掌桥专利:专业的专利平台
掌桥专利
首页

重质烃加氢处理催化剂及其制备和使用方法

文献发布时间:2023-06-19 19:30:30



相关申请的引用

本申请要求2020年9月1日提交的名称为“A HEAVY HYDROCARBONHYDROPROCESSING CATALYST AND METHOD OF MAKING AND USING THEREOF”的美国临时专利申请序列号63/073015的优先权,并且该临时申请据此全文以引用方式并入本文。

本公开涉及可用于重质烃原料的加氢脱硫和重质尾馏分加氢转化为馏出物的加氢处理催化剂。本公开进一步涉及制备加氢处理催化剂的方法。

背景技术

在精炼原油的加工中,对包括沸点高于约538℃(1,000℉)的重质烃的某些馏分进行催化加氢处理,以通过脱硫、脱氮、脱金属除去组分诸如硫、氮、金属和微碳残余物,并将重质尾馏分转化为较轻馏出物馏分。这些工艺使用各种类型的非均相加氢处理催化剂以通过在氢存在下在升高的温度和压力条件下使催化剂与原料接触来促进反应。用于提供重质烃原料的加氢转化和脱硫的许多常规催化剂包含负载在耐火氧化物载体上的第VIB族金属组分诸如钼和第VIII族金属组分诸如钴或镍。

美国专利号7,820,036(Bhan)公开了一种发现可用于加氢处理重质烃原料的催化剂。该催化剂尤其可用于重质烃原料的加氢脱硫和加氢转化,并且即使当在较重质烃馏分的高转化率所需的较高工艺温度条件下使用时也可保持稳定性。该催化剂通过将三氧化钼、镍化合物和无机氧化物材料混合并将该混合物形成经煅烧的颗粒而制备。该催化剂具有至多12重量百分比(以金属计)的钼和至多4重量百分比(以金属计)的镍。该催化剂的重要特征是其平均孔径在特定的、窄的范围内且大孔隙度低。本文公开的催化剂的平均孔径在

美国专利号9,114,386(Bhan)公开了一种用于加氢处理重质烃原料的催化剂。该催化剂具有独特的自活化性质,使得其活性随使用而增加。该催化剂具有相对低浓度的钼和镍的催化金属,其中镍的比例提供了低的镍与钼重量比。该催化剂包含1重量百分比至10重量百分比(以金属计)的钼和镍,其量使得镍与钼的重量比小于0.4。该催化剂的特征在于,其总孔体积的至少1百分比且小于10百分比的孔直径大于

美国专利号9,879,187(Bhan)公开了另一种具有优异催化性能性质的重质烃加氢处理催化剂。该催化剂产生了具有增强的产物稳定性的处理产物,如其P值所反映的。该催化剂进一步具有增强的MCR除去活性和增强的钒去除能力和稳定性。该专利指出该催化剂的独特物理特性提供了其优异的催化性质。催化剂的重要特征是其总孔体积的至少20%包含在孔径大于

发明内容

一直在努力开发用于重质烃的加氢处理和加氢转化以产生加氢处理的转化产物的改善催化剂。这些努力致力于开发具有更高活性的改善催化剂,这些改善催化剂提供了重质烃流的沥青组分向较轻烃的显著转化,同时提供了低的沉淀物产率。

因此,提供一种沸腾床催化剂,该沸腾床催化剂包含:氧化铝,该氧化铝基于沸腾床催化剂的重量在75重量%至98.5重量%的范围内;钼组分,该钼组分的量以金属计算并且基于沸腾床催化剂的重量为大于5重量%;镍组分,该镍组分的量使得沸腾床催化剂的镍与钼的原子比在0.2至0.9的范围内。沸腾床催化剂具有高大孔隙度孔结构,使得沸腾床催化剂的总孔体积的至少20%处于直径大于

还提供了一种制备沸腾床催化剂的新型方法,该沸腾床催化剂具有高大孔隙度并且可用于以最小的沉淀物产率转化和处理重质烃进料。该方法包括共研磨钼化合物、催化剂细粉、氧化铝、高分子量聚丙烯酰胺组分和水,以形成能够挤出的共研磨混合物。将该共研磨混合物形成为挤出物,将其干燥以提供干燥的挤出物。将干燥的挤出物在1450℉至1550℉的范围内的煅烧温度下煅烧,从而提供本文公开的沸腾床催化剂。沸腾床催化剂具有高大孔隙度孔结构,使得沸腾床催化剂的总孔体积的至少20%处于直径大于

