分层,有机相加去离子水洗涤(100mL×3),直到pH在7左右。向有机相中加入饱和碳酸氢钠水溶液(200mL),静置分层后,水相用乙酸乙酯萃取(100mL×3),有机相丢弃。向碳酸氢钠水相中 加入200mL乙酸乙酯,然后缓慢加入1M硫酸氢钾中和到pH=4,静置分液后,水相用乙酸乙酯萃取(200mL×3),合并有机相并用无水硫酸钠干燥,过滤后减压浓缩得到化合物22-1。MS(ESI)m/z:438[M-97]
步骤3:
向反应瓶中加入原料化合物22-1(0.6g,1.03mmol)、丙酮(10mL)和去离子水(1mL),然后加入三羟甲基胺基甲烷(249.58mg,2.06mmol),反应液在25℃搅拌16小时。反应液过滤,滤饼转移到烧瓶中,真空浓缩除去残留溶剂得到式(I)化合物。
实施例3:式(I)化合物的制备
步骤1:
20℃下,向反应釜中加入三氟乙酸(17.5L)和二氯甲烷(8.75L),随后加入原料1(3.5kg,15.80mol,1 当量)。降温至0-5℃,向釜中分批次加入N-碘琥珀酰亚胺(4.09kg,18.17mol,1.15当量),加料完毕使体系缓慢升温至20℃,反应16小时。取样HPLC中控检测反应完成后,静置,将上清液抽出,加入7L乙醇搅拌0.5小时,得到的悬浮液过滤得到粗品。粗产品用14L乙醇打浆搅拌16小时,得到的悬浮液过滤,得到化合物2。
步骤2:
20℃下,向反应釜中加入2-甲基四氢呋喃(25L),随后加入原料2(2.5kg,7.2mol,1当量)、化合物3(618.43g,9.36mol,1.3当量)、三乙胺(2.18kg,21.59mol,3当量)和碘化亚铜(68.53g,359.84mmol,0.05当量),调节氮气流,加入二氯双(三苯基膦)钯(II)(101.03g,143.94mmol,0.02当量),反应在25℃下反应16小时。取样HPLC中控检测反应完成后,将反应液经硅藻土过滤,滤饼用6.5L乙酸乙酯洗涤,得到有机相分别用13L 1N硫酸氢钾溶液和13L饱和碳酸氢钠溶液洗涤,13L饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得到粗品。粗品用15L正庚烷:乙酸乙酯=20:1的混合溶剂打浆,搅拌1小时后过滤,滤液减压浓缩得到化合物4。
步骤3:
20℃下,向反应釜中加入乙醇(25L),随后加入原料4(2.5kg,8.75mol,1当量)。向反应釜中加入浓硫酸(858.65g,8.75mol,1当量),加料完毕使体系缓慢升温至内温80℃,反应16小时。取样HPLC中控检测反应完成后,将反应液减压浓缩得到粗品。粗品用20L乙酸乙酯溶解,有机相用饱和碳酸氢钠水溶液(10L*2)和饱和食盐水(6.5L*2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗品。将粗品用60L正庚烷溶解,过硅胶吸附柱,用正庚烷(20L*2)洗涤。滤液减压浓缩得到化合物5。
步骤4:
