一种显示模组和显示装置
文献发布时间:2024-04-18 19:57:50
相关申请的交叉引用
本申请主张在2022年1月24日递交的中国申请202210079805.4的优先权,其全部内容通过引用包含于此。
本公开实施例涉及显示技术领域,尤其涉及一种显示模组和显示装置。
随着显示技术的不断发展,液晶显示产品的应用范围越来越广泛。液晶显示产品主要由显示面板和背光模组组成。背光模组用于为显示面板提供背光,以保证显示面板的正常显示功能。为了提高显示模组的屏占比,通常需要缩小显示模组的边框。
发明内容
第一方面,本公开实施例提供了一种显示模组,包括依次设置的透明盖板、光学胶层、显示面板和背光模组;
所述显示模组的侧边包括在所述显示模组上与所述显示面板第一侧边同侧的第一轮廓边和除第一轮廓边之外的多条第二轮廓边,所述显示面板的第一侧边为所述显示面板的数据输入端所在侧;
所述显示模组还包括侧涂胶,所述侧涂胶设置于至少一条所述第二轮廓边远离所述显示面板中心的一侧;所述侧涂胶由所述透明盖板延伸至所述背光模组,所述侧涂胶与所述显示面板的侧面、所述背光模组的侧面以及所述透明盖板朝向所述显示面板的一侧表面粘接。
在其中一些实施例中,在至少一个所述第二轮廓边所在的一侧,所述透明盖板的边缘突出于所述显示面板的第二轮廓边,所述侧涂胶位于所述透明盖板靠近所述显示面板的一侧。
在其中一些实施例中,显示模组包括位于所述显示面板40与所述背光模 组60之间的第二遮光层,所述第二遮光层设置在所述第二轮廓边且与所述背光模组搭接,所述搭接宽度大于或等于0.15mm。
在其中一些实施例中,所述第二轮廓边一侧的所述显示面板的侧边相对所述背光模组的外轮廓内缩设置;
所述背光模组突出于所述显示面板的长度小于或等于0.15mm。
在其中一些实施例中,在至少一个所述第二轮廓边,所述侧涂胶覆盖所述显示面板的端部的宽度在0.15mm至0.25mm范围内。
在其中一些实施例中,所述第二轮廓边一侧对应的所述背光模组的边缘在所述透明盖板延伸面上正投影相比于所述第二遮光层靠近其对应的第二轮廓边一侧的边缘在所述透明盖板延伸面上的正投影更靠近显示模组的第二轮廓边;
所述第二遮光层较所述背光模组内缩小于或等于0.05mm。
在其中一些实施例中,沿垂直于所述透明盖板的方向上,所述侧涂胶与所述背光模组交叠区域的长度大于或等于所述背光模组厚度的一半。
在其中一些实施例中,所述第二遮光层的厚度在0.027mm至0.033mm范围内。
在其中一些实施例中,所述显示面板包括第一基板、第二基板以及位于所述第一基板和所述第二基板之间的封框胶;所述数据输入端位于所述第一基板上;
所述显示面板包括支撑结构,所述支撑结构位于所述封框胶远离所述显示面板显示区的一侧。
在其中一些实施例中,所述第二基板包括第一边缘,所述第一基板包括第二边缘,所述第一边缘与所述第二边缘都位于所述显示面板的第一侧边,并且,所述第一边缘相比所述第二边缘更靠近所述显示面板显示区;
所述支撑结构远离所述显示面板显示区的边界与所述第一边缘平齐。
在其中一些实施例中,所述第二边缘与所述支撑结构靠近所述封框胶的边界在所述显示面板延伸面上垂直于所述第二边缘方向上的距离大于或等于0.05mm。
在其中一些实施例中,所述第一边缘与所述封框胶之间的距离在0.05mm 至0.12mm范围内。
在其中一些实施例中,所述支撑结构分别与所述第一基板和所述第二基板接触设置。
在其中一些实施例中,所述显示面板的厚度小于0.25mm。
在其中一些实施例中,所述显示模组包括位于所述光学胶层和所述显示面板之间的第一偏光片;
所述显示面板包括第一基板、第二基板,所述数据输入端位于所述第一基板上;
所述显示面板还包括导电浆层,所述导电浆层分别与所述第一偏光片位于所述第一侧边的端面和所述第一基板电连接;所述导电浆层在与所述第一偏光片位于所述第一侧边的端面接触的位置的厚度大于所述第一偏光片的厚度;
所述导电浆层包括一个条状导电浆部,或者多个面状导电浆部,或者点状导电浆部;每个导电浆部包括相互电连接的第一导电浆部分和第二导电浆部分,所述第一导电浆部分和所述第二导电浆部分都位于所述第一基板远离所述背光模组的一侧;所述第一导电浆部分与所述第一基板电连接,所述第二导电浆部分位于所述第二基板远离所述第一基板的一侧,并且与所述第一偏光片位于苏搜第一侧边的端面接触设置。
其中,所述条状导电浆部包括连续设置的条状的第二导电浆部分所述第二导电浆部分与所述第一偏光片位于第一侧边的端面的大部分位置接触设置;所述面状导电浆部与所述第一偏光片位于第一侧边的端面接触的长度在2mm-5mm范围内;所述点状导电浆部与所述第一偏光片位于所述第一侧边的端面接触的长度小于或等于1.05mm。
在其中一些实施例中,所述第一偏光片位于所述第一侧边的端面在所述显示面板上的正投影与所述盖板在该侧的出光区边界之间的距离大于或等于1.05mm,所述导电浆层包括条状导电浆部和面状导电浆部的中的至少一种。
在其中一些实施例中,述第一偏光片位于所述第一侧边的端面在所述显示面板上的正投影与所述盖板在该侧的出光区边界之间的距离大于或等于0.9mm且小于1.05mm,所述导电浆层仅包括面状导电浆部。
在其中一些实施例中,所述导电浆层仅包括2个面状导电浆部,分别靠近 与所述第一侧边相邻的一个所述显示面板的侧边和另一个与所述第一侧边相邻的所述显示面板的侧边。
在其中一些实施例中,所述第一偏光片位于所述第一侧边的端面在所述显示面板上的正投影与所述盖板在该侧的出光区边界之间的距离小于0.9mm,所述导电浆层仅包括点状导电浆部。
在其中一些实施例中,所述导电浆层仅包括2个点状导电浆部,分别靠近与所述第一侧边相邻的一个所述显示面板的侧边和另一个与所述第一侧边相邻的所述显示面板的侧边;
所述显示模组包括导电件和柔性电路板,所述柔性电路板与所述数据输入端电连接,所述导电件分别与点状导电浆部和所述柔性电路板电连接;所述导电件包括导电铜箔。
在其中一些实施例中,所述光学胶层的厚度小于或等于0.15mm。
在其中一些实施例中,所述光学胶层在所述显示面板上的正投影相比所述显示面板显示区在第一侧边侧的对应边界与所述盖板在该侧的出光区边界之间的距离大于或等于0.232mm且小于或等于0.6mm。
第二方面,本公开实施例提供了一种显示装置,包括以上任一项所述的显示模组。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的显示模组的结构示意图;
图2为本公开实施例提供的背光模组的截面示意图;
图3为本公开实施例提供的导光板的结构示意图;
图4为相关技术中楔形面形成的最大段差为0.1mm时对应的灯口效果图;
图5为本公开实施例提供的楔形面形成的最大段差为0.03mm时对应的灯口效果图;
图6a为本公开实施例提供的第一微型结构的尺寸和布局示意图;
图6b为本公开实施例提供的第二微型结构的尺寸和布局示意图;
图6c为本公开实施例提供的第三微型结构的尺寸和布局示意图;
图7为本公开实施例提供的支撑黑条、光学膜材和遮光膜的示意图;
图8为本公开实施例提供的光源结构和导光板的示意图;
图9为本公开实施例提供的平整度示意图;
图10为本公开实施例提供的网点分布示意图;
图11A为本公开实施例提供的显示模组的又一结构示意图;
图11B为本公开实施例提供的显示模组的又一结构示意图;
图12A为本公开实施例提供的显示面板的切割位置示意图;
图12B为本公开实施例提供的切割后的显示面板的示意图;
图13A为本公开一些实施例中图11B中A-A’位置的剖面示意图;
图13B为本公开另外一些实施例中图11B中A-A’位置的剖面示意图;
图13C为本公开一些实施例中图11B中B-B’位置的剖面示意图;
图14为本公开一些实施例中图11B中A-A’位置的剖面示意图;
图15为本公开实施例中具有条状导电浆的显示模组的结构示意图;
图16A为本公开实施例中具有面状导电浆的显示模组的一结构示意图;
图16B为本公开实施例中具有面状导电浆的显示模组的又一结构示意图;
图16C为本公开实施例中具有面状导电浆的显示模组的又一结构示意图;
图16D为本公开实施例中具有面状导电浆的显示模组的又一结构示意图;
图17为本公开实施例中具有点状导电浆的显示模组的结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种显示模组。
本实施例中的显示模组可以用于电视、显示器、数码相框、手机、平板电 脑等任何具有显示功能的产品或部件。
如图1所示,在一个实施例中,该显示模组包括依次层叠设置的透明盖板10、光学胶层20、显示面板40和背光模组(BLU)60。
在一个实施例中,第一偏光片30位于光学胶层20和显示面板40之间。
在一个实施例中,第二偏光片50位于显示面板和背光模组60之间。
在一个实施例中,背光模组60包括光源结构和导光板62,光源结构位于导光板62的侧向,换句话说,该背光模组60为侧入式背光模组60,有助于降低背光模组60的厚度,从而有助于降低显示模组的整体厚度。
显示面板40包括层叠设置的第一基板401和第二基板402,其中,第一基板401位于第二基板402靠近背光模组60的一侧。显示面板40包括数据输入端(Display Port接口,DP)。显示面板40具有数据输入端的一侧称为DP侧。例如,数据输入端位于第一基板401上。例如,柔性电路板81与数据输入端电连接(例如为绑定连接),用于向显示面板传输信号。数据输入端和光源结构可以位于显示模组的同侧。
例如,第一偏光片30位于第二基板402远离第一基板401的一侧。例如第一偏光片30与第二基板402贴合设置。
例如,第二偏光片50位于第一基板401远离第二基板402的一侧。例如第二偏光片50与第一基板401贴合设置。
例如,第一基板401为阵列基板。
