掌桥专利:专业的专利平台
掌桥专利
首页

一种可自诊断的压电PVDF纤维膜增强复合材料的制备方法

文献发布时间:2023-06-19 09:33:52


一种可自诊断的压电PVDF纤维膜增强复合材料的制备方法

技术领域

本发属于功能性复合材料制备的技术领域,特别涉及一种压电PVDF静电纺丝膜增强复合材料实现在线监测材料结构健康的方法。

背景技术

随着复合材料在航空航天、体育休闲和工业应用的大幅增加,复合材料在使用的过程中不可避免地会形成各种缺陷,小至微孔裂纹大至开裂破坏,为了满足复合材料结构的高安全性、高可靠性、高质量的要求,对复合材料有效、及时地监测显得尤为重要。然而,绝大多数复合材料的内部缺陷都是目不可测的,这使得人工检查的过程耗时费力并且存在一定的漏检率和错误率。而实现复合材料的在线监测能够带来的最大优势就是速度和效率的提升,同时会带来额外的成本节省和潜在的质量提升,因此,发展先进可靠且实时的复合材料检测技术的重要性和意义不言而喻。

而压电聚合物具有合理的压电性,对电压变化敏感且阻抗低,它们在气体、液体和生物传感器中得到了广泛的应用。通俗来说,压电效应就是指对压电材料施加压力,便会使其产生电位差(称之为正压电效应);反之施加电场,则产生机械应力(称之为逆压电效应)。从能量角度说,在一些材料中,存在机械能与电能的互相转换现象。因而,压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。其中,聚偏氟乙烯(PVDF)由于具有突出的压电效应而被广泛应用。它与传统的压电材料(石英晶体、钛酸钡、压电陶瓷等)相比,具有重量轻、柔软性好、频率响应宽和动态响应范围大等特点,且经过拉伸和极化处理之后,PVDF薄膜显示出高聚物当中最强的压电特性。近年来,PVDF压电薄膜在多领域得到了广泛的应用,包括智能服装、能源、医疗、传感器等领域。而静电纺丝技术是近十几年来世界材料科学技术领域的最重要的学术与技术活动之一,以其制造装置简单、纺丝成本低廉、可纺的物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。它一种通过给聚合物溶液或熔体施加一个外加电场,使聚合物溶液或熔体首先在喷射孔处形成“Taylor”圆锥形液滴,当电场力克服了液滴的表面张力后,形成喷射流并在静电场中进一步拉伸、变形、细化,伴随着溶剂蒸发,最后固化在接收板上得到纤维或其他形状的物质,且静电纺丝制备的PVDF纳米纤维压电薄膜现在,已经有近百种天然高分子和合成聚合物通过静电纺丝技术被制成了纳米纤维,其应用范围涉及过滤材料、生物医药材料、组织工程支架及催化剂载体材料、航天器材和光电器件等多个领域。因此,静电纺丝制备的PVDF纳米纤维压电薄膜具有压电效应强、不需要额外的极化就能使材料具备压电效应、制备工艺方便、柔软透气性好和成本低等优点;制备纳米纤维膜具有操作简单、成本低、可设计性强等特点,通过与碳纤维布混合铺层制成层合复合材料,可制备出兼具优良压电性能和力学性能的复合材料,该复合材料可快速、有效、在线监测复合材料微裂纹及破坏。

发明内容

本发明目的是以静电纺丝技术为基础,提供一种可自诊断的压电PVDF纤维膜增强复合材料的制备方法,该方法操作简单,参数易于控制,所制备材料兼备良好的力学和优良的压电性能,能够主动、有效、快速、实时地监测出复合材料中的缺陷。

本发明提供的技术方案如下:

一种可自诊断的压电PVDF纤维膜增强复合材料的制备方法,依次包括以下步骤:

(1)在一定的温度与湿度下,将超高分子量PVDF粉末溶解在N-N二甲基甲酰胺(DMF)溶剂中,得到聚合物溶液,将所述聚合物溶液放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时,得到浓度为12-14wt%PVDF静电纺丝溶液;