所公开的沸腾床加氢转化催化剂和通过本公开的方法制备的催化剂可用于重质烃原料的加氢转化工艺中。该工艺包括将重质烃原料引入到包含催化剂的床的沸腾床反应区中,其中其在加氢转化条件下与催化剂接触。从沸腾床反应区产生重质烃转化产物。

附图说明

通过阅读以下具体实施方式并参考附图,本公开的优点可变得显而易见,其中附图是本公开的沸腾床反应器系统的某些方面的简化示意图。

具体实施方式

下面将描述本公开的一个或多个具体实施方案。这些描述的实施方案是当前公开的技术的示例。另外,为了提供这些实施方案的简明描述,并非实际具体实施的所有特征都可在说明书中描述。应当理解,在任何此类实际具体实施的开发中,如在任何工程或设计项目中,将作出许多特定于具体实施的决策以实现开发者的特定目标,诸如符合系统相关和商业相关的约束,这些约束可能因具体实施而异。此外,应当理解的是,这种开发努力可能是复杂且耗时的,但是对于受益于本公开的普通技术人员而言仍然是设计、生产和制造的常规任务。

当介绍本公开的各种实施方案的元素时,冠词“一个”、“一种”和“该”旨在表示存在一个或多个元素。术语“包含”、“包括”和“具有”旨在是包括性的,并且意味着除了所列出的元素之外还可存在另外的元素。另外,应当理解,对本公开的“一个实施方案”或“实施方案”的引用不旨在被解释为排除也结合了所述特征的附加实施方案的存在。

如本文所用,术语“大约”、“约”和“基本上”表示接近规定量但仍执行所需功能或实现所需结果的量。例如,术语“大约”、“约”和“基本上”可指小于所述量的10%、小于所述量的5%、小于所述量的1%、小于所述量的0.1%和小于所述量的0.01%的量。

本公开的催化剂是可用于加氢处理(例如,加氢脱硫、加氢脱氮和加氢脱金属)和重质烃原料的加氢转化的新型高大孔隙度催化剂组合物。该催化剂作为用于沸腾床工艺系统中的沸腾床催化剂具有特别的应用。

本文公开的催化剂能够提供重质烃原料的沥青部分向较低沸点烃的高转化率,同时产生少量不期望的沉淀物。

在催化剂的制造中使用高分子量的聚丙烯酰胺以及在高大孔隙度催化剂的制备中使用的特殊方法步骤(诸如共研磨和受控煅烧)为高大孔隙度催化剂提供了许多特殊性质。

尽管催化剂的高大孔隙度和其他孔结构特性被认为有助于提高催化剂在重质原料加工中的催化性质,但也被认为高大孔隙度催化剂的制造方式导致的其他物理性质也有助于其独特的性质。因此,所公开的制备高孔隙度催化剂的方法提供了具有其增强性质的新型高大孔隙度催化剂。

本公开的催化剂包括颗粒。该颗粒可以是挤出物或由共研磨混合物形成的任何其他颗粒或形状。在受控煅烧温度条件下煅烧颗粒以提供具有其独特孔结构的加氢处理催化剂的煅烧颗粒。

该共研磨混合物包含无机氧化物组分、钼组分、镍组分和高分子量聚丙烯酰胺。进一步希望在混合物中包含粉碎的催化剂细粉。这些组分以最终煅烧颗粒和本公开的催化剂所需的具体限定浓度和重量比组合在一起。

该煅烧颗粒进一步具有如本文详细描述的具体限定孔结构。在该共研磨混合物中包含高分子量聚丙烯酰胺提供了最终的煅烧颗粒,并因此提供了本公开的沸腾床催化剂,该沸腾床催化剂具有格外高的大孔隙度孔结构和有助于提高催化性质的其他特征。