20℃下,向反应釜中加入乙醇(30L)和水(3L),随后向反应釜中加入原料5(1.5kg,5.52mol,1当量)、化合物6(2.04kg,8.29mol,1.5当量)和磷酸钾(2.93kg,13.81mol,2.5当量),调节氮气流,加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(II)(180.02g,276.21mmol,0.05当量),加料完毕使体系缓慢升温至内温80℃,反应16小时。取样HPLC中控检测反应完成后,向反应液中加入6L水,减压浓缩至干。加入45L正庚烷:乙酸乙酯=1:1的混合溶剂,体系成悬浊液,搅拌1小时后过吸附层析柱,滤饼用12L正庚烷:乙酸乙酯=1:1的混合溶剂搅拌0.5小时,再次过滤,重复两次,收集滤液。合并的滤液用水(10L*5)洗涤,再用饱和食盐水(10L*2)洗涤,有机相用无水硫酸钠干燥,减压浓缩得到粗品。粗品用7.5L正庚烷:乙酸乙酯=10:1混合溶剂打浆16小时,过滤,滤饼减压浓缩得到化合物7。
步骤5:
20℃下,向反应釜中加入二氯甲烷(8L),随后加入原料7(1.6kg,5.60mol,1当量),加入吡啶(1.11kg,14.00mol,2.5当量),降温至0-5℃,缓慢滴加化合物8(1.05kg,5.94mol,1.06当量)的二氯甲烷(1.6L)溶液,滴加完毕后缓慢升至25℃,反应16小时。取样HPLC中控检测反应完成后,向反应液中加入3.2L水,搅拌2小时。悬浮液过滤,滤饼分别用水(6.4L*2)和乙醇(1.6L)洗涤得到粗品。将粗品加入6L甲基叔丁基醚和2L乙醇打浆,室温下搅拌16小时,过滤,滤饼减压浓缩得到化合物9。
步骤6:
将N,N-二甲基乙酰胺(13L)加入到50L釜中(15℃),然后将化合物9(1.3kg,3.05mol,1当量)加入到N,N-二甲基乙酰胺溶液中,随后依次加入化合物10(1.97kg,7.63mol,2.5当量),碳酸铯(2.49kg,7.63mol,2.5当量)和碘化钾(50.68g,305.3mmol,0.1当量),反应液呈黄色悬浊液。加料完毕,体系缓慢升温至50℃,搅拌40小时。进行HPLC监测原料含量<5%。关闭机械搅拌,将反应液抽入装有50L水和乙酸乙酯(16L)的分液中搅拌3小时。搅拌后静置分层,水相用乙酸乙酯萃取(16L),有机相再依次用用10L水和10L食盐水洗涤,再用5L乙酸乙酯萃取水相和食盐水,分层后该有机相与上述所得有机相合并。将合并的有机相用无水硫酸钠干燥后,过滤后,滤液减压浓缩得到红棕色粘稠状粗产品。将粗产品用二氯甲烷(6L)完全溶解后,在搅拌下缓慢加入正庚烷(48L),然后搅拌3小时,形成黄色溶液和粘到壁上的焦油状红棕色固体。将黄色溶液倒出,向该溶液中再加入正庚烷(12L)继续搅拌16小时,形成黄色悬浊液。黄色悬浊液经桌面过滤器抽滤,收集固体,真空除去残留溶剂,得到黄色粉末状粗产品。过滤所得滤液减压浓缩得到黄色粘稠状粗产品,该粗产品再用二氯甲烷(1.2L)溶解后,在搅拌下缓慢加入正庚烷(18L)搅拌16小时,有一大块红棕色固体生成,倒出溶剂,将红棕色块状固体用乙酸乙酯和正庚烷混合溶液(乙酸乙酯:正庚烷=1:1,400mL)打浆,搅拌1小时后过滤,滤饼用乙酸乙酯和正庚烷混合溶液(1:4,200mL*3)洗涤,收集固体,真空除去残留溶剂,得到黄色粉末状粗产品。将两次得到的黄色粉末状产品合并,然后加入乙酸乙酯与正庚烷的混合溶液(乙酸乙酯:正庚烷=1:4,2L)打浆16小时,得到黄色悬浊液。黄色悬浊液经过滤器抽滤,收集固体,真空除去残留溶剂,得到化合物11。
步骤7:
将乙腈(8.5L)加入到50L釜(15℃),然后将化合物11(850g,1.314mol)加入到乙腈溶液中,随后加入由二水合磷酸氢二钠(62.3g,0.35mol,1.75L去离子水)和柠檬酸(141.85g,0.675mol,6.75L去离子水)配成pH=3的缓冲溶液。开启加热,体系缓慢升温至46℃,搅拌18小时。向反应液中滴加1M的柠檬酸(800mL),滴加完毕继续加热搅拌24小时。取样HPLC中控检测反应完成。反应液降温后,将反应液加到分液中。向分液中加入(40L)乙酸乙酯和(30L)水,静置分层后分液放出水相,有机相再加水洗涤(10L*3),合并水相并用10L乙酸乙酯洗涤,合并有机相,向有机相中加入用去离子水配成的饱和碳酸氢钠溶液(10L),搅拌1小时后静置分层,静置不分层时,加入10L去离子水后分层,有机相用30L水洗涤,水相合并到碳酸氢钠水相中,碳酸氢钠水相用乙酸乙酯萃取(10L),保留碳酸氢钠水相。向碳酸氢钠水相中加入20L乙酸乙酯,然后在搅拌下缓慢加入用去离子水配成的1M硫酸氢钾(14L)中和到pH=4,此过程无升温现象,搅拌0.5小时后静置分层,分液后水相用乙酸乙酯萃取(20L x 3),合并有机相并用无水硫酸钠干燥,过滤后滤液减压浓缩,得到粗产品化合物12。
步骤8:
用丙酮(6.6L)将称取的化合物12(440g,0.858mol,1当量)溶解后加入到50L反应釜中(15℃)。然后将称取的三羟甲基胺基甲烷(207.99g,1.72mol,2当量)溶解到0.66L去离子水中,将该溶液一次性加入到反应釜中,加料完毕,开启加热,体系缓慢升温至25℃,搅拌16小时。
实施例4:式(I)化合物A晶型的制备
在25℃向反应瓶中加入式(I)化合物(35.6g,45.01mmol,98.37%纯度,1当量)和乙酸乙酯和甲醇(乙酸乙酯:甲醇=3:1,712mL),反应液在60℃搅拌16小时。XRPD检测显示反应完成。反应液过滤,收集滤饼减压浓缩干燥。得到A晶型,其XRPD谱图如图1所示、DSC谱图如图2所示、TGA谱图如图3所示。
实施例5:式(I)化合物B晶型的制备
向干燥洁净的50L釜中(15℃)加入由2-甲基四氢呋喃(11.7L)和甲醇(3.9L)配成的混合溶(2-甲 基四氢呋喃:甲醇=3:1,15.6L),开启搅拌,将称取的式(I)化合物(520g,0.668mol,1当量)加入到反应釜中,加料完毕,开启加热,体系缓慢升温至60℃,搅拌16小时。XRPD检测显示反应完成。将反应液过滤,滤饼依次用2-甲基四氢呋喃(2L*2)和甲基叔丁基醚(2L*2)洗涤,收集滤饼,真空除去残留溶剂得到B晶型,其XRPD谱图如图4所示、DSC谱图如图5所示、TGA谱图如图6所示。
实施例6:式(I)化合物A晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物A晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物A晶型的DVS谱图如图7所示,△W=1.308%。
实验结论:
式(I)化合物A晶型在25℃和80%RH下的吸湿增重为1.308%,略有吸湿性。
实施例7:式(I)化合物热力学溶解度测试
称取2mg左右的待测化合物至whatman小瓶中,加入缓冲液450μL磷酸缓冲液(50mM,pH=7.4)。将whatman的瓶塞压至液面附近,使瓶塞中的过滤膜与液面均匀接触。上下摇晃均匀并涡旋两分钟,记录待测化合物在whatman小瓶中的溶解现象。将whatman小瓶放在摇床中在常温下振荡24小时,转速设定600r/min。将whatman小瓶的塞子缓缓压至最下方,得到上清液。检查所有化合物,确保上清液中无沉淀,以防止瓶塞中的滤膜破裂。用稀释液配制准备线性溶液(3个标准溶液,1,20,200μM,n=1)。将上清液取出,精密量取出10μL稀释100倍。将得到的稀释液和原液与线性同时进入高效液相色谱仪中进行检测分析,根据峰面积和稀释因子通过外标法计算结果。