例如,第二基板402为彩膜基板。
例如,显示面板40为液晶显示面板,包括第一基板401和第二基板402之间的液晶层。
可以理解的是,显示模组靠近信号输入端的一侧由于需要设置绑定区,因此,DP侧对应的显示模组的边框尺寸可以设计为大于其他侧边的边框尺寸。在一些实施例中,DP侧也可以是背光模组60的入光侧或显示模组设置有光源结构的一侧。
显示模组具有显示区AA以及环绕显示区AA的不透光区域UVA,显示模组的侧边包括在显示模组上与DP侧同一侧的第一轮廓边和除第一轮廓边之外的多条第二轮廓边。优选地,光源结构与DP侧都位于显示模组第一轮廓边 所在一侧。可以理解的是,显示模组的显示区AA在显示面板40上的正投影与显示面板的显示区重合。
例如,显示区的外轮廓为矩形时,第二轮廓边的数量为3个;所述矩形可以包括圆角矩形,即矩形的四个角中至少有1个是圆角。以显示面板40为矩形做示例性说明,本实施例中,DP侧为显示面板40的第一侧边,显示面板40的其他侧边为第二侧边,其中第二侧边具体包括位于DP侧相对的一侧(也称DPO侧)的侧边以及位于DP侧和DPO侧之间的两条侧边。
显然,如果显示面板40的形状发生改变,例如变化为三角形、圆形等不同形状的情况下,第一轮廓边和第二轮廓边的位置也会适应性的调整。此处不做进一步限定和描述。
如图1所示,显示模组还包括侧涂胶80,侧涂胶80设置于至少一条第二轮廓边远离显示面板40中心的一侧。示例性的,矩形的显示模组包括三条第二轮廓边的情况下,这三条第二轮廓边中的一条或多条侧边远离显示面板40中心的一侧涂覆有侧涂胶80。在一个较佳的实施例中,可以在各第二轮廓边远离显示面板40中心的一侧均设置侧涂胶80。例如,为防止漏光,侧涂胶80可以设置为不透明的。例如,侧涂胶80的颜色为黑色。例如,侧涂胶80的材料为湿气固化型的聚氨酯结构胶。优选地,胶水的粘度范围在1500~2500CPS范围内。
侧涂胶80由透明盖板10延伸至背光模组60,侧涂胶80与显示面板40的侧面、背光模组60的侧面以及透明盖板10朝向显示面板40的一侧表面粘接。
在其中一些实施例中,侧涂胶80与显示面板40的侧面、背光模组60的侧面以及透明盖板10朝向显示面板40的一侧表面均紧密贴合,从而有助于提高侧涂胶80的粘接强度。
在一个具体实施例中,在至少一个第二轮廓边所在的一侧,透明盖板10的边缘突出于显示面板40的第二轮廓边,即第二轮廓边在透明盖板10延伸面上的正投影位于透明盖板10上。侧涂胶80位于透明盖板10靠近显示面板40的一侧。
本实施例中,通过设置侧涂胶80,能够提高对于透明盖板10、显示面板 40和背光模组60之间的固定和粘接效果,有助于降低显示模组的侧边漏光的可能性,有助于提高显示模组的可靠性。在高温高湿测试、跌落测试等不同使用状态和测试状态下,均能够使得显示面板40和背光模组60具有良好的粘接效果,降低侧出光的可能性。
请参阅图2,图3和图9,本公开实施例的背光模组60包括:光源结构和导光板62。
导光板62包括:本体结构621和设置在本体结构621上并位于靠近光源结构一侧的楔形结构622。
本体结构621包括本体结构入光面6213;楔形结构622包括底表面6222,楔形面6221和楔形结构入光面6223,底表面6222与本体结构621呈面接触设置,楔形结构入光面6223,楔形面6221以及底表面6222构成本体结构621上的隆起,在沿着本体结构621延伸并且从本体结构入光面6213远离光源结构的方向上,楔形结构622的厚度呈逐渐减小的趋势。
光源结构包括:光源611和承载光源的载体612;本体结构入光面6213位于本体结构621朝向光源611的一侧,楔形结构入光面6223位于楔形结构622朝向光源611的一侧;光源611发出的光线分别穿过本体结构入光面6213和楔形结构入光面6223进入导光板62;在垂直于底表面6222的方向上,本体结构的厚度与光源出光面的厚度比值小于88%。
示例性的,导光板62采用树脂材料。
示例性的,导光板62可采用压缩模单穴成型,或者一模两穴成型。
示例性的,楔形结构622与本体结构621形成为一体结构。
示例性的,楔形面6221与本体结构621的出光面6211连接,楔形结构622的底表面6222与本体结构621的出光面6211呈面接触设置。
示例性的,楔形结构622的侧表面与本体结构621的侧表面连接。
示例性的,在沿着本体结构621延伸并且从本体结构入光面6213远离光源结构的方向上,楔形结构622的厚度呈逐渐减小的趋势。示例性的,在沿着本体结构621延伸并且从本体结构入光面6213远离光源结构的方向上,楔形结构622的厚度,可以与远离光源结构的距离之间呈现负相关。需要说明,在楔形结构622上有其他光学调制结构时,可以不呈现严格的线性关系,但总体 趋势是负相关关系。当然也可以是线性相关关系。
示例性的,光源611包括LED光源。示例性的,LED光源选用垂直于载体612方向上厚度为0.4mm的LED。
示例性的,载体612的至少部分位于本体结构621背向楔形面6221的一侧。载体612的至少部分位于导光板62背向出光面6211的一侧。载体612与非出光面6212(即导光板62背向出光面6211的一侧的面)通过灯条胶639粘结在一起。
示例性的,底表面6222与出光面6211呈面接触,即可以认为部分出光面6211作为底表面6222。需要说明的是,当楔形结构622与本体结构621为一体结构时,楔形结构622与本体结构621之间并没有明显的分界面,底表面6222以及与底表面6222面接触的出光面是为了清楚描述结构而定义的。
如图8所示,在导光板62的出光侧,光源出光面突出于导光板62的楔形结构622的高度为X1,在导光板62与出光侧相对的一侧,光源出光面突出于导光板62的本体结构621的高度为X2。光源的整体厚度为X4。光源出光面的高度为X5。
需要说明,光源的整体厚度指光源包括壳体的厚度。
本公开实施例提供的背光模组60中,通过设置导光板62包括楔形结构622和本体结构621,实现了通过减薄本体结构621在垂直于底表面6222的方向上,能够有效缩小背光模组60整体的厚度。同时通过设置导光板62包括楔形结构622和本体结构621,在垂直于底表面6222的方向上,本体结构的厚度与光源出光面的厚度比值小于88%,使得光源发出的光线能够更大限度的射入楔形结构622,并进一步由楔形结构传输至本体结构,从而保证了导光板62入光面的光线入射率,提升了光效利用率,保证了楔形结构622能够与光源611的出光口尺寸很好的匹配。
如图2和图3所示,在一些实施例中,设置载体612的至少部分位于本体结构621背向底表面6222的一侧。
上述设置方式使得载体612能够粘结在导光板62平坦的表面上(即本体结构621背向底表面6222的一侧的表面),保证了光源结构与导光板62之间能够牢靠粘结。由于光学膜材631设置于出光面6211所在的一侧,上述设置 方式避免了载体612占用光学膜材631的布局空间,保证了光学膜材631具有足够的布局空间。
如图3所示,在一些实施例中,在垂直于本体结构621的出光面6211的方向上,本体结构621的最大厚度d1满足:0.24mm≤d1≤0.32mm;
本体结构入光面6213与背光模组60的出光区VA的边界VA-B之间的距离d4≤1.65mm。
示例性的,d1满足:0.26mm≤d1≤0.30mm。
示例性的,本体结构621的厚度d1包括0.24mm,0.25mm,0.26mm,0.27mm,0.28mm等。
示例性的,本体结构入光面6213与背光模组60的出光区的边界之间的距离d4包括1.3mm,1.4mm,1.5mm和1.55mm等。
上述实施例提供的背光模组60中,将d1和d4设置在上述范围,使得本体结构621具有较薄的厚度,从而有利于降低背光模组60的整体厚度;同时使得背光模组60的边框能够做的更窄,有更好的使用体验。而且还使得楔形结构622能够与光源611的出光口尺寸很好的匹配。
如图3所示,在一些实施例中,在垂直于底表面6222的方向上,楔形结构622的最大厚度F满足:F≤0.04mm;
在垂直于本体结构621的出光面6211的方向上,导光板62的最大厚度d2满足:0.27mm≤d2≤0.33mm;
楔形面6221的第一边6221-db在底表面6222的延伸面上的正投影的长度d3满足:0.3mm≤d3≤0.55mm,第一边与楔形结构入光面之间所呈夹角大于0度;
楔形面与底表面之间的夹角Z满足:Z≤4.5°。
示例性的,光源在垂直与载体方向上的厚度比d1大0.1mm以上。
示例性的,楔形结构622的最大厚度d2包括0.27mm,0.28mm,0.29mm,0.30mm,0.31mm等。
示例性的,楔形面6221的第一边6221-db在底表面6222的延伸面上的正投影的长度d3包括0.4mm,0.5mm等。
发明人发现,当d2和d3设置在上述范围内时,可以使灯口处出光效果较 好。作为对比例,当设置d2=0.29mm,d3=1mm时,光源611与导光板62之间的灯口处存在中度亮带。设置d2=0.34mm,d3=0.4mm时,灯口处存在竖条暗影。设置d2=0.36mm,d3=0.4mm时,灯口处存在竖条暗影。设置d2=0.36mm,d3=1mm时,灯口处存在异常灯眼。
图4为相关技术中楔形面形成的最大段差为0.1mm时对应的灯口效果图。图5为本公开实施例提供的楔形面形成的最大段差为0.03mm时对应的灯口效果图。需要说明,图4和图5的测试条件相同。
图4中光源611发出的光线在进入背光模组60的出光区VA(VA-B为出光区VA的边界)之前会大量射向导光板62的出光面6211,导致灯口处出现亮暗不均的现象。图5中光源611发出的光线在进入背光模组60的出光区VA之前不会大量射向导光板62的出光面6211,保证了最佳的灯口效果,不会产生灯口处亮暗不均的现象。