高分子量聚丙烯酰胺的应用对于制备具有所述高大孔隙孔结构和增强的催化性质的沸腾床催化剂是重要的。控制共研磨混合物中包含的高分子量聚丙烯酰胺的量以提供具有所需特性和性质的最终催化剂。包含在共研磨混合物中的高分子量聚丙烯酰胺的量应在共研磨混合物总重量的约0.1重量%至约10重量%的范围内。优选的是,该共研磨混合物的高分子量聚丙烯酰胺的浓度在从0.2重量%至8重量%的范围内,并且更优选的该浓度在0.4重量%至6重量%的范围内。

除了无机氧化物组分之外,本文公开的煅烧颗粒还包含钼或镍,或钼和镍两者。这些金属在最终催化剂组合物中的浓度对于催化剂的性能以及在催化剂的制备中使用高分子量聚丙烯酰胺以产生具有其独特物理性质的催化剂是重要的。因此,煅烧颗粒通常包含无机氧化物组分、钼组分或镍组分、或钼组分和镍组分两者,基本上由它们组成或由它们组成。

煅烧颗粒和因此加氢处理催化剂的钼含量以金属计算应大于煅烧颗粒的总重量的5重量百分比(重量%),与其实际形式无关,并且小于15重量%。更希望钼以6重量%(即9重量%,以MoO

当存在时,煅烧颗粒的镍含量应在以下范围内:以金属计算为煅烧颗粒的总重量的0.5重量%至5重量%,与其实际形式无关(即,基于氧化镍(NiO)为0.64重量%至6.4重量%)。优选地,镍含量在0.75重量%至4.5重量%(即,基于氧化镍为1重量%至5.7重量%),并且更优选1重量%至4重量%(即,基于氧化镍为1.3重量%至5.1重量%)的范围内。

在所公开的催化剂的实施方案中,可能希望煅烧颗粒具有镍浓度,其量使得煅烧颗粒中镍与钼的重量比在0.2:1至0.9:1的范围内。该重量比是基于元素计算和表示的。然而,镍的量应在如上所述的浓度范围内,并且在某些实施方案中可在0.3:1至0.8:1的范围内。镍与钼的优选重量比在0.3∶1至0.6∶1的范围内。

除了钼、镍和高分子量聚丙烯酰胺组分之外,共研磨混合物进一步包含无机氧化物材料。可将为催化剂提供所需的孔结构性质的任何合适的多孔无机耐火氧化物用作混合物的无机氧化物材料组分。可能合适类型的多孔无机耐火氧化物的示例包括二氧化硅、氧化铝和二氧化硅-氧化铝。优选氧化铝或二氧化硅-氧化铝。最优选的是氧化铝。

混合物中无机氧化物材料的量在最终的煅烧混合物和加氢处理催化剂中提供70重量百分比至92.5重量百分比的范围内的量的无机氧化物材料,其中重量百分比基于煅烧混合物或加氢处理催化剂的总重量。优选地,煅烧混合物中无机氧化物材料的量在72重量百分比至91重量百分比,并且最优选地为74重量百分比至90重量百分比的范围内。

本文公开的催化剂的重要物理特征是其具有如下文所述的相对高的大孔隙度。催化剂的总孔体积的大部分包含在其孔径大于

该高大孔隙度催化剂具有双峰孔结构。其孔径分布使得其具有在

在直径在

在催化剂的优选的实施方案中,催化剂的总孔体积的至少18%包含在直径在

进一步希望催化剂的孔结构使得总孔体积的至少25百分比包含在其直径大于1,000埃的大孔内。更希望总孔体积的大于28百分比包含在直径大于1,000埃的大孔内,并且最希望总孔体积的大于30百分比包含在直径大于1,000埃的大孔内。

其直径大于

在制备本公开的煅烧颗粒时,通过共研磨各组分来混合起始材料以形成共研磨混合物。在一个实施方案中,制备共研磨混合物中的起始材料包括钼化合物、镍化合物、无机氧化物材料和高分子量聚丙烯酰胺。