实验结果如表4所示:
表4:本发明化合物的溶解度
结论:式(I)化合物在水中的溶解度非常好。
实施例8:式(I)化合物B晶型的固体加速稳定性研究
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物B晶型在加速实验条件下的稳定性。称取式(I)化合物B晶型大约10mg,置于玻璃样品瓶的底部,摊成薄薄一层,铝箔纸封口并扎上小孔,在(40℃/75%RH)放置以及(60℃/75%RH)放置1个月,对放置后的样品进行XRPD表征,检测结果与0天的初始检测结果进行比较。结果如表5显示,式(I)化合物结晶B在所有稳定性条件下,晶型均未发生变化。
表5:式(I)化合物B晶型的固体稳定性实验结果
实验结论:式(I)化合物B晶型具有良好的稳定性。
生物测试数据:
实验例1:本发明化合物的CRAC体外细胞活性测试
1.实验材料:
1.1试剂与耗材,见表6:
表6.试剂与耗材
1.2仪器,见表7:
表7.仪器
1.3细胞株:RBL-2H3,来源于HDB细胞库。
2.实验步骤与方法:
2.1细胞铺板
1)准备生物安全操作柜,预热相关试剂。每日观察细胞,当10cm培养皿85%的面积长满细胞后,进行细胞传代。
2)取出细胞培养皿,移除培养液。使用DPBS清洗细胞表面,移除DPBS。使用1mL 0.25%Trypsin-EDTA消化细胞1-3分钟后,加入2mL培养液终止消化。使用移液枪轻柔吹打细胞直至细胞从培养皿表面脱落。
3)使用生长培养液调整细胞密度至每孔15000细胞,体积为每孔25μL培养液。
4)细胞培养板放置于37℃和5%CO
2.2检测
1)从培养箱中取出细胞培养板,倒置离心RPM300转/30秒移除培养液,每孔加入20μL缓冲液(超纯水,40mM氯化钠,100mM氯化钾,17mM碳酸氢钠,0.1mM乙二醇双氨乙基醚四乙酸(EGTA),12mM葡萄糖,1mM氯化镁,5mM羟乙基哌嗪乙硫磺酸(Hepes),2.5mM丙磺舒,2μM Fluo8),置于培养箱中30分钟。
2)准备化合物板。化合物溶于DMSO中,根据待测浓度要求使用Echo550将化合物准备在化合物板(Greiner784201)中,并溶解于不含有钙离子的缓冲液中(超纯水,40mM NaCl,100mM KCl,17mM NaHCO
3)准备含有钙离子的诱导缓冲液(4mM CaCl
数据处理:使用ScreenWorks,Excel,Xlfit以及GraphPad对采集的信号结果进行分析以及绘制图表。实验结果如表8所示。
表8:RBL-3H细胞实验FLIPR检测抑制Ca
结论:化合物CC-6对CRAC的通道抑制作用显著。
实验例2:小鼠药代动力学评价
实验目的:以雄性C57BL/6小鼠为受试动物,应用LC/MS/MS法测定供试品化合物经静脉或腹腔注射给药后不同时刻的血浆药物浓度。研究供试品化合物在小鼠体内的药代动力学行为,评价其药动学特征。
药物配制:称取适量样品,用40%PEG400+20%Solutol+40%H
给药方案:取健康雄性C57BL/6小鼠2只,购买自北京维通利华实验动物有限公司,正常饮食。静脉注射给药组使用0.5mg/mL的药液,给药体积为2mL/kg;给药剂量为1mg/kg。腹腔注射给药组使用0.3mg/mL的药液,给药体积为10mL/kg;给药剂量为3mg/kg。