值得注意,射出的光线的亮度和强度呈正相关。因此,图4相对于图5在灯口附近的亮度更大。
将导光板62按照上述参数设置,使得楔形结构622能够与光源611的出光口尺寸很好的匹配。同时上述设置方式将楔形面6221与出光面6211之间的段差控制在合理范围内,使得光源611发出的光线在进入背光模组60的出光区VA之前不会大量射向导光板62的出光面6211,保证了最佳的灯口效果,不会产生灯口处亮暗不均的现象。
如图3和图6a所示,在一些实施例中,本体结构621的出光面6211上设置有平行于本体结构入光面6213方向(如第二边6221-cb的延伸方向)排列的多个第一微型结构W1,每个第一微型结构W1在本体结构的出光面6211上沿垂直于第一微型结构W1排列的方向延伸;
第一微型结构W1在沿着第一微型结构W1排列的方向且垂直于出光面6211的方向上的截面为第一圆弧形,第一圆弧形的半径R1满足:80μm≤R1≤100μm;
相邻的两个第一微型结构W1的中心之间的距离P1满足:140μm≤P1≤160μm;
第一微型结构W1在垂直于出光面6211的方向上的最大高度H1满足: 2.2μm≤H1≤2.6μm。
示例性的,第一圆弧形的半径R1包括:85μm,90μm和95μm等。
示例性的,相邻的两个第一微型结构W1的中心之间的距离P1包括:145μm,150μm和155μm等。
示例性的,第一微型结构W1在垂直于出光面6211的方向上的最大高度H1包括:2.3μm,2.4μm和2.5μm等。
示例性的,第一微型结构W1突出于出光面6211。
示例性的,第一微型结构W1与导光板62形成为一体结构。
在出光面6211上设置上述布局方式的多个第一微型结构W1,有利于光线多角度反射和折射,有利于光线分布的均匀性,使得背光模组60能够在出光区实现多角度高效率的出光。
如图3和图6b所示,在一些实施例中,楔形面6221上设置有平行于楔形结构入光面6213方向排列的多个第二微型结构W2,第二微型结构W2在楔形面6221上沿垂直于第二微型结构W2排列的方向延伸;
第二微型结构W2在沿着第二微型结构W2排列的方向且垂直于楔形面6221的方向上的截面为第二圆弧形,第二圆弧形的半径R2满足:80μm≤R2≤100μm;
相邻的两个第二微型结构W2的中心之间的距离P2满足:34μm≤P2≤44μm;
第二微型结构W2在垂直于楔形面6221的方向上的最大高度H2满足:1.8μm≤H2≤2.2μm。
示例性的,第二圆弧形的半径R2包括:85μm,90μm和95μm等。
示例性的,相邻的两个第二微型结构W2的中心之间的距离P2包括:35μm,36μm,37μm,38μm,39μm,40μm,41μm,42μm,43μm等。
示例性的,第二微型结构W2在垂直于楔形面6221的方向上的最大高度H2包括:1.9μm,2.0μm和2.1μm等。
示例性的,第二微型结构W2突出于楔形面6221。
示例性的,第二微型结构W2与导光板62形成为一体结构。
在出光面6211上设置上述布局方式的多个第二微结构,有利于光线多角 度反射和折射,有利于光线分布的均匀性,使得背光模组60能够在出光区实现多角度高效率的出光。
如图3和图6c所示,在一些实施例中,楔形结构入光面6223和本体结构入光面6213共面,组成导光板62的入光面;导光板62的入光面6223上设置有平行于本体结构出光面6211方向排列的多个第三微型结构W3,第三微型结构W3沿垂直于第三微型结构W3排列的方向延伸;
第三微型结构W3在沿着第三微型结构W3排列的方向且垂直于入光面6223的方向上的截面为第三圆弧形,第三圆弧形的半径R3满足:90μm≤R3≤110μm;
相邻的两个第三微型结构W3的中心之间的距离P3满足:340μm≤P3≤360μm;
第三微型结构W3在垂直于入光面6223的方向上的最大高度H3满足:29.5μm≤H3≤30.5μm。
示例性的,第三圆弧形的半径R3包括:95μm,100μm,105μm和110μm等。
示例性的,相邻的两个第三微型结构W3的中心之间的距离P3包括:345μm,350μm和355μm等。
示例性的,第三微型结构W3在垂直于入光面6223的方向上的最大高度H3包括:29.7μm,29.8μm,29.9μm,30μm,30.2μm等。
示例性的,第三微型结构W3突出于入光面6223。
示例性的,第三微型结构W3与导光板62形成为一体结构。
在述入光面6223上设置上述布局方式的多个第三微结构,有利于光线多角度反射和折射,有利于光线分布的均匀性,使得背光模组60能够在入光面实现多角度高效率的入射光,有利于提升背光模组60出光的均匀性。
在一些实施例中,P3>P2>P1。
上述设置方式使得光源发出的光线能够更好的在入光面,楔形面和出光面上发生多角度的反射和折射,有利于提升背光模组60出光的均匀性。
优选地,设置P3≥8P2,P2≥3P1。
示例性的,第一微型结构W1,第二微型结构W2和第三微型结构W3均 是均匀分布在其所在的表面上。
上述设置方式使得光源发出的光线能够更好的在入光面,楔形面和出光面上发生多角度的反射和折射,有利于提升背光模组60出光的均匀性。
在一些实施例中,沿平行于本体结构出光面的方向,相距最远的第三微型结构W3之间的距离大于光源611的总长度。
上述设置方式增强了导光板62在靠近光源的拐角区域的折射率,有利于提升拐角区域的出光亮度,改善拐角区域的暗影问题。
示例性的,背光模组60包括四个拐角区域,其中两个拐角区域位于靠近光源的一侧,另外两个拐角区域位于与光线相对的一侧。
如图2,图3和图7所示,在一些实施例中,背光模组60还包括:光学膜材631,支撑黑条632和遮光膜633;光学膜材631和支撑黑条632位于本体结构621的出光面6211上,支撑黑条632的至少部分位于楔形面6221和光学膜材631之间;遮光膜633的第一部分位于支撑黑条632与出光面6211之间,遮光膜633的第二部分位于光学膜材631与出光面6211之间;
光学膜材631与支撑黑条632之间的间距d5满足:0≤d5≤0.1mm;
支撑黑条632的厚度d6满足:0.12mm≤d6≤0.15mm;
遮光膜633的厚度d7满足:0.013mm≤d7≤0.017mm。
示例性的,0.03≤d5≤0.07mm;当d5小于0时(不存在间距时),存在光学膜材631褶皱的风险。当d5大于0.1mm时,光学膜材631与支撑黑条632之间的间距过大,而由于遮光膜厚度较薄,会有部分光线透过,过大的间距会导致导光板62射出的光线会穿过遮光膜直接射向光学膜材631的端面,会沿着光学膜的棱镜的凹槽,射入到显示区。
示例性的,0.12mm≤d6≤0.135mm。
在第一轮廓边处,可以设置遮光胶,也可以不设置遮光胶,在第一轮廓边处设置有第一遮光胶71的情况下,当d6小于光学膜材631的厚度时,支撑黑条632的上表面与光学膜材631的上表面之间存在段差,导致支撑黑条632可能与第一遮光胶71之间产生缝隙,进而导致光源射出的光线会穿过该缝隙从光学膜材的侧面进入光学膜材中。而光学膜材中的棱镜层包括多个棱镜凸起,相邻的棱镜凸起之间具有间隙,上述从侧面进入到光学膜材中的光线会在 间隙中传输,并最终射出背光模组60进入到显示面板40的显示区,导致出现显示不良。当d6大于0.15mm时,支撑黑条与光学膜材631之间段差可能过大,支撑黑条会顶起遮光胶,导致光学膜材与遮光胶粘附性下降,进而导致测试后遮光胶与光学膜材容易分离,灯口效果不合格。
优选地,d6的厚度与光学膜材631的厚度相同。
示例性的,光学膜材631的厚度在0.108mm至0.128mm之间。或者,光学膜材631的厚度在0.112mm至0.132mm之间。
需要说明,第一遮光胶71用于粘结显示面板40和背光模组60。
示例性的,0.0145mm≤d7≤0.0155mm;当d7过小时,导光板62的光线很容易穿过遮光膜进入到光学膜材。当d7厚度过大时,光学膜材和导光板62之间在遮光膜靠近出光区的一端会有孔隙,影响灯口效果。
示例性的,光学膜材631与支撑黑条632之间的间距d5包括:0.03mm,0.05mm,0.07mm,0.09mm等。
示例性的,支撑黑条632的厚度d6包括:0.13mm,0.14mm等。
示例性的,遮光膜633的厚度d7包括:0.014mm,0.015mm,0.016mm等。
示例性的,光学膜材631包括三合一膜,即上棱镜,下棱镜和扩散膜,下棱镜位于上棱镜和扩散膜之间,扩散膜靠近出光面6211,上棱镜远离出光面6211。
示例性的,支撑黑条632具有支撑和遮光的作用,用于支撑第一遮光胶71。设置支撑黑条能够避免导光板62与第一遮光胶71直接粘结。
需要说明,由于遮光膜633的厚度较薄,因此需要将遮光膜633和支撑黑条632以及光学膜材631一起形成整体结构,如果没有支撑黑条632,则遮光膜633无法平整的伸出光学膜材631太多。因此,如果没有支撑黑条,则支撑黑条632对应位置的下方一般不会设置遮光膜633。
需要说明,遮光膜633朝向导光板62的表面没有粘性,遮光膜633背向导光板62的表面具有粘性,因此,当导光板62发生扩张、收缩时,不会通过遮光膜633拉动光学膜材。
如果将支撑黑条632去除,则由于支撑黑条632对应位置的下方不会设置 遮光膜633,这样会导致导光板62与第一遮光胶71直接粘结,当导光板62扩张、收缩时,会通过第一遮光胶71拉动光学膜材,影响背光模组60的良率。
示例性的,支撑黑条632与楔形面6221不接触;或者支撑黑条632与楔形面6221接触。优选支撑黑条632与楔形面6221不接触,这样能够避免支撑黑条632在楔形面和本体结构出光面之间的拐角处浮空。
