掌桥专利:专业的专利平台
掌桥专利
首页

一种空气透平系统及其运行方法

文献发布时间:2023-06-19 19:14:59


一种空气透平系统及其运行方法

技术领域

本发明属于压缩空气储能技术领域,具体涉及一种能够适应空气压缩源压力大范围变化的空气透平系统及其运行方法。

背景技术

压缩空气储能系统是一种新型储能技术,具有功率范围广、寿命长、存储时间不受限制、环境友好的优点,已成为当前重要的储能技术研究方向。其原理是在用电低峰期,利用多余的电能将空气进行压缩后存储在盐穴、高压储气罐等密闭空间内,用电高峰期,利用储存的高压空气驱动空气透平做功发电,以满足用电需求。由于盐穴、高压储气罐等密闭空间能储存的压缩空气有限,在空气透平做功过程中,随着压缩空气的流出,储气压力将持续降低,导致空气透平的输出功率持续减小,无法满足出力要求;因此,针对储气量有限的压缩空气储能系统,如何保证空气透平的输出功率稳定,是本申请亟待解决的技术问题。

发明内容

鉴于以上现有技术的缺点,本发明的目的在于提供一种能够适应空气压缩源压力大范围变化的空气透平系统及其运行方法,当空气压缩源的压力变化时,切换高压空气透平、中压空气透平和低压空气透平之间的连接关系,确保各空气透平输出的功率之和始终保持不变。

为实现上述目的及其他相关目的,本发明提供一种空气透平系统,包括压缩空气源、高压空气透平、中压空气透平和低压空气透平;所述压缩空气源通过高压进气管与高压空气透平的进气口连通;所述高压进气管上并联设置有高压补气管和中压补气管;所述高压补气管与高压空气透平的补气口连通,且高压补气管上设有高压补气阀;所述中压补气管与中压空气透平的进气口连通,且中压补气管上设有中压补气阀;所述高压进气管上设有高压通断阀和高压调节阀,所述高压补气管的进气口与中压补气管的进气口均位于高压通断阀与高压调节阀之间;所述高压空气透平的排气口处并联设置有中压进气管和低压进气管;所述中压进气管与中压空气透平的进气口连通,且中压进气管管上设有中压通断阀和中压调节阀;所述低压进气管与低压空气透平的进气口连通,且低压进气管沿其流通方向依次设有一号低压通断阀、低压调节阀和二号低压通断阀;所述中压空气透平的排气口通过中压排气管与低压进气管连通,所述中压排气管的出气口位于低压调节阀与二号低压通断阀之间;所述低压空气透平的排气口与大气连通;本发明根据压缩空气源的压力下降情况,调节各阀门以控制压缩空气源、高压空气透平、中压空气透平和低压空气透平之间的连接关系,使各空气透平的输出功率之和保持不变。

优选地,所述空气透平系统包括中压加热器和低压加热器;所述中压加热器设置在中压进气管上,所述低压加热器设置在低压进气管上,用于对进入中压空气透平和低压空气透平的压缩空气进行加热。

优选地,所述中压缸为单流中压缸或双流中压缸,具体可根据空气压缩源的总流量确定。

优选地,所述空气透平系统包括发电机,所述高压空气透平、中压空气透平、低压空气透平和发电机依次通过联轴器连接形成串联轴系,确保发电机的发电功率保持不变。

优选地,每个空气透平通过联轴器连接有一个发电机,确保各发电机的发电功率之和保持不变。

本申请还提供一种空气透平系统的运行方法,该运行方法包括以下步骤:

当压缩空气源的压力大于第一预设压力值时,关闭高压补气阀、中压补气阀、一号低压通断阀和低压调节阀,打开高压通断阀、中压通断阀、高压调节阀、中压调节阀、中压加热器和低压加热器,使中压调节阀处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压调节阀的开度,使各空气透平发出的总功率保持不变;

当压缩空气源的压力不大于第一预设压力值,且大于第二预设压力值时,打开高压补气阀,使高压调节阀和中压调节阀处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压补气阀的开度,使各空气透平发出的总功率保持不变;

当压缩空气源的压力不大于第二预设压力值,且大于第三预设压力值时,打开中压补气阀,使高压调节阀、中压调节阀和高压补气阀处于全开状态,并根据压缩空气源的压力下降量逐渐增加中压补气阀的开度,使各空气透平发出的总功率保持不变;