钼化合物优选地是细分散颗粒形式的三氧化钼,其可以是干燥粉末或者悬浮液或浆液中的颗粒。

无机氧化物材料可选自由氧化铝、二氧化硅和氧化铝-二氧化硅组成的组。

镍组分选自能够与成形为颗粒的共研磨混合物的其他组分混合的一组合适的镍化合物。

将该共研磨混合物形成为颗粒,然后将该颗粒煅烧以形成本公开的煅烧颗粒。镍组分可以是氧化物形式的镍,诸如氧化镍,或者其可以是镍盐化合物。可合适地使用的镍盐化合物包括例如镍的氢氧化物、氯化物、硝酸盐和乙酸盐。用于制备共研磨混合物的一种优选的镍化合物是硝酸镍。

用于形成共研磨混合物的高分子量聚丙烯酰胺是能够提供具有本文所述的高大孔隙度特性和增强的催化性质的本公开的催化剂的聚合物化合物。这些增强的催化性质包括提供重质烃原料的沥青组分的显著转化和相关的低沉淀物产率。催化剂的独特的高大孔隙孔结构被认为有助于其增强的催化性质。用于形成共研磨混合物的聚合物的分子量和其在共研磨混合物中的浓度两者对于提供具有其高大孔隙度的最终煅烧颗粒是重要的。共研磨混合物所需的高分子量聚丙烯酰胺的临界浓度如上所述。

用于制备共研磨混合物的聚丙烯酰胺的分子量与高分子量聚丙烯酰胺化合物中重复单元的数量和聚合物的长度有关。高分子量聚丙烯酰胺应具有1,000,000g/mol至25,000,000g/mol的范围内的分子量。聚丙烯酰胺的优选分子量在1,000,000g/mol至20,000,000g/mol的范围内。

理论上,高分子量聚丙烯酰胺起作用的一个原因是其在共研磨混合物的氧化铝颗粒之间形成桥,这在混合、制粒或挤出物形成和煅烧期间保持了共研磨混合物的颗粒以间隔关系取向以产生具有本文所述的高大孔隙度特性的催化剂组合物的煅烧颗粒。

用于制备组合物的潜在高分子量聚丙烯酰胺化合物包括分子量在希望范围内的聚合物,这些聚合物选自聚(丙烯酰胺)、聚(N-异丙基丙烯酰胺)、聚(N-辛基丙烯酰胺)、聚(N-叔丁基丙烯酰胺)、聚(N-苯基丙烯酰胺)和聚(N-仲丁基丙烯酰胺)。其中,优选聚(丙烯酰胺)。

共研磨混合物的形成可通过本领域技术人员已知的任何方法或手段来进行。这些包括使用此类合适类型的固体混合机如转筒机、固定式壳或槽、间歇型或连续型的研磨机混合机、以及冲击式混合机,以及使用此类合适类型的间歇型或连续型混合机用于混合固体和液体或者用于形成可挤出的糊状混合物。合适类型的间歇混合机包括但不限于配备有任何合适类型的混合叶片的换罐式混合机、固定槽混合机、双臂捏合混合机。合适类型的连续混合机包括单螺杆或双螺杆挤出机、槽-螺杆混合机和搅拌机。

煅烧颗粒的起始材料的混合可进行适当均化共研磨混合物所必需的任何合适的时间段。通常,共混时间可在高达2小时或超过3小时的范围内。通常,共混时间在0.1小时至3小时的范围内。

在本说明书中广泛使用的术语“共研磨”是指将至少所述起始材料混合在一起以形成共研磨混合物的各组分的混合物,其优选的是这种共研磨混合物的各组分的基本上均匀或均质的混合物。该术语的范围应足够广泛,以包括混合起始材料以产生表现出使其能够通过任何已知挤出方法挤出或形成挤出物颗粒的性质的糊剂。但是,该术语还旨在包括混合起始材料以产生混合物,该混合物优选的是基本上均匀的并且能够聚结成形成的颗粒。通过本领域技术人员已知的任何方法,包括但不限于模塑、压片、压制、造粒、挤出和滚压,所形成的颗粒的示例包括球状体、丸剂或片剂、圆柱体、不规则挤出物或仅松散结合的聚集体或簇。