示例性的,遮光膜633包括遮光树脂,如:遮光PET。
示例性的,遮光膜633的至少部分位于楔形面6221和背光模组60的出光区之间。示例性的,遮光膜633位于导光板62出光区VA一侧且靠近光源一侧设置,遮光膜633与出光区VA之间的距离在0.1mm左右,这种设置方式能够避免出光区靠近光源的一侧出现暗影。示例性的,遮光膜633的边界也可以与出光区VA的边界重合。
上述设置方式使得在背光模组60的非出光区射出的光线能够被支撑黑条632和遮光膜633阻挡,避免从非出光区射出的光线直接射向光学膜材631的端面,避免了灯口射光的问题。
而且,将d5和d6设置在上述范围能够更好的降低背光模组60的整体厚度。将d5设置在上述范围能够更好的避免灯口射光的问题。
如图2和图3所示,在一些实施例中,背光模组60还包括:
反射片634,反射片634位于本体结构621背向出光面6211的一侧;
载体612的第一部分位于本体结构621背向出光面6211的一侧,载体612的第一部分在本体结构621的延伸面上的正投影,与反射片634在本体结构621的延伸面上的正投影之间的距离d8满足:0.1mm≤d8≤0.3mm。
示例性的,载体612的第一部分在本体结构621的延伸面上的正投影,与反射片634在本体结构621的延伸面上的正投影之间的距离d8包括:0.15mm,0.2mm和0.25mm等。
示例性的,反射片634通过反射背胶640与背光模组60的壳体635粘结在一起。示例性的,反射片634朝向光源611的边界与反射背胶640朝向光源611的边界平齐。
将d8设置在上述范围使得反射片634在出光面6211的延伸面上的正投影能够与遮光膜633在出光面6211的延伸面上的正投影至少部分交叠;优选地, 反射片634能够最大限度的遮挡非出光面6212,有利于提升背光模组60的出光效率,提升背光模组60的出光亮度。
将d8设置在上述范围能够避免由于反射片634与载体612之间距离过近而导致光线干涉问题。
如图2和图3所示,在一些实施例中,背光模组60还包括:
壳体635,光源结构,导光板62和反射片634均位于壳体635内部,壳体635的开口朝向背光模组60的出光侧;壳体635底部的厚度d9满足:0.065mm≤d9≤0.075mm;
胶框636,胶框636的至少部分与光源结构位于导光板62的同一侧,胶框636与壳体635固定,胶框636的中间部分的平整度小于或等于0.15mm,胶框636的边缘部分的平整度小于或等于0.4mm。例如,胶框636的中间部分的平整度小于或等于0.15mm,胶框636的边缘部分的平整度小于或等于0.35mm。例如,胶框636的中间部分的平整度小于0.15mm,胶框636的边缘部分的平整度小于0.35mm。
示例性的,壳体635包括铁框。
示例性的,载体612通过灯条胶639粘结在壳体635的底部。
示例性的,壳体635的厚度d9包括0.067mm,0.069mm,0.070mm,0.072mm,0.074mm等。
示例性的,光源611位于导光板62和至少部分胶框636之间。
如图9所示,需要说明,A代表胶框636的边缘部分,其边沿向上翘曲称之为碗翘,一般用负值表示,如-0.35mm,代表最大可向上翘曲0.35mm。B代表胶框636中间区域的中间部分,其向上拱起,称之为龟翘,一般用正值表示,+0.15mm代表最大可向上拱起0.15mm。上述平整度指翘曲的程度或拱起的程度。
需要说明,测量胶框636的平整度时,可以将胶框636设置于表面平坦的大理石在台上进行测量。胶框的边缘部分和中间部分没有明确的界限,能够发生碗翘的是边缘区域,能够发生龟翘的是中间部分。
测量壳体635的平整度时,可以将壳体635设置于表面平坦的大理石在台上进行测量,能够发生碗翘的是边缘区域,能够发生龟翘的是中间部分。
例如,壳体635的中间部分的平整度小于或等于0.15mm,壳体635的边缘部分的平整度小于或等于0.4mm。
例如,壳体635的中间部分的平整度小于或等于0.15mm,壳体635的边缘部分的平整度小于或等于0.35mm。
例如,壳体635的中间部分的平整度小于0.15mm,壳体635的边缘部分的平整度小于0.35mm。
例如,胶框636与壳体635固定情况下,壳体635的中间部分的平整度小于或等于0.15mm,壳体635的边缘部分的平整度小于或等于0.4mm。例如,胶框636与壳体635固定的方式为胶铁一体注塑工艺。例如,胶框636与壳体635固定情况下,壳体635的中间部分的平整度小于或等于0.15mm,壳体635的边缘部分的平整度小于或等于0.35mm。例如,胶框636与壳体635固定情况下,壳体635的中间部分的平整度小于0.15mm,壳体635的边缘部分的平整度小于0.35mm。
测量背光模组60的平整度时,可以将背光模组60设置于表面平坦的大理石在台上进行测量,能够发生碗翘的是边缘区域,能够发生龟翘的是中间部分。可以理解的是,测量背光模组60的平整度,也即包括壳体635以及胶框636的组装后的背光模组的平整度。
示例性的,背光模组60的中间部分的平整度小于或等于0.1mm,背光模组60的边缘部分的平整度小于或等于0.3mm。例如,背光模组60的中间部分的平整度小于0.1mm,背光模组60的边缘部分的平整度小于0.3mm。背光模组60的平整度的定义与上述胶框的平整度定义相同,此处不再赘述。需要说明的是,背光模组60为组装后的形态,其平整度可以优于胶框636、壳体635以及胶框636与壳体635固定后整体结构的平整度。对背光模组60的平整度优化可以通过对壳体635的平整度优化实现。
将d9设置在上述范围,将胶框636的平整度设置在上述范围,以及将背光模组60的平整度设置在上述范围,不仅能够很好的降低背光模组60的整体厚度,还能够避免在环境测试中壳体635和导光板62发生翘曲对模组光效及结构可靠性产生影响。
上述实施例提供的背光模组60能够将整体厚度X3减薄至0.5mm至 0.6mm,有效降低了背光模组60的厚度。示例性的,背光模组60的厚度降低至0.575mm。
需要说明,如图2所示,背光模组60还可以包括强弱胶637,包边胶638,石墨片641。
强弱胶637位于背光模组60设置有光源的一侧,强弱胶637的两面粘结强度不同,与显示面板40粘结的一面粘结强度较弱,降低返修难度。
包边胶638位于于背光模组60设置有光源的一侧,包裹部分第一遮光胶71,部分壳体635和部分石墨片641,提升粘结的牢固性。
石墨片641位于背光模组60设置有光源的一侧,位于壳体635背向光源的一侧。
在一些实施例中,设置光源在垂直于载体方向上的厚度为0.4mm。d1=0.26mm。d2=0.29mm。d3=0.4mm。d4=1.57mm。F=0.02mm。遮光胶0.03mm。壳体的底部的厚度为0.07mm。R2=90μm,P2=39μm,H2=2μm。R1=90μm,P1=150μm,H1=2.4μm。R3=100μm,P3=350μm,H3=3μm。
上述设置方式能够有效减薄背光模组60整体的厚度,能够保证导光板62入光面的光线入射率,保证了楔形结构622能够与光源611的出光口尺寸很好的匹配。能够使得楔形结构622能够与光源611的出光口尺寸很好的匹配。同时上述设置方式将楔形面6221与出光面6211之间的段差控制在合理范围内,使得光源611发出的光线在进入背光模组60的出光区VA之前不会大量射向导光板62的出光面6211,保证了最佳的灯口效果,不会产生灯口处亮暗不均的现象。同时使得背光模组60能够在如光面实现多角度高效率的入射光。能够减少光线从楔形面6221射出的出光量,使得背光模组60能够在出光区实现多角度高效率的出光。使得背光模组60能够在出光区实现多角度高效率的出光。
在一些实施例中,本体结构621的厚度与光源611的整体厚度比值小于或等于75%。
上述实施例提供的背光模组60中,通过设置导光板62包括楔形结构622和本体结构621,在垂直于底表面6222的方向上,本体结构的厚度与光源出光面的厚度比值小于88%,本体结构621的厚度与光源611的整体厚度比值小 于或等于75%,使得光源发出的光线能够更大限度的射入楔形结构622,并进一步由楔形结构传输至本体结构,从而保证了导光板62入光面的光线入射率,提升了光效利用率,保证了楔形结构622能够与光源611的出光口尺寸很好的匹配。
在一些实施例中,设置在导光板62的出光侧,光源出光面突出于楔形结构622;和/或,在导光板62与出光侧相对的非出光侧,光源出光面突出于本体结构621。
上述设置方式保证了导光板62入光面的光线入射率,提升了光效利用率,保证了楔形结构622能够与光源611的出光口尺寸很好的匹配。
如图3所示,本体结构621背向楔形结构622的非出光面6212上,远离光源611排列延伸的方向上包括与光源611相邻设置的第一区690和第二区;其中第一区690和第二区的分界线延伸方向与光源611排列延伸的方向相同;
如图10所示,在第一区690中包括多个沿着光源611排列方向设置的拱形区域6902,每个拱形区域6902与每个光源611一一对应,拱形区域底部与光源611临近设置,拱形区域6902的两个拱脚在光源611的出光面的延伸面上的正投影,位于该出光面的内部;在第一区690中,在拱形区域6902中网点平均密度小于拱形区域以外的区域6902的网点平均密度。
拱形区域6902中可以根据实际需要设置或不设置网点。优选地,拱形区域6902中不设置网点。
在一些实施例中,第二区还包括第一子区691和第二子区692,第一子区691位于第一区690和第二子区692之间,第一子区691网点平均密度大于第二子区692的网点平均密度。
具体地,第一区包括交叉区,拱形区域6902包括亮区,拱形区域以外的区域6902包括暗区,第一子区包括混光区,第二子区包括可视区。