(2)将步骤(1)中制备的PVDF静电纺丝溶液使用注射器吸取5mL,选取所需针头直径的针头,并安装在注射器上,将注射器固定至静电纺丝设备的注射泵上,注射针头连接至高压直流电源的正极,接收滚筒上覆盖油纸并与高压直流电源负极相连;

(3)将步骤(2)所准备的PVDF静电纺丝溶液在一定纺丝条件下进行静电纺丝,通过转轴电机控制接收滚筒在转动的同时左右平移运动,使接收到的PVDF纳米纤维在滚筒上均匀分布,获得厚度分布均匀的PVDF纳米纤维膜;

(4)将步骤(3)所制备的PVDF纳米纤维膜进行剪裁与烘干,然后利用电化学工作站记录所述PVDF纳米纤维膜的压电输出信号;

(5)将步骤(4)处理过后的有压电输出信号的PVDF纳米纤维膜与碳纤维预浸料铺层固化制备成复合材料,复合材料为层合结构,所述PVDF纳米纤维膜均匀分布于所述碳纤维布层与层之间;

(6)采用万能试验机在三点弯曲模式下对复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料的压电输出信号。

进一步的,所述步骤(1)中的温度为:22-28℃,湿度为:40-50%。

进一步的,所述步骤(2)中针头直径为0.9mm。

进一步的,所述步骤(3)中纺丝条件设置如下:电压20-28KV,接收距离16-18cm,流速0.5-1.0mL/h,接收方式为滚筒接收,滚筒转速800rpm。

进一步的,所述步骤(4)中纤维膜烘干工序参数设置为50-60℃下烘1-2h。

进一步的,所述步骤(5)中固化方式为压机热压。

与现有技术相比该装置的有益效果如下:

(1)制备的压电PVDF纳米纤维膜增强复合材料,不需要额外的极化就能使材料具备压电效应,制备方法操作简单、成本低、参数易于控制;

(2)可实现大面积复合材料的在线监测,主动、有效、快速、实时地监测复合材料目不可测的缺陷及破坏;

(3)PVDF纳米纤维膜均匀分布于纤维布层与层之间,纳米纤维的纳米尺寸效应可改善层与层之间的界面性能,提高材料抗分层能力,使制成的层合复合材料兼备良好的压电信号和力学性能;

(4)可有效减少人工检查过程的耗时费力以及漏检率和错误率。

附图说明

图1为本发明压电PVDF静电纺丝膜增强复合材料结构示意图。

图2为实施例1中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线。

附图中,各标号所代表如下:1、碳纤维布,2、PVDF纳米纤维膜。

具体实施方式

下面结合具体的实施例,对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的一部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面结合附图和具体实施方式对本发明作进一步的说明。

实施例1

(1)在室温下,称取0.8g聚偏氟乙烯(PVDF)粉末加入盛有5.866gN-N二甲基甲酰胺(DMF)的密封瓶中,室温下加入搅拌转子放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时得到浓度为12wt%的PVDF静电纺丝溶液;

(2)将步骤(1)所制备的纺丝液使用注射器吸取5mL,选用直径为0.9mm的针头,设置纺丝条件为:电压20KV,接收距离15cm,流速1mL/h,接收方式为滚筒接收,滚筒转速800rpm;进行静电纺丝,获得PVDF纳米纤维膜;

(3)将步骤(2)中获得的PVDF纳米纤维膜裁剪并标记试样后将样品放在恒温烘箱中烘干,纤维膜烘干工序设置为60℃下烘2h。

(4)将步骤(3)中处理过后的PVDF纳米纤维膜利用电化学工作站记录材料的压电输出信号为852±32mV。

(5)将步骤(4)得到的PVDF纳米纤维膜与碳纤维布铺层,利用压机热压固化制备成复合材料,采用万能试验机在三点弯曲模式下对压电复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料压电输出信号。

本例中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线如图2所示。由图2我们可以看到在复合材料未发生损伤前(弹性变形阶段Ⅰ),材料的输出电压呈现出微弱的平稳上升状态;随着压力的继续增加,材料内部开始发生破坏(阶段Ⅱ,载荷曲线开始波动),此时电压呈现出大幅度波动上升趋势;当电压与载荷同时突然下降,说明材料发生了完全破坏。从电压与载荷随时间变化的趋势可反应材料的受损情况,即利用简单、快速的方法实现了整个复合材料在外部载荷作用下结构变化的在线监测。