当压缩空气源的压力不大于第三预设压力值,且大于第四预设压力值时,打开一号低压通断阀,在缓缓增大低压调节阀开度的同时,逐渐减小中压调节阀的阀门开,并根据高压空气透平进气口与补气口的压力比调节高压补气阀的阀门开度,同时根据压缩空气源的压力下降量逐渐增加中压补气阀的开度,使各空气透平发出的总功率保持不变;

当压缩空气源的压力不大于第四预设压力值时,关闭高压补气阀、中压调节阀、中压通断阀和中压加热器,并根据压缩空气源的压力下降量逐渐增加中压补气阀的开度,直至中压补气阀全开,使各空气透平发出的总功率保持不变。

优选地,所述第一预设压力值为高压补气阀的开启压力值,第二预设压力值为中压补气阀的开启压力值,第三预设压力值为即将发生鼓风的临界压力值,第四预设压力值为中、高压空气透平由串并联状态切换至并联状态时所对应的压缩空气源的压力值。

如上,本发明的一种空气透平系统及运行方法,具有以下有益效果:

本发明通过改变高压空气透平、中压空气透平和低压空气透平之间的连接关系,以克服因压缩空气源压力下降带来的空气透平输出功率下降的问题,在实现各空气透平高效运行地同时,确保各空气透平输出的总功率始终保持不变;由于本发明具有适应压缩空气源压力下降的能力,可适当控制压缩空气储能系统的储气体积,从而有效控制投资成本。

附图说明

图1为本发明中一实施例的空气透平系统的示意图。

图2为本发明中一实施例的空气透平系统的示意图

图3为空气透平系统运行方法的流程图。

高压空气透平1,中压空气透平2,低压空气透平3,发电机4,高压进气管5,高压补气管5a,中压补气管5b,中压进气管6,低压进气管7,中压排气管8,高压通断阀9,高压调节阀10,高压补气阀11,中压补气阀12,中压调节阀13,中压通断阀14,中压加热器15,一号低压通断阀16,低压调节阀17,低压加热器18,二号低压通断阀19。

具体实施方式

以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。

请参阅图1至图3。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。

实施例一

如图1所示,本实施例提供一种空气透平系统,包括压缩空气源、高压空气透平1、中压空气透平2和低压空气透平3;高压空气透平1具有进气口、补气口和排气口;中压空气透平2和低压空气透平3均具有进气口和排气口;其中,高压空气透平1的进气口通过高压进气管5与压缩空气源连通;高压进气管5上设有高压通断阀9和高压调节阀10,高压通断阀9用于连通或切断高压进气管5,高压调节阀10用于调节进入高压空气透平1进气口的流量;高压进气管5上并联设置有高压补气管5a和中压补气管5b;高压补气管5a与高压空气透平1的补气口连通,中压补气管5b与中压空气透平2的进气口连通;高压补气管5a上设有用于调节进入高压空气透平1补气口流量的高压补气阀11,中压补气管5b上设有用于调节进入中压空气透平2进气口流量的中压补气阀12;高压空气透平1的排气口分为两支路,分别是与中压空气透平2进气口连通的中压进气管6及与低压空气透平3进气口连通的低压进气管7;中压进气管6上设有中压调节阀13和中压通断阀14,分别控制中压进气管6的流量和通断;低压进气管7沿其流通方向依次设有一号低压通断阀16、低压调节阀17和二号低压通断阀19,用于控制低压进气管7的通断和流量;中压空气透平2的排气口设有与低压进气管7连通的中压排气管8,中压排气管8的出气口位于低压调节阀17与二号低压通断阀19之间;在本实施例中,中压调节阀13优选设置在中压通断阀14的下游。

通过控制各阀门的状态,可以使空气透平系统中的各空气透平处于不同的连接状态下,其总共有以下五种连接状态:

状态一:关闭高压补气阀11、中压补气阀12、一号低压通断阀16和低压调节阀17,打开高压通断阀9和中压通断阀14,使中压调节阀13处于全开状态(即阀门开度最大状态),并根据压缩空气源的压力下降量逐步增大高压调节阀10的阀门开度;此时,高压空气透平1、中压空气透平2和低压空气透平3形成串联组合,使压缩空气源的压缩空气通过高压进气管5进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中;在此过程中,虽然压缩空气源的压力在持续下降,但通过调整高压调节阀10开度保证高压调节阀10的阀后压力始终保持在通流设计压力,进入各空气透平的流量也保持在设计流量,防止透平超发,确保各空气透平输出的总功率保持不变。