煅烧颗粒的钼源的大部分可以主要是三氧化钼。在煅烧颗粒的起始材料的混合或共研磨中,优选的是三氧化钼处于细分散状态,作为细粉状固体或者作为悬浮液或浆料中的细粉颗粒。用于制造催化剂的颗粒状三氧化钼的粒度最好具有小于0.5mm(500微米,μm)的最大尺寸,优选小于0.15mm(150μm)的最大尺寸,更优选小于0.1mm(100μm)的最大尺寸,并且最优选小于0.075mm(75μm)的最大尺寸。

用于制造煅烧颗粒的三氧化钼的粒度将通常具有大于0.2微米的尺寸下限。因此,在制造煅烧颗粒中用于形成共研磨混合物的三氧化钼的粒度优选在0.2μm至150μm的范围内,更优选0.3μm至100μm的范围内,并且最优选0.5μm至75μm的范围内。通常,三氧化钼颗粒的粒度分布,无论是干燥粉末还是悬浮液或其他形式,使得至少50百分比的颗粒具有在2μm至15μm的范围内的最大尺寸。

一旦煅烧颗粒的起始材料被适当地混合并且形成为成形的或形成的颗粒,干燥步骤就可有利地用于除去包括在共研磨混合物或形成的颗粒内的一定量的水或挥发物。

干燥所形成的颗粒可在任何合适的温度下进行以除去过量的水或挥发物,但优选地,干燥温度将在约75℃至250℃的范围内。干燥颗粒的时间段是在煅烧步骤之前提供颗粒的挥发物含量的希望减少量所必需的任何合适的时间段。

干燥或未干燥的颗粒在含氧流体诸如空气的存在下在煅烧温度下进行煅烧,煅烧温度提供了具有本文所述的所需孔结构和增强的催化性质的最终煅烧颗粒。在677℃(1250℉)至843℃(1550℃)的范围内的温度下煅烧本公开的干燥颗粒。优选的煅烧温度在704℃(1300℉)至815℃(1500℉)的范围内,并且更优选746℃(1375℉)至774℃(1425℉)的范围内。

煅烧颗粒特别可用作高活性加氢处理催化剂,以用于具有高含量沥青、有机金属诸如镍和钒化合物以及硫的重质原料流的加氢处理。在其使用之前,煅烧颗粒可以,但不要求,通过本领域技术人员已知的任何方法硫化或活化。通常,在重质烃原料的加氢处理中使用时,煅烧颗粒包含在反应区内,诸如由反应器容器限定的反应区内,其中重质烃原料与煅烧颗粒在合适的加氢处理反应条件下接触,并且从中产生处理的烃或重质烃转化产物。

本文公开的工艺的重质烃原料可衍生自任何高沸点石油馏分,诸如常压塔瓦斯油、常压塔底部产物、真空塔瓦斯油和真空塔底部产物或渣油。

所公开工艺的特别有用的方面是提供重质烃原料的加氢处理,该重质烃原料通常定义为在其5%蒸馏点(即T(5))的沸点温度超过300℃(572℉),如通过使用ASTM D-1160中所述的测试程序所测定。本公开更特别地涉及T(5)超过315℃(599℉)并且甚至超过340℃(644℉)的重质烃原料的加氢处理。

重质烃原料可进一步包括沸点温度高于538℃(1,000℉)的较重质烃。这些较重质烃在本文中称为沥青,并且如已经指出的,认识到所公开的催化剂或工艺的特殊特征之一是其在重质烃原料的沥青内容物的加氢转化中特别有效。

重质烃原料可包括少至10体积百分比的沥青或多至90体积百分比的沥青,但通常包括在重质烃原料中的沥青的量在20体积百分比至80体积百分比的范围内。并且,更典型地,重质烃原料中的沥青含量在30体积百分比至75体积百分比的范围内。重质烃原料可进一步包括显著高的硫含量。

本公开的特殊特征之一是其提供了重质烃原料的脱硫和脱金属。重质烃原料的硫含量主要是有机含硫化合物的形式,其可包括例如硫醇、取代的或未取代的噻吩、杂环化合物或任何其他类型的含硫化合物。

本公开的特征在于其提供具有显著高的硫含量的重质原料的脱硫。这种硫含量通常远大于1重量百分比,以便提供具有降低的硫含量的处理的烃产物或重质烃转化产物,诸如硫含量小于1重量百分比,优选小于0.75重量%,更优选小于0.5重量%。