示例性的,网点693包括半球体结构,网点693的直径在0.036mm至0.040mm之间。网点是否均匀分布可以根据实际需要设置。
需要说明,图1中还示意了可视区的边界AA-B。可视区的边界AA-B是指显示面板40的显示区边界在背光模组60的延伸面上的正投影。
示例性的,拱形区域6902位于VA-B与光源611之间,VA-B位于AA-B 与拱形区域6902之间。
上述设置方式使得光源611的出光面正对的区域网点稀疏,相邻的光源611之间网点密集,能够补偿相邻的光源611之间较弱的光线,很好的解决了沿光源排列方向出光亮度不均的问题。同时设置可视区的网点均匀分布,有利于提升背光模组60出光的均一性。
验证如下:
验证方案一:d2=0.36mm,d1=0.26mm,F=0.1mm,光源在垂直于载体方向上的厚度为0.4mm。结果:由于二次光线反射聚集导致灯口有明显灯眼。
验证方案二:d2=0.36mm,d3=1mm。支撑黑条厚度为0.075mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:灯眼严重,有二次反射的亮线。
验证方案三:d2=0.36mm,d3=1mm。支撑黑条厚度为0.075mm,增加混光距离0.1mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:灯眼明显,灯口较亮,光源前较暗。
验证方案四:d2=0.29mm,d3=1mm。支撑黑条厚度为0.075mm,增加混光距离0.1mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:轻微灯眼,灯前亮带较轻,两个拐角区域较亮。
验证方案五:d2=0.38mm,d3=1.4mm。支撑黑条厚度为0.075mm,增加混光距离0.1mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:灯口灯眼明显。
验证方案六:d2=0.34mm,d3=0.4mm。支撑黑条厚度为0.075mm,增加混光距离0.1mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:灯口灯眼明显。
验证方案七:d2=0.36mm,d3=0.4mm。支撑黑条厚度为0.075mm,增加混光距离0.1mm,遮光膜靠近出光区VA的边界与出光区VA的边界平齐,其他为常规设计。结果:亮暗不均,有亮带,灯眼。
验证方案八:d2=0.29mm,d3=0.4mm。支撑黑条厚度为0.075mm,其他为常规设计。结果:竖暗影减轻基本消失,灯口处没有异常灯眼,不存在亮暗不均,有亮带等问题,具有良好的灯口效果。
在一些实施例中,本体结构621与楔形结构622为一体结构。
上述设置方式使得本体结构621与楔形结构622能够一体成型,不仅有利于降低制作成本,保证制作精度,还能够提升导光板62的导光效果。
在一些实施例中,楔形结构入光面6223与本体结构入光面6213为连续表面。该连续表面指:楔形结构入光面6223与本体结构入光面6213形成为一体结构,楔形结构入光面6223与本体结构入光面6213之间的连接处平滑过渡。
上述设置方式能够保证导光板62入光面上入光效果的均一性,避免多余的反射发生。
上述实施例提供的背光模组60中,通过设置导光板62包括楔形结构622和本体结构621,实现了通过减薄本体结构621在垂直于底表面6222的方向上,能够有效缩小背光模组60整体的厚度。
上述实施例提供的背光模组60中,同时通过设置导光板62包括楔形结构622和本体结构621,在垂直于底表面6222的方向上,本体结构621的厚度与光源611的厚度比值小于75%,在导光板62的出光侧,光源611突出于楔形结构622,在导光板62与出光侧相对的一侧,光源611突出于本体结构621;使得楔形结构入光面6223在垂直于本体结构出光面的方向上相对的两个边界在光源611的出光面的延伸面上的正投影,位于光源611的出光面在垂直于本体结构出光面的方向上相对的两个边界之间,使得光源发出的光线能够更大限度的射入楔形结构622,并进一步由楔形结构传输至本体结构,从而保证了导光板62入光面的光线入射率,提升了光效利用率,保证了楔形结构622能够与光源611的出光口尺寸很好的匹配。
在一些实施例中,如图1所示显示模组还包括遮光层70,遮光层70位于显示面板40与背光模组60之间。遮光层至少部分包围背光模组60的出光区VA。遮光层用于起到遮挡光线的作用,避免不必要的背光光线对显示造成串扰;例如,遮光层70还可以为遮光胶,例如,遮光胶可以由胶水/黑色PET/胶水三层材料层叠构成,用于粘接显示面板40和背光模组60,能够提高显示面板40和背光模组60之间的固定效果。
如图11A和图11B所示,在一些实施例中,遮光层70可以包括第一遮光层71和第二遮光层72,其中,第一遮光层71指的是设置于第一轮廓边处的 遮光层,第二遮光层72指的是设置于第二轮廓边处的遮光层。例如,第一遮光层71和第二遮光层72可以是一体结构,例如是一体裁切的。在另外一些实施例中,可以仅设置第二遮光胶72。第二遮光胶72部分包围背光模组60的出光区VA。
如图11A所示,在一些实施例中,第二遮光层72的厚度d10满足:0.027mm≤d10≤0.033mm。例如,第二遮光层72的厚度d10满足:0.028mm≤d10≤0.032mm。示例性的,第二遮光层72的厚度d10包括0.029mm,0.030mm和0.031mm等。通过控制第二遮光层72的厚度,能够降低显示模组的整体厚度。在一些实施例中,第一遮光层71的厚度可以和第二遮光层72的厚度相同。
在一些实施例中,如图11A所示,第二遮光层72与背光模组60搭接,具体的,第二遮光层72与背光模组60的胶框636搭接,且搭接宽度(图中A值)至少为0.15mm,以提高对于背光的遮挡效果,降低漏光的可能性。同时,也保证后续涂覆侧涂胶80时,侧涂胶80也不会渗入背光模组60内。
在一些实施例中,如图11A所示,在至少一个第二轮廓边,侧涂胶80覆盖显示面板40的端部的宽度(图中B值)在0.15mm至0.25mm范围内;示例性的,可以包括0.15毫米,0.2毫米,0.25毫米等不同数值。例如,在至少一个第二轮廓边,侧涂胶80覆盖显示面板40的端部的宽度(图中B值)在0.15mm至0.20mm范围内。通过控制侧涂胶80覆盖显示面板40的端部的宽度,能够确保侧涂胶80能够有效的粘接显示面板40和背光模组60,避免由于遮光层70位置偏差而导致遮光胶切断侧涂胶80,从而有助于确保侧涂胶80显示面板40和背光模组60之间的固定效果。
在一些实施例中,第二遮光层72靠近第二轮廓边的边缘突出背光模组60,为确保侧涂胶80的固定强度,第二遮光层72靠近第二轮廓边的边缘距离侧涂胶80的外轮廓的最小距离小于或等于0.05mm,也即,侧涂胶80的厚度设计为,在第二遮光层72靠近第二轮廓边的边缘之外,仍然保留至少0.05mm厚度的侧涂胶。
在一些实施例中,第二轮廓边一侧的显示面板40的侧边相对背光模组60的外轮廓内缩设置;具体地,背光模组60突出于显示面板40的长度(即对应图11A中C值)可以设置为小于或等于0.15mm,以保证背光模组60对显示 面板40具有有效的保护。优选地,C值得取值范围在0.05mm~0.1mm范围内。示例性的,C值可以为0.03mm,0.05mm,0.1mm。例如,在第二轮廓边一侧,第一偏光片30的边缘或第二偏光片50的边缘,与显示面板40的边缘对齐设置。例如,在第二轮廓边一侧,第一偏光片30的边缘和第二偏光片50的边缘,都与显示面板40的边缘对齐设置。
在一些实施例中,如图11A所示,第二轮廓边一侧对应的背光模组60的边缘在透明盖板10延伸面上正投影相比于第二遮光层72靠近其对应的第二轮廓边一侧的边缘在透明盖板40延伸面上的正投影更靠近显示模组的第二轮廓边,也即,在第二轮廓边,第二遮光层72较背光模组60内缩设置。优选地,第二遮光层72较背光模组60内缩小于或等于0.05mm,可以增强侧涂胶60的固结效果。
在另一些实施例中,第二轮廓边一侧对应的背光模组60的边缘到第二轮廓边的距离与第二遮光层72到第二轮廓边的距离相同,也即背光模组60的边缘与第二遮光胶72的边缘对齐设置。
优选地,如图11A所示,第二遮光层72靠近第二轮廓边的边缘与显示面板40的第二轮廓边对齐设置,并且,第二遮光层72较背光模组60内缩设置,可以增强侧涂胶60的固结效果。优选地,第二遮光层72较背光模组60内缩小于或等于0.05mm。
可以理解的是,由于装配误差、各结构本身的尺寸公差等因素,也可能导致第二遮光层72的边缘超出背光模组60,本实施例中,控制第二遮光层72超出背光模组60的尺寸不大于0.12mm,以确保第二遮光胶72不会切断侧涂胶80。
上述实施例提供的显示模组,通过设置侧涂胶80和/或第二遮光胶72,以降低背光模组60与显示面板40之间出现漏光现象的可能性。而且,将第二遮光胶72的厚度设置在上述范围,很好的降低了显示模组的整体厚度。
在一些实施例中,如图11A所示,沿垂直于透明盖板10的方向上,侧涂胶80与背光模组60交叠区域的长度不小于背光模组60厚度的一半。如图11A所示,即D值大于或等于背光模组60厚度的二分之一。由于涂覆在背光模组60上的侧涂胶80相对涂敷到显示面板40侧边的侧涂胶80较薄,因此,将D 值大于或等于背光模组60厚度的二分之一,可以提高侧涂胶80对背光模组60和显示面板40的固结效果。优选地,D值小于背光模组60厚度的五分之四。