状态二:关闭中压补气阀12、一号低压通断阀16和低压调节阀17,打开高压通断阀9和中压通断阀14,使中压调节阀13和高压调节阀10处于全开状态(即阀门开度最大状态),并根据压缩空气源的压力下降量逐步增大高压补气阀11的阀门开度;此时,高压空气透平1、中压空气透平2和低压空气透平3仍形成串联组合,使压缩空气源的压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中;在此过程中,虽然压缩空气源的压力在持续下降,但由于进入各空气透平的流量持续上升,弥补了因压缩空气压力下降导致的输出功率不足问题,确保各空气透平输出的总功率保持不变。

状态三:关闭一号低压通断阀16和低压调节阀17,打开高压通断阀9和中压通断阀14,使中压调节阀13、高压调节阀10和高压补气阀11均处于全开状态(即阀门开度最大状态),并根据压缩空气源的压力下降量逐步增大中压补气阀12的阀门开度;此时,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),然后该串并联组合与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的排气一起进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中;在此过程中,虽然压缩空气源的压力在持续下降,但由于进入中压空气透平和低压空气透平的流量仍在持续上升,弥补了因压缩空气压力下降导致的输出功率不足问题,确保各空气透平输出的总功率保持不变。

状态四:打开高压通断阀9、中压通断阀14和一号低压通断阀16,在缓缓增大低压调节阀17开度的过程中,逐渐减小中压调节阀13的阀门开度,以避免压力突变,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,同时根据高压空气透平1进气口与补气口的压力比调节高压补气阀11的阀门开度,以避免高压空气透平1因进气口压力过低导致补气点前的通流段产生鼓风现象,提高高压空气透平1的运行安全性;此时,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),且高压空气透平1与中压空气透平2又分别与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的一部分排气一起进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的另一部分排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中;在此过程中,虽然压缩空气源的压力在持续下降,但由于进入中压空气透平和低压空气透平的流量仍在持续上升,弥补了因压缩空气压力下降导致的输出功率不足问题,确保各空气透平输出的总功率保持不变。

状态五:关闭高压补气阀11、中压调节阀13和中压通断阀14,打开高压通断阀9、一号低压通断阀16和低压调节阀17,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度;此时,高压空气透平1与中压空气透平2形成并联组合,该并联组合又与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中;在此过程中,虽然压缩空气源的压力在持续下降,但由于进入中压空气透平和低压空气透平的流量仍在持续上升,弥补了因压缩空气压力下降导致的输出功率不足问题,确保各空气透平输出的总功率保持不变。

进一步地,中压进气管6上设有中压加热器15,低压进气管7上设有低压进气管17,中压加热器15位于中压通断阀14的上游,用于对进入中压进气管6的排气进行加热;低压加热器18位于中压排气管8的出口与二号低压通断阀19之间,用于对进入低压进气管7的排气进行加热。

进一步地,如图1所示,空气透平系统包括发电机,高压空气透平1、中压空气透平2、低压空气透平3和发电机4依次通过联轴器连接形成串联轴系。

实施例二

如图2所示,本实施例与实施例一的区别仅在于发电机4的个数及布置方式;本实施例发电机4的个数有三个,且三个发电机4通过联轴器分别与高压空气透平1、中压空气透平2和低压空气透平3连接。

实施例三

本实施例与实施例一的区别仅在于中压缸2和低压缸3的结构形式和个数,具体有以下四种方案:

方案一:中压缸2与低压缸3各设置一个,且中压缸2为单流中压缸,低压缸3为单流低压缸;方案一适用于流量较小的压缩空气源。

方案二:中压缸2与低压缸3各设置一个,且中压缸2为单流中压缸,低压缸3为双流低压缸;方案二适用于流量一般的压缩空气源。

方案三:中压缸2与低压缸3各设置一个,且中压缸2为双流中压缸,低压缸3为双流低压缸;方案三适用于流量较大的压缩空气源。

方案四:中压缸2设置一个,低压缸3设置多个,且中压缸2为单流中压缸,低压缸3为单流低压缸;多个低压缸3之间相互串联,且相邻两个低压缸3之间设有再加热器;方案四适用于进口压力较高温度较低的压缩空气源。

实施例四

如图3所示,本实施例提供一种空气透平系统的运行方法,要求实施例一或二的空气透平系统在压缩空气源的10Mpa~3MPa压力范围内输出的功率和为30MW;该运行方法包括以下步骤:

S1、当压缩空气源的压力大于第一预设压力值时,关闭高压补气阀11、中压补气阀12一号低压通断阀16和低压调节阀17,打开高压通断阀9、中压通断阀14、高压调节阀10、中压调节阀13、二号低压通断阀19、中压加热器15和低压加热器18,使中压调节阀13处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压调节阀10的开度,使各空气透平发出的总功率保持不变;

具体地,第一预设压力值为高压补气阀11的开启压力值,该值为8.11MPa;在此步骤下,压缩空气源的压力始终大于高压补气阀11的开启压力值,确保高压补气阀11始终处于关闭状态;当压缩空气源的压力下降至8.11MPa时,高压调节阀10需处于全开状态(即阀门开度最大)。

在此步骤下,高压空气透平1、中压空气透平2和低压空气透平3形成串联组合,使压缩空气源的压缩空气通过高压进气管5进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S2、当压缩空气源的压力不大于第一预设压力值,且大于第二预设压力值时,打开高压补气阀11,使高压调节阀10和中压调节阀13处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压补气阀11的开度,使各空气透平发出的总功率保持不变;

具体地,第二预设压力值为中压补气阀12的开启压力值,该值为7.2MPa;在此步骤下,压缩空气源的压力大于7.2MPa,且不大于8.11Mpa,使得高压补气阀11开启,中压补气阀12仍处于关闭状态;当压缩空气源的压力下降至7.2MPa时,高压补气阀11需处于全开状态。

在此步骤下,高压空气透平1、中压空气透平2和低压空气透平3仍形成串联组合,使压缩空气源的压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中;

S3、当压缩空气源的压力不大于第二预设压力值,且大于第三预设压力值时,打开中压补气阀12,使高压调节阀10、中压调节阀13和高压补气阀11处于全开状态,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,使各空气透平发出的总功率保持不变;

具体地,第三预设压力值为高压空气透平1中补气点前后通流段即将产生鼓风现象的临界压力值,该压力值为5.3MPa;在此步骤下,压缩空气源的压力大于5.3MPa,且不大于7.2Mpa,使得高压补气阀11和中压补气阀12均能开启。

在此步骤下,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),然后该串并联组合与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的排气一起进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S4、当压缩空气源的压力不大于第三预设压力值,且大于第四预设压力值时,打开一号低压通断阀16,在缓慢增大低压调节阀17开度的过程中,逐渐减小中压调节阀13的阀门开度,并根据高压空气透平1进气口与补气口的压力比调节高压补气阀11的阀门开度,同时根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,使各空气透平发出的总功率保持不变;

具体地,第四预设压力值为中压调节阀13阀门开度调节至全关时所对应的压缩空气源的压力,该值为5MPa;由于压缩空气源的压力下降至5.3MPa时,高压空气透平1中补气点前通流段的膨胀比已到达鼓风临界值(即高压空气透平进气口压力与补气口压力的比值到达鼓风临界值),若压缩空气源的压力继续下降,将导致高压空气透平1的进气口压力与补气口压力的比值低于鼓风临界值使高压空气透平产生鼓风现象,为了克服这一缺陷,本步骤实时根据高压空气透平1进气口与补气口的压力比调节高压补气阀11的阀门开度(即令进气口压力增加,补气口压力下降),确保高压空气透平1进气口与补气口的压力比始终不小于鼓风临界值。

在此步骤下,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),且高压空气透平1与中压空气透平2又分别与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的一部分排气一起进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的另一部分排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S5、当压缩空气源的压力不大于第四预设压力值时,关闭中压通断阀14、中压调节阀13、高压补气阀11和中压加热器15,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,直至中压补气阀12全开,使各空气透平发出的总功率保持不变。

当压缩空气源的压力值下降为3MPa时,中压补气阀12全开,无法继续补气,表示释能模式结束。

在此步骤下,高压空气透平1与中压空气透平2形成并联组合,该并联组合又与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中。

实施例五

如图3所示,本实施例提供一种空气透平系统的运行方法,要求实施例一或二的空气透平系统在压缩空气源的17Mpa~5MPa压力范围内输出的功率和为100MW;该运行方法包括以下步骤:

S1、当压缩空气源的压力大于第一预设压力值时,关闭高压补气阀11、中压补气阀12一号低压通断阀16和低压调节阀17,打开高压通断阀9、中压通断阀14、高压调节阀10、中压调节阀13、二号低压通断阀19、中压加热器15和低压加热器18,使中压调节阀13处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压调节阀10的开度,使各空气透平发出的总功率保持不变;