当本文提及重质烃原料或经处理的烃或重质烃转化产物的硫含量时,通过使用测试方法ASTM D-4294测定重量百分比。

所公开的工艺尤其可用于处理硫含量超过2重量百分比的重质烃原料,并且具有这样的重质烃原料,硫含量可在2重量百分比至8重量百分比的范围内。本文公开的催化剂和工艺尤其可用于处理具有超过3重量百分比或甚至4重量百分比且在3重量百分比至7重量百分比或甚至4重量百分比至6.5重量百分比的范围内的尤其高的硫含量的重质烃原料。

该工艺在加氢处理重质烃原料中利用本文公开的高大孔隙度催化剂以降低的或低的沉淀物产率同时提供脱硫、脱氮和沥青转化。在该工艺中,使重质烃原料与催化剂在合适的加氢脱硫和加氢转化工艺条件下接触以产生重质烃转化产物。

重质烃原料的镍含量通常为有机镍化合物的形式。重质烃原料的镍浓度可在2ppmw至250ppmw的范围内。更典型地,所公开工艺的重质烃原料具有在5ppmw至225ppmw的范围内的镍浓度,并且最典型地,镍浓度在7ppmw至200ppmw的范围内。

重质烃原料还可具有通常在5ppmw至250ppmw的范围内的钒浓度。希望重质烃原料包含尽可能少的钒,但该组合物提供脱金属,并因此从重质烃原料中除去钒。更典型地,重质烃原料的钒浓度在10ppmw至225ppmw的范围内。

重质烃转化产物应具有低于重质烃原料的降低的硫含量。降低的硫含量优选小于1重量百分比的硫浓度。然而,应当认识到,所公开的工艺可具有有效地将重质烃原料脱硫以提供具有小于0.5重量百分比和甚至小于0.4重量百分比的重质烃转化产物的降低的硫含量的经处理的烃或重质烃转化产物的能力。与重质烃转化产物一起通常产生的沉淀物小于0.5重量%,并且优选地小于0.4重量%,如通过测试方法ASTM-4870测定的。使用高大孔隙度加氢处理催化剂的本文公开的工艺提供了具有比对比催化剂提供的显著更低的沉淀物含量的重质烃转化产物。重质烃转化产物的沉淀物含量甚至可小于重质烃转化产物的0.35重量%或小于0.3重量%。

本公开的煅烧颗粒(高大孔隙度催化剂)可用作任何合适的反应器系统的一部分,该反应器系统提供了催化剂与重质烃原料在合适的加氢处理条件下的接触,这些加氢处理条件可包括氢的存在和升高的总压力和温度。此类合适的反应系统可包括固定催化剂床系统、沸腾催化剂床系统、淤浆催化剂系统和流化催化剂床系统。

本公开的催化剂特别可用作沸腾床反应器系统中使用的沸腾床催化剂。参照附图更详细地描述了沸腾床反应器系统。

另一种合适的反应器系统包括包含在反应器容器内的所公开的催化剂的固定床。反应器容器配备有用于将重质烃原料引入反应器容器中的反应器进料入口装置,诸如进料喷嘴,和用于从反应器容器中取出反应器流出物或重质烃转化产物的反应器流出物出口装置,诸如流出物出口喷嘴。

该工艺通常在2298kPa(300psig)至20,684kPa(3000psig)的范围内,优选10,342kPa(1500psig)至17,237kPa(2500psig)的范围内,并且更优选12,411kPa(1800psig)至15,513kPa(2250psig)的范围内的加氢处理(加氢转化和加氢脱硫)反应压力下操作。加氢处理反应温度通常在340℃(644℉)至480℃(896℉)的范围内,优选360℃(680℉)至455℃(851℉)的范围内,并且最优选380℃(716℉)至425℃(797℉)的范围内。

将重质烃原料装入到该工艺的反应区中的流速通常使得提供0.01小时

优选的是将氢与重质烃原料一起装入本文公开的工艺的反应区中。在这种情况下,氢有时被称为氢处理气体。氢处理气体速率是相对于装入反应区的重质烃原料的量的氢气的量,并且通常在高达1781m