在一个具体实施例中,如图11A所示,侧涂胶80沿垂直于透明盖板10的方向从透明盖板10连续延伸,并与显示面板40的侧边、背光模组60的侧面接触设置。优选地,侧涂胶80与胶框636朝向透明盖板10的一侧以及胶框636远离所述导光板62一侧未被壳体635覆盖的表面都与侧涂胶80接触设置,以使侧涂胶80的固定和遮光效果进一步增强。
示例性的,背光模组60的厚度为0.7mm的情况下,则侧涂胶80与背光模组60粘接的部分沿着背光模组60的厚度方向的尺寸不小于0.35mm。
在一些实施例中,参考图12A和图12B,显示面板40还包括位于第一基板401和第二基板402之间的封框胶403。具体地,第一基板401和第二基板402之间的液晶可以通过封框胶403密封,封框胶403位于显示面板40的非显示区。
例如,显示模组可以划分为显示区AA和非显示区,透明盖板10可以划分为透明盖板出光区和透明盖板遮光区,其中,透明盖板遮光区环绕透明盖板出光区设置。优选地,显示区AA在透明盖板10延伸面上的正投影位于透明盖板出光区之内,也即,透明盖板出光区的尺寸略大于显示模组的显示区AA,以满足装配公差。透明盖板遮光区可以是在透明盖板10上涂覆不透光的油墨形成的。
在一些实施例中,该显示模组为全贴合显示模组。具体地,光学胶层20在透明盖板10的延伸面上的正投影覆盖显示面板40的显示区AA在透明盖板10的延伸面上的正投影。
在一些实施例中,侧涂胶80与光学胶层20的侧面接触设置。例如,侧涂胶80与透明盖板10、光学胶层20、显示面板40、第二遮光层72以及背光模组60共同组成的轮廓贴合设置,可以进一步增强显示模组的整体强度。例如,侧涂胶80是不透明的,以避免侧面漏光。
本公开实施例提供的显示模组中,能够将显示面板40和背光模组60的整体厚度压缩至小于或等于1mm,例如0.9mm左右。示例性的,显示面板40 和背光模组60的整体厚度为0.902mm。
如图11A所示,在一些实施例中,显示面板40的厚度dP满足:0.1975mm≤dP≤0.2025mm。示例性的,显示面板40的厚度dP可以为0.1980mm、0.1985mm、0.1990mm、0.1995mm、0.2mm、0.2020mm中的一者。将显示面板40的厚度dP设置于上述范围,能够很好的降低显示模组的整体厚度。
在其中一些实施例中,为了降低显示面板40的厚度,可以在第一基板401和/或第二基板402制作完毕之后对第一基板401和/或第二基板402的衬底进行减薄处理,从而实现降低显示面板40的整体厚度。
发明人发现,在对第一基板401和/或第二基板402的衬底进行减薄处理之后,将对盒获得的母板进行切割获得显示面板40时,由于衬底变薄,导致切割获得的显示面板40损坏的可能性增加,从而导致良品率降低。
在其中一些实施例中,减薄处理具体包括将显示面板的整体厚度由0.25毫米减薄至0.2毫米,实施时,可以通过对第一基板401的衬底和第二基板402的衬底各减薄0.025毫米实现。经过测试发现,如果按照相关技术中的切割方式对减薄后的母板进行切割时,所获得的显示面板的良品率几乎为0,也就是说,几乎无法获得良品显示面板。
在一些实施例中,如图12A和图12B所示,母板可以通过切割获得多个显示面板40。
在一些实施例中,可以通过在母板上设置支撑结构404,以提高切割获得的显示面板40的良品率。支撑结构404位于显示面板40的封框胶403远离该显示面板40的显示区AA(AA-B为显示区AA的边界)的一侧,支撑结构404位于第一基板401和第二基板402之间。例如,支撑结构404与第一基板401和第二基板402均接触。参考图12B,支撑结构404在切割后的显示面板上剩余的部分为支撑结构404A。
如图12B所示,显示面板40的第二基板402包括第一边缘B1,以及与第一边缘B1相对设置的第三边缘B3(在图12A中切割前相邻的显示面板上示意),第一基板401包括第二边缘B2,以及与第二边缘B2相对的第四边缘B4(在图12A中切割前相邻的显示面板上示意);其中第一边缘B1与第二边缘B2位于显示面板40的第一侧边;第三边缘B3与第四边缘B4位于与第一侧 边相对的第二侧边。第一边缘B1相比第二边缘B2更靠近显示面板40的显示区AA。
示例性的,第三边缘B3在第一基板401的衬底的延伸面上的正投影与第四边缘B4重合;例如,第三边缘B3和第四边缘B4可以通过同一次切割工艺形成。
示例性的,支撑结构404A远离显示区AA的边界与第一边缘B1平齐。第一边缘B1与封框胶403之间的距离d11在0.05毫米至0.12毫米范围内,如此,支撑结构404可以在母版切割时提供有效支撑与减震,提高减薄的显示面板切割良率,尤其适用于显示面板整体厚度小于0.25mm的情况。具体地,d11可以为0.05mm,0.07mm,0.095mm,0.100mm,0.105mm,0.12mm中的一个。在一个具体实施例中,显示面板40的整体厚度为0.2mm,d11为0.1mm,良率达到目标水平。
需要说明的是,第一边缘B1与封框胶403之间的距离d11可以理解为显示面板40延伸面上,垂直于第一切割线的方向上的距离。
示例性的,第二基板402包括第一透明衬底,以及位于第一透明衬底上的黑矩阵层BM,色阻层以及色阻平坦层。其中,黑矩阵层BM,色阻层以及色阻平坦层可以依次设置于第一透明衬底上。色阻层可以包括红色色阻、绿色色阻和蓝色色阻,以实现显示模组的彩色显示。例如,黑矩阵层BM,色阻层以及色阻平坦层位于第一透明基底靠近第一基板401的一侧。例如,黑矩阵层BM和色阻层位于第一透明衬底和色阻平坦层之间。例如,支撑结构404与色阻平坦层接触设置。例如,支撑结构404与第二基板402固定连接。例如,支撑结构404与第一基板401不存在粘连。例如,支撑结构404制备于第二基板402上。
示例性地,参考图12B,支撑结构404与第一基板401接触设置。
示例性地,支撑结构也可以与第一基板401之间存在间隙。所述间隙的大小设置为可以在对母版进行切割时提供支撑即可。
示例性的,第一基板401包括第二透明衬底4011以及平坦层PLN,平坦层PLN位于第二透明衬底4011靠近第二基板402的一侧。例如,支撑结构404与平坦层PLN接触设置。
示例性的,支撑结构404可以与隔垫物PS同层设置,隔垫物PS可以位于显示区AA内,用于对第二基板402形成支撑。例如,支撑结构404与隔垫物PS材料相同,例如可以是通过同一次工艺制备的。
示例性的,第一基板401还包括金属层MTL,MTL位于第二透明衬底4011与平坦层PLN之间。例如,金属层MTL可以包括一层或多层金属。例如,显示面板40的栅线和/或数据线位于金属层MTL中。例如,金属层MTL包括位于非显示区中的焊盘电极。参考图12B,平坦层PLN包括位于显示面板40第一侧边对应的非显示区的开口4012,驱动芯片IC通过开口4012与焊盘电极电连接,为显示面板40提供驱动信号。
示例性的,第二基板402在第一基板401上的正投影没有完全覆盖开口4012。示例性的,参考图12B,第二基板402在第一基板401上的正投影与开口4012无交叠,如此,便于驱动芯片IC通过开口4012与焊盘电极电连接。
参考图12A和12B,在显示面板40的第一侧边对应的至少部分非显示区中,开口4012远离显示区AA的一侧,仍然包括平坦层PLN,如此,当沿着第二切割线切割时,第二切割线处支撑结构404与平坦层PLN接触设置,可以对第二基板402和第一基板401提供有效支撑,可以改善切割颤动导致裂纹产生。
在一些示例性的实施例中,在完成对于母板的切割操作之后,可以不对支撑结构404做针对性处理,也就是说,保留支撑结构404A切割后的状态,在另外一些实施例中,也可以增加清理残留的支撑结构404A的工艺步骤。
需要说明的是,支撑结构404A不会对显示面板40的性能造成影响,因此,可以保持切割后的支撑结构404,如图12B所示,如果未增加清理残留的支撑结构404A的工艺步骤,能够在切割获得的显示面板40观察到支撑结构残留404A。需要说明的是,本实施例中,仅示例性的表示了支撑结构残留404A的位置,并不代表支撑结构残留404A的实际形状。
上述实施例提供的显示模组中,通过在第一切割线处对支撑结构404进行切割,有效的提升了切割良率
需要说明,显示面板40在形成过程中,一般是先制作包括多块显示面板40的母板,然后对母板进行切割,形成多个独立的显示面板40。
对于每块显示面板40来说,需要在DP侧进行两次切割,这两次切割分别对应图12A中的第一切割线和第二切割线,其中,第一切割线对应DP侧的第二基板402的第一边缘B1,第二次切割对应第一基板401的第二边缘B2。参考图12A所示第三切割线的位置(以相邻的显示面板40示意),第三次切割在DPO侧进行,第三次切割的一次切割操作对应DPO侧的第一基板401的第四边缘B4和第二基板402的第三边缘B3。
例如,参考图12A,在显示面板40的DPO侧,也包括支撑结构404切割后剩余的部分,如此可以得知,沿第三切割线进行切割时,支撑结构404在第三次切割时提供支撑,有助于提升切割良率。
例如,支撑结构404可以在母版上从第一切割线位置连续设置到第二切割线位置。例如,支撑结构404可以在母版上从第一切割线位置连续设置到第三切割线位置。支撑结构404连续设置,可以理解为支撑结构404整体成块状,如此,支撑效果较好。
可以理解的是,切割过程还包括用于形成位于DP侧和DPO侧之间的侧向的两个边界切割,如此,显示面板40从母版上切割分离。例如,在用于形成位于DP侧和DPO侧之间的侧向的两个边界切割的情况下,切割位置设置有也设置有支撑结构404,如此,支撑效果较好。例如,位于DP侧和DPO侧之间的侧向的两个边界,都保留有切割后剩余的支撑结构。
例如,支撑结构404切割后的剩余部分环绕显示区AA设置。例如,支撑结构404切割后的剩余部分成封闭环绕结构。