具体地,第一预设压力值为高压补气阀11的开启压力值,该值为15.16MPa;在此步骤下,压缩空气源的压力始终大于高压补气阀11的开启压力值,确保高压补气阀11始终处于关闭状态;当压缩空气源的压力下降至15.16MPa时,高压调节阀10需处于全开状态(即阀门开度最大)。

在此步骤下,高压空气透平1、中压空气透平2和低压空气透平3形成串联组合,使压缩空气源的压缩空气通过高压进气管5进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S2、当压缩空气源的压力不大于第一预设压力值,且大于第二预设压力值时,打开高压补气阀11,使高压调节阀10和中压调节阀13处于全开状态,并根据压缩空气源的压力下降量逐渐增加高压补气阀11的开度,使各空气透平发出的总功率保持不变;

具体地,第二预设压力值为中压补气阀12的开启压力值,该值为13.5MPa;在此步骤下,压缩空气源的压力大于13.5MPa,且不大于15.16Mpa,使得高压补气阀11开启,中压补气阀12仍处于关闭状态;当压缩空气源的压力下降至13.5MPa时,高压补气阀11需处于全开状态。

在此步骤下,高压空气透平1、中压空气透平2和低压空气透平3仍形成串联组合,使压缩空气源的压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,高压空气透平1的排气进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中;

S3、当压缩空气源的压力不大于第二预设压力值,且大于第三预设压力值时,打开中压补气阀12,使高压调节阀10、中压调节阀13和高压补气阀11处于全开状态,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,使各空气透平发出的总功率保持不变;

具体地,第三预设压力值为高压空气透平1中补气点前通流段即将产生鼓风现象的临界压力值,该压力值为8.7MPa;在此步骤下,压缩空气源的压力大于8.7MPa,且不大于13.5Mpa,使得高压补气阀11和中压补气阀12均能开启。

在此步骤下,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),然后该串并联组合与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的排气一起进入中压空气透平2做功,中压空气透平2的排气进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S4、当压缩空气源的压力不大于第三预设压力值,且大于第四预设压力值时,打开一号低压通断阀16,在缓慢增大低压调节阀17开度的过程中,逐渐减小中压调节阀13的阀门开度,并根据高压空气透平1进气口与补气口的压力比调节高压补气阀11的阀门开度,同时根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,使各空气透平发出的总功率保持不变;

具体地,第四预设压力值为中压调节阀13阀门开度调节至最小开度时所对应的压缩空气源的压力,该值为8.4MPa;由于压缩空气源的压力下降至8.4MPa时,高压空气透平1中补气点前通流段的膨胀比已到达鼓风临界值(即高压空气透平进气口压力与补气口压力的比值到达鼓风临界值),若压缩空气源的压力继续下降,将导致高压空气透平1的进气口压力与补气口压力的比值低于鼓风临界值产生鼓风现象,为了克服这一缺陷,本步骤实时根据高压空气透平1进气口与补气口的压力比调节高压补气阀11的阀门开度(即使进气口压力增加,补气口压力下降),确保高压空气透平1进气口与补气口的压力比始终不小于鼓风临界值。

在此步骤下,高压空气透平1与中压空气透平2形成串并联组合(即二者并联设置的同时,又相互串联),且高压空气透平1与中压空气透平2又分别与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5和高压补气管5a进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b与高压空气透平1的一部分排气一起进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的另一部分排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中。

S5、当压缩空气源的压力不大于第四预设压力值时,关闭中压调节阀13、中压通断阀14、高压补气阀11和中压加热器15,并根据压缩空气源的压力下降量逐渐增加中压补气阀12的开度,直至中压补气阀12全开,使各空气透平发出的总功率保持不变。

当压缩空气源的压力值下降为5MPa时,中压补气阀12全开,无法继续补气,表示释能模式结束。

在此步骤下,高压空气透平1与中压空气透平2形成并联组合,该并联组合又与低压空气透平3串联,使压缩空气源的一部分压缩空气通过高压进气管5进入高压空气透平1做功,压缩空气源的一部分压缩空气通过中压补气管5b进入中压空气透平2做功,中压空气透平2的排气和高压空气透平1的排气一起进入低压空气透平3做功,低压空气透平3的排气排入大气中。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

技术分类

06120115848528