该附图呈现了其中使用本公开的高大孔隙度催化剂的沸腾床反应器系统10的简化示意图。沸腾床反应器系统包括细长容器12,该细长容器限定几个区,诸如用于在合适的加氢转化反应条件下使重质烃原料与高大孔隙度催化剂接触的接触区,以及用于从高大孔隙度催化剂中分离加氢处理的重质烃产物的分离区。

在细长容器12内是具有沉降的高大孔隙度催化剂床水平16的沉降的高大孔隙度催化剂床14。将包含重质烃原料和氢的反应器进料通过管道18引入位于细长容器12内的沸腾催化剂床下方的下部区17中。

反应器进料通过水平分配器板20,该水平分配器板提供用于向上引导反应器进料并通过沉降的高大孔隙度催化剂床14的装置。反应器进料通过沉降的高大孔隙度催化剂床14起到提升和膨胀高大孔隙度催化剂床的作用,从而提供具有膨胀的高大孔隙度催化剂床水平24的膨胀的高大孔隙度催化剂床22(沸腾催化剂床)。

在细长容器12的分离区26中,将高大孔隙度催化剂与具有液位30的液态烃28和重质烃转化产物分离,该重质烃转化产物通过管道32从细长容器12中流出。

细长容器12内的降液管34提供用于将液态烃28再循环至膨胀的高大孔隙度催化剂床22底部的导管装置。导管36可操作地连接在降液管34和沸腾泵38之间的流体流动连通中。沸腾泵38提供用于使液态烃28再循环和循环通过膨胀的加氢转化催化剂床22的装置。

细长容器12的上端包括催化剂入口导管装置40,其用于在沸腾床反应器系统10运行时引入新鲜的高大孔隙度催化剂。新鲜的高大孔隙度催化剂可通过导管42通过导管装置40引入到细长容器12中。细长容器12的下端包括催化剂出口导管装置44,其用于在沸腾床反应器系统10运行时除去使用过的高大孔隙度催化剂。使用过的高大孔隙度催化剂通过管道46从细长容器12中流出。

以下实施例进一步说明本公开,但它们不应被解释为限制本文公开的实施方案的范围。

实施例

实施例I

该实施例I说明了本公开催化剂和对比催化剂的制备方法和催化剂组合物。

本发明催化剂组合物

所公开的催化剂组合物的实施方案通过将932.2克LOI为23.9%的氧化铝粉末与20克高分子量聚丙烯酰胺组分(

对比催化剂组合物

通过在研磨机中混合2721.6份(干燥基为2049.4份)氧化铝粉末和594.3份(干燥基为563.5份)精细研磨的氧化铝、氧化钼和氧化镍粉末与539.1份七钼酸铵(27% MoO

下表1呈现了本发明催化剂和对比催化剂的孔结构性质。

表1—本发明和对比催化剂的孔结构性质

*总孔体积(TPV)

实施例II

该实施例II描述了对比催化剂和本发明催化剂的性能测试的条件以及性能测试的结果。

在2阶段CSTR中试装置中测试催化剂。进料的性质汇总于表2中,并且工艺条件呈现于表3中。

表2—用于评价催化剂的进料的性质

表3—用于评价催化剂的工艺条件

本发明催化剂的性能相对于对比催化剂(基础)的性能汇总在表4中。

表4—催化剂的相对性能

表4中呈现的性能结果的回顾显示出本发明催化剂的转化和脱硫催化性能优于对比催化剂的转化和脱硫催化性能。与对比催化剂相比,本发明催化剂进一步提供了沉淀物产率的巨大改善(即,沉淀物产率的降低)。本发明催化剂出乎意料地提供了由对比催化剂提供的65%的沉淀物产率。因此,与对比催化剂提供的相比,沉淀物产率降低35%。这些结果显示出,使用高分子量聚丙烯酰胺制备的具有其独特孔结构和高大孔隙度的本公开的催化剂出乎意料地提供了低沉淀物产率,同时提供了转化和脱硫方面的材料改善。

相关技术
  • 加氢保护催化剂及其制备方法和应用以及烃油加氢处理方法
  • 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法
  • 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法
技术分类

06120115936564