例如,支撑结构切割后的剩余部分环绕封框胶403设置。例如,封框胶403环绕显示区AA设置,成封闭环绕结构。支撑结构404切割后的剩余部分成封闭环形结构,且环绕封框胶403设置。
例如,支撑结构切割后的剩余部分的外侧边界在显示面板40的每一侧都包括与该侧显示面板40边界对齐设置的至少部分。如此表面,支撑结构可以在切割时对母版的四周形成了支撑,有利于提升切割良率。
例如,参考图12A和图12B,第一切割线与支撑结构404(切割后为支撑结构404A)靠近封框胶403的边界在显示面板40延伸面上垂直于第一切割线的方向上的距离大于或等于0.05mm。例如,第一切割线与支撑结构404远离 封框胶403的边界在母版延伸面上垂直于第一切割线的方向上的距离不小于0.05mm。在第一切割线两侧都有支撑结构404提供支撑的情况下,支撑效果较好。优选地,在母版上,第一切割线两侧支撑结构404的边界到第一切割线的距离都大于或等于0.05mm。第一切割线两侧支撑结构404的边界到第一切割线的距离可以理解为所述边界在母版延伸面垂直于第一切割线的方向上的距离。
例如,作为上述实施例的结果,在显示面板40中,第二边缘B2与支撑结构404A靠近封框胶403的边界在显示面板40延伸面上垂直于第二边缘B2方向上的距离大于或等于0.05mm。
图13A是在一些实施例中图11B中A-A’位置的剖面示意图;图13B是在另一些实施例中图11B中A-A’位置的剖面示意图;图13C是在一些实施例中图11B中B-B’位置的剖面示意图。图13A和图13C可以描述的是同一个实施例。图13B和图13C可以描述的是同一个实施例。
参考图13A-图13C,显示模组具体包括依次层叠设置的透明盖板10、光学胶层20、第一偏光片30、显示面板40、第二偏光片50和背光模组60。显示面板40包括第一基板401和第二基板402,其中,在第一轮廓边处,第一基板401突出于第二基板402设置,阵列基板401在该第一轮廓边处与柔性电路板81绑定连接。例如,柔性线路板81通过各向异性导电胶(ACF胶)和阵列基板401绑定连接。
示例性的,参考图13A-图13C,光学胶层20的厚度d14小于或等于0.15mm,以达到减薄显示模组整体厚度的效果。例如,0.05mm≤d14≤0.1mm。例如,0.072mm≤d14≤0.078mm。示例性的,光学胶层20的厚度d14可以为:0.073mm,0.074mm,0.075mm,0.076mm,0.077mm中的一者。上述实施例提供的显示模组中,将光学胶的厚度设置在上述范围,在确保显示效果的情况下,有利于减薄显示模组的整体厚度。例如,光学胶层20的折射率在1.4-1.6范围内。例如,光学胶层20的折射率在1.44-1.52范围内。例如,光学胶层的折射率为1.48。
显示模组使用过程中,由于外部环境等因素,可能产生静电,而静电会影响显示面板的显示效果。为了避免静电对显示模组造成不利影响,需要设置防 静电装置,将静电导出。
在一个实施例中,参考图13A-图13C,通过设置导电浆层90以导出静电。导电浆具体可以是银浆。导电浆层90设置于第一侧边,导电浆层90分别与第一偏光片30位于第一侧边的端面和第一基板401电连接。例如,导电浆层90在与第一偏光片30位于第一侧边的端面接触的位置的厚度大于第一偏光片30的厚度。例如,导电浆层90在第一基板401上正投影与第一偏光片30在第一基板401上的正投影存在交叠。如此,导电浆层90可以与第一偏光片30充分接触,导出静电效果较好。
例如,第一偏光片30与光学胶层20直接接触设置。
例如,参考图13A和图12C导电浆层90在与第一偏光片30位于第一侧边的端面接触位置包括位于光学胶层20延伸空间的一部分,也即,导电浆层90可以对光学胶层20在盖板10和第一偏光片30中流动形成阻碍。
显示模组工作过程中,如果产生了静电,静电可以由透明盖板10传导到第一偏光片30,进一步的,经由导电浆层90传递至位于第一基板401上。例如,第一基板401包括接地端,导电浆层90可以与接地端电连接,以将静电通过接地端导出。例如,接地端与柔性电路板81电连接,将静电通过柔性电路板81导出完成静电的释放,从而降低由于静电导致的显示面板40出现黑屏的显示异常的现象的可能性。例如,显示模组包括导电件82,导电件82分别与导电浆层90和柔性电路板81电连接,静电可以通过导电层82传导至柔性电路板81,并通过柔性电路板81导出完成静电的释放。例如,导电件82位于第一基板401以及柔性电路板81上,柔性电路板81包括漏铜区,导电件82与漏铜区接触设置并且电连接。例如,导电件82包括铜箔。
发明人发现,导电浆层90的设置可能导致导电浆气泡的产生,对显示效果产生影响。参考图14,导电浆层90涂覆时会超过第一偏光片30一定高度,透明盖板10、光学胶层20和第一偏光片30贴合时会在光学胶,第一偏光片30,导电浆层90之间形成空间,若光学胶层20吸收段差能力不足,即不能完全填充时,就会有不能排出的导电浆气泡70(参考图12虚线框中示意)产生。光线由第一偏光片30的边缘处出射会经过光学胶层20和透明盖板10,如果能直接观察到导电浆气泡(尤其是45°视角以内),会对显示效果造成严重的 不利影响。尤其是,为减小模组厚度,设置光学胶层20的厚度小于或等于0.15mm时,光学胶层20吸收导电浆段差能力较差,产生导电浆气泡的风险较高。当光学胶层20的厚度小于或等于0.1mm时,产生导电浆气泡的风险极高。
在一些实施例中,为了避免观察到导电浆气泡,可以对导电浆层90的形貌以及第一偏光片30位于第一侧边的端面与透明盖板10的出光区VA的相对位置做出设计,也即,以使得导电浆气泡对应的位置的光线经过折射后,无法抵达透明盖板10的出光区VA,这样,能够使得导电浆气泡处于不可见状态。
导电浆层90可以包括一个或多个导电浆部900。
参考图15-17,导电浆部900包括相互电连接的第一导电浆部分901和第二导电浆部分902。其中,第一导电浆部分901与第二导电浆部分902都位于第一基板401远离背光模组60的一侧。例如,第一导电浆部分901与第一基板401电连接。例如,第一导电浆部分901与第一基板401的接地端直接接触设置。第二导电浆部分902位于第二基板402远离第一基板401的一侧。第二导电浆部分902与第一偏光片30位于第一侧边的端面接触设置。第一导电浆部分901与第二导电浆部分902电连接,如此,第一偏光片30的静电可以通过第一导电浆部分901与第二导电浆部分902导出。例如,第一导电浆部分901与第二导电浆部分902为一体结构。例如,第一导电浆部分901与第二导电浆部分902是通过一次点胶工艺制备的。
导电浆部900可以是条状导电浆部(参考图15)、面状导电浆部(参考图16A-图16D)或者点状导电浆部(参考图17)。
例如,有且仅有1个条状导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如,不存在其他导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如图13A可以表示图15中仅截取了第一导电浆部分901的剖面示意图;例如图13C可以表示图15中截取了第一导电浆部分901和第二导电浆部分902的剖面示意图
例如,有且仅有1个面状导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如,不存在其他导电浆部与第一偏光片30位于第一侧边的端面接触设置。
例如,有且仅有2个面状导电浆部与第一偏光片30位于第一侧边的端面 接触设置。例如,不存在其他导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如图13C可以表示图16A-D中截取了第一导电浆部分901和第二导电浆部分902的剖面示意图。
例如,有且仅有1个点状导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如,不存在其他导电浆部与第一偏光片30位于第一侧边的端面接触设置。
例如,有且仅有2个点状导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如,不存在其他导电浆部与第一偏光片30位于第一侧边的端面接触设置。例如图13C可以表示图17中截取了第一导电浆部分901和第二导电浆部分902的剖面示意图。
参考图15,条状导电浆部900包括连续设置的条状的第二导电浆部分902以及与第二导电浆部分902电连接的第一导电浆部分901。其中,第二导电浆部分902与第一偏光片30位于第一侧边的端面的大部分位置接触设置。例如,条状导电浆部900与第一偏光片30位于第一侧边的端面接触的长度大于第一侧边的端面长度的一半。例如,条状导电浆部900与第一偏光片30位于第一侧边的端面接触位置包括第一侧边的端面中心。第二导电浆部分902可以与第一偏光片30充分接触,导出静电效果较好。例如,第一导电浆部分901可以有2个,分别与连续设置的条状的第二导电浆部分902的两端电连接。
参考图16A-图16D,面状导电浆部900在显示面板40呈局部分布。例如,在显示面板40的投影形状为矩形(参考图16A),L形(参考图16B、图16C)、T形(参考图16D)、圆形、椭圆形中的一种或多种。例如,面状导电浆层90与第一偏光片30位于第一侧边的端面接触的位置靠近与第一侧边相邻的第二侧边。例如,面状导电浆层90对应分布于显示面板40的显示区AA靠近显示面板40第一侧边的两个顶点附近。例如,面状导电浆部900的数量为2个,分别靠近与第一侧边相邻的一个第二侧边和另一个第二侧边。例如,每个面状导电浆部900与第一偏光片30位于第一侧边的端面接触的长度不超过第一偏光片30位于第一侧边的端面整体长度的四分之一。例如,面状导电浆部900与第一偏光片30位于第一侧边的端面接触位置不位于第一侧边的端面的中心。例如,面状导电浆部900与第一偏光片30位于第一侧边的端面接触位置 远离第一侧边的端面的中心。例如,面状导电浆部900与第一偏光片30位于第一侧边的端面接触的长度大于1.05mm范围内。例如,面状导电浆部900与第一偏光片30位于第一侧边的端面接触的长度在2mm-5mm范围内。面状导电浆部900与第一偏光片30位于第一侧边的端面接触长度较小,可以减轻导电浆层90的设置对显示效果产生的影响。