操作步骤:动物给药后,在0.083、0.25、0.5、1、2、4、8、12及24小时分别采血25μL,置于预先加有EDTA-K2的商品化抗凝管中。将试管离心10分钟分离血浆,并于-60℃保存。用LC/MS/MS法测定血浆样品中的目标化合物含量。
实验结果如表9所示。
表9:化合物CC-6的小鼠药代动力学参数
结论:在小鼠药代动力学评价实验当中,经静脉和腹腔途径给予的化合物CC-6具有较高的血浆暴露量和理想的药代动力学性质。
实验例3:小鼠药代动力学评价
实验目的:以雄性C57BL/6小鼠为受试动物,应用LC/MS/MS法测定化合物经静脉注射给药后不同时刻血浆药物浓度。研究化合物在小鼠体内的药代动力学行为,评价其药动学特征。
药物配制:称取适量样品,用无菌生理盐水配成5mg/mL的澄清溶液。
给药方案:取健康雄性C57BL/6小鼠2只,购买自北京维通利华实验动物有限公司,正常饮食,给药体积为10mL/kg;给药剂量为50mg/kg。
操作步骤:动物给药后,在0.083、0.25、0.5、1、2、4、8、12及24小时分别采血25μL,置于预先加有EDTA-K2的商品化抗凝管中。将试管离心10分钟分离血浆,并于-60℃保存。用LC/MS/MS法测定血浆样品中相应化合物的含量。
实验结果:见表10。
表10:化合物的小鼠药代动力学参数
注:NA代表此数据不存在,DNAUC代表按照摩尔剂量归一化后的暴露量。
结论:在小鼠药代动力学评价实验当中,给予式(I)化合物后,其在血浆中快速消除。与此同时,自给药5min起即能够检测到大量化合物CC-6生成,且同摩尔剂量下,给予式(I)化合物后,化合物CC-6在体内的暴露量相当。
实验例4:蛙皮素诱导的小鼠急性胰腺炎药效实验
实验目的:以雄性C57BL/6小鼠为受试动物,使用蛙皮素腹腔注射诱发急性胰腺炎。研究式(I)化合物对急性胰腺炎的疗效。
药物配制:称取适量样品,式(I)化合物用无菌生理盐水配成5mg/mL的澄清溶液。
实验方案:取健康雄性C57BL/6小鼠,经腹腔注射蛙皮素诱导胰腺炎模型,注射剂量为每次50μg/kg, 一共注射7次,注射间隔为1h。第七次注射蛙皮素后1小时,取血清,测量其中的淀粉酶和脂肪酶水平。式(I)化合物经静脉注射给药,实验共4组(G1-G4)。G1为健康组,G2为模型组,G3-4为治疗组。G1-3在第一次注射蛙皮素的时间点前0.5h给予第一次给药物或溶媒,第四次注射蛙皮素后0.5h给予第二次给药物或溶媒。G4第一次注射蛙皮素前0.5h给予药物,不进行第二次给药。G3:25mg/kg,每日两次(bid);G3:50mg/kg,每日一次(qd)。
实验结果:见图8.血浆淀粉酶水平,经单因素方差分析,***代表与G1有显著性差异P<0.001;###代表与G2有显著性差异P<0.001;¥代表与G3有显著性差异,p<0.05。和图9.血浆脂肪酶水平,经单因素方差分析,***代表与G1有显著性差异P<0.001;###代表与G2有显著性差异P<0.001;¥¥¥代表与G3有显著性差异,p<0.001。
结论:在蛙皮素诱导的小鼠急性胰腺炎模型中,式(I)化合物能够非常显著地降低血清淀粉酶(AMY)和脂肪酶(LPS)水平,表明其能够显著改善急性胰腺炎的典型症状,显示了治疗急性胰腺炎的优秀潜力。
- 一种氘代二苯氨基嘧啶类化合物的制备方法及其晶型
- 一种苯并呋喃类化合物的制备方法
- 一种取代硝基苯类化合物的制备方法
- 一种取代的苯并异噻唑类化合物及其制备方法与用途
- 一种多取代苯并二氢呋喃并杂环类化合物及其制备方法和应用
- 一种多取代苯并二氢呋喃并杂环类化合物及其制备方法和应用