参考图17,点状导电浆部900与第一偏光片30位于第一侧边的端面接触的位置靠近与第一侧边相邻的第二侧边。其中,每个点状导电浆部900与第一偏光片30位于第一侧边的端面接触的长度小于或等于1.05mm,这可以作为与面状导电浆部900的区别特征。例如,每个点状导电浆部900的尺寸可以设置为:点状导电浆部900在第一基板401上的正投影不超过直径为1.05mm的圆,如此,制作点状导电浆部900时其流动可以得到控制,防止点状导电浆部900过厚对显示模组的制备造成影响。例如,每个点状导电浆部900的尺寸可以设置为:点状导电浆部900在第一基板401上的正投影的面积大于或等于直径为0.75mm的圆如此,保证导通效果和固定效果。例如,点状导电浆部900在第一基板401上的正投影为正圆形或者椭圆形。例如,点状导电浆部900对应分布于显示区AA靠近显示面板40第一侧边的两个顶点附近。例如,点状导电浆部900的数量为多个。例如,点状导电浆层90的数量为2个,分别靠近与第一侧边相邻的一个第二侧边和另一个第二侧边。例如,点状导电浆部900与第一偏光片30位于第一侧边的端面接触位置不位于第一侧边的端面的中心。例如,点状导电浆部900与第一偏光片30位于第一侧边的端面接触位置远离第一侧边的端面的中心。点状导电浆部900与第一偏光片30位于第一侧边的端面接触长度较小,可以减轻导电浆层90的设置对显示效果产生的影响。例如,参考图14当使用点状导电浆部900进行静电导出时,显示模组包括导电件82,导电件82分别与点状导电浆部900和柔性电路板81电连接,静电可以通过导电层82传导至柔性电路板81,并通过柔性电路板81导出完成静电的释放,以增强静电导出能力。例如,导电件82位于第一基板401以及柔性电路板81上,柔性电路板81包括漏铜区,导电件82与漏铜区接触设置并且电连接。例如,导电件82包括铜箔。例如,导电件82覆盖所述柔性电路板81的所有漏铜区。例如,导电件82为连续分布的结构。
可以理解的是,当使用线型导电浆部900和面状导电浆部900进行静电导出时,也可以设置导电件82,设置方式可以参考使用点状导电浆部900情况下设置导电件82的结构,这里不再赘述。
导电浆部900与第一偏光片30位于第一侧边的端面接触的长度可以理解为导电浆部900与第一偏光片30位于第一侧边的端面的接触区域在该端面延伸方向的长度。当第一侧边的延伸方向与该端面的延伸方向相同时,导电浆部900与第一偏光片30位于第一侧边的端面接触的长度为导电浆部900与第一偏光片30位于第一侧边的端面的接触区域在第一侧边延伸方向对应的长度。有关导电浆部900与第一偏光片30位于第一侧边的端面接触的长度的上述描述,适用于条状导电浆部、面状导电浆部、点状导电浆部中的任何一种。
参考图13A,光学胶层20在显示面板40上的正投影相比显示区AA在第一侧边侧的对应边界更靠近第一侧边;光学胶层20在显示面板40上的正投影在第一侧边侧的对应边界相比盖板10在该侧的出光区边界(即出光区VA和不透光区UVA的边界)在显示面板40上的正投影更靠近第一侧边。
例如,光学胶层20在显示面板40上的正投影覆盖显示区AA。
例如,光学胶层20在显示面板40上的正投影覆盖出光区VA在显示面板40上的正投影。
参考图13A,光学胶层20在显示面板40上的正投影相比显示区AA在第一侧边侧的对应边界与盖板10在该侧的出光区边界之间的距离为d12。在本公开中,为了实现窄边框效果,d12小于或等于0.8mm。进一步地,d12过于小时,即使做了导电浆部的形状设计,也可以在45°及以上视角观察到导电浆气泡。例如,d12大于或等于0.4mm。例如,d12大于或等于0.7mm。需要说明的是,d12是根据显示装置中光学胶层20经过贴合后光学胶层20延展到的最终位置确定的。在未贴合前,光学胶层20在显示面板40上的正投影相比显示区AA在第一侧边侧的对应边界与盖板10在该侧的出光区边界之间的距离可以定义为d12’,也即理论设计值。d12’可以设置为小于或等于0.6mm。例如,d12’可以设置为大于或等于0.5mm。
参考图13A,第一偏光片30位于第一侧边的端面在显示面板40上的正投影与盖板10在该侧的出光区边界(即出光区VA和不透光区UVA的边界)之 间的距离为d15。
在一些实施例中,d15大于或等于1.05mm,导电浆层90包括条状导电浆部900和面状导电浆部900的中的至少一种。例如,导电浆层90仅包括条状导电浆部900。例如,导电浆层90仅包括面状导电浆部900。例如,导电浆层90的形状为如图15所示的条状导电浆层90。例如,导电浆层90的形状为如图16A-图16D中任意一个所示的面状导电浆层90。由于导电浆层90的边界与第一偏光片30位于第一侧边的端面接触但与第一偏光片30的远离显示面板40的表面无交叠或仅交叠很窄的宽度,当d15大于或等于1.05mm时,光学胶层20与电浆层90难以配合产生导电浆气泡或者,即使产生导电浆气泡,导电浆气泡位置也距离出光区VA较远,难以影响显示效果,因此可以选择条状导电浆部900以增加导电浆层90与第一偏光片30的有效接触长度,增加导电效果。如此情况下,例如,d12在0.4mm-0.8mm范围内。例如,d12在0.7mm-0.8mm范围内。
在一些实施例中,d15大于或等于0.9mm且小于1.05mm,导电浆层90包括面状导电浆部900。例如,导电浆层90仅包括面状导电浆部900。例如,导电浆层90包括2个面状导电浆部900,两个面状导电浆层900分别分布于显示面板40的显示区AA靠近显示面板40第一侧边的两个顶点附近。例如,导电浆层90的形状为如图16A-图16D中任意一个所示的面状导电浆层90。由于导电浆层90的边界与第一偏光片30位于第一侧边的端面接触且与第一偏光片30的远离显示面板40的表面无交叠或仅交叠很窄的宽度,当d15大于或等于0.9mm且小于1.05mm时,由于线性导电浆部与第一偏光片30位于第一侧边的端面接触的长度较大,使用线性导电浆部可能会使导电浆气泡容易被观察到,因此,采用面状导电浆部900可以在不易观察到导电浆气泡的同时保证静电的导出效果。如此情况下,例如,d12在0.4mm-0.8mm范围内。例如,d12在0.7mm-0.8mm范围内。例如,每个导电浆部900与第一偏光片30位于第一侧边的端面接触的长度d17在2mm-5mm范围内,以保证导电效果,例如为3.5mm。
在一些实施例中,d15小于0.9mm,导电浆层90包括点状导电浆部900。例如,导电浆层90仅包括点状导电浆部900。例如,导电浆层90包括2个点 状导电浆部900,两个点状导电浆层900分别分布于显示面板40的显示区AA靠近显示面板40第一侧边的两个顶点附近。例如,导电浆层90的形状为如图17所示的面状导电浆层90。导电浆层90的边界与第一偏光片30位于第一侧边的端面接触且与第一偏光片30的远离显示面板40的表面无交叠或仅交叠很窄的宽度;当d15小于0.9mm时,相比于d15大于或等于0.9mm的情况,导电浆气泡更容易被观察到,因此,采用点状导电浆部900可以有效减轻或避免导电浆气泡对显示效果的影响。例如,d15大于或等于0.6mm。例如,d12在0.4mm-0.8mm范围内。例如,d12在0.7mm-0.8mm范围内。通过实验验证,当设定d15长度时,导电浆层90的类型验证与是否可以在45°视角观察到气泡的结果如表1所示:
表1:导电浆气泡验证结果
表1中的结果OK代表导电浆气泡不可见,气泡代表导电浆气泡处于可见状态。条状导电浆层表示采用了图15所示的导电浆层结构;面状导电浆层表示采用了如图16B或图16C所示的导电浆层结构;点状导电浆层表示采用了如图17所示的导电浆层结构。由上述结果可知,根据d15调整导电浆层的形状,能够避免导电浆气泡处于可见状态,有助于提高显示效果。
在一个具体实施例中,参考图16A-图16D导电浆层90仅包括2个面状导电浆部900,两个面状导电浆层900分别分布于显示面板40的显示区AA靠近显示面板40第一侧边的两个顶点附近;每个导电浆部900与第一偏光片30位于第一侧边的端面接触的长度d17在2mm-5mm范围内。例如,d12=0.7mm。例如,d13=0.4mm。
另外,本公开实施例还提供一种显示装置,包括上述的显示模组。本公开实施例提供的显示模组可以为电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”、“耦接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述是本公开实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
- 一种显示模组、显示装置及显示装置的制造方法
- 一种显示模组、显示装置及显示模组的制作方法
- 一种棱镜组件、光源模组、背光模组及显示装置
- 一种2D-3D显示切换光学模组及其制备方法、显示装置
- 一种蒸镀方法、蒸镀掩膜模组、显示面板及显示装置
- 用于显示装置的背光模组、显示装置及驱动侧入式背光模组的方法
- 背光模组、显示模组、显示装置及显示模组的制备方法