实施例2

(1)在室温下,称取0.8g聚偏氟乙烯(PVDF)粉末加入盛有5.866gN-N二甲基甲酰胺(DMF)的密封瓶中,室温下加入搅拌转子放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时得到浓度为12wt%的PVDF静电纺丝溶液;

(2)将步骤(1)所制备的纺丝液使用注射器吸取5mL,选用直径为0.9mm的针头,设置纺丝条件为:电压20KV,接收距离15cm,流速0.5mL/h,接收方式为滚筒接收,滚筒转速800rpm;进行静电纺丝,获得PVDF纳米纤维膜;

(3)将步骤(2)中获得的PVDF纳米纤维膜裁剪并标记试样后将样品放在恒温烘箱中烘干,纤维膜烘干工序设置为60℃下烘2h。

(4)将步骤(3)中处理过后的PVDF纳米纤维膜利用电化学工作站记录材料的压电输出信号为763±12mV。

(5)将步骤(4)得到的PVDF纳米纤维膜与碳纤维布铺层,利用压机热压固化制备成复合材料,采用万能试验机在三点弯曲模式下对压电复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料压电输出信号。

实施例2中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线趋势与实施例1基本一致。

实施例3

(1)在室温下,称取0.8g聚偏氟乙烯(PVDF)粉末加入盛有5.866gN-N二甲基甲酰胺(DMF)的密封瓶中,室温下加入搅拌转子放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时得到浓度为12wt%的PVDF静电纺丝溶液;

(2)将步骤(1)所制备的纺丝液使用注射器吸取5mL,选用直径为0.9mm的针头,设置纺丝条件为:电压20KV,接收距离15cm,流速1mL/h,接收方式为滚筒接收,滚筒转速800rpm;进行静电纺丝,获得PVDF纳米纤维膜;

(3)将步骤(2)中获得的PVDF纳米纤维膜裁剪并标记试样后将样品放在恒温烘箱中烘干,纤维膜烘干工序设置为60℃下烘2h。

(4)将步骤(3)中处理过后的PVDF纳米纤维膜利用电化学工作站记录材料的压电输出信号为852±32mV。

(5)将步骤(4)得到的PVDF纳米纤维膜与碳纤维布铺层,利用压机热压固化制备成复合材料,采用万能试验机在三点弯曲模式下对压电复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料压电输出信号。

实施例3中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线趋势与实施例1基本一致。

实施例4

(1)在室温下,称取0.8g聚偏氟乙烯(PVDF)粉末加入盛有5.314gN-N二甲基甲酰胺(DMF)的密封瓶中,室温下加入搅拌转子放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时得到浓度为14wt%的PVDF静电纺丝溶液;

(2)将步骤(1)所制备的纺丝液使用注射器吸取5mL,选用直径为0.9mm的针头,设置纺丝条件为:电压24KV,接收距离15cm,流速1mL/h,接收方式为滚筒接收,滚筒转速800rpm;进行静电纺丝,获得PVDF纳米纤维膜;

(3)将步骤(2)中获得的PVDF纳米纤维膜裁剪并标记试样后将样品放在恒温烘箱中烘干,纤维膜烘干工序设置为60℃下烘2h。

(4)将步骤(3)中处理过后的PVDF纳米纤维膜利用电化学工作站记录材料的压电输出信号为621±25mV。

(5)将步骤(4)得到的PVDF纳米纤维膜与碳纤维布铺层,利用压机热压固化制备成复合材料,采用万能试验机在三点弯曲模式下对压电复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料压电输出信号。

实施例4中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线趋势与实施例1基本一致。

实施例5

(1)在室温下,称取0.8g聚偏氟乙烯(PVDF)粉末加入盛有5.314gN-N二甲基甲酰胺(DMF)的密封瓶中,室温下加入搅拌转子放置于磁力搅拌器上搅拌3-4小时,待PVDF粉末完全溶解之后静置0.5小时得到浓度为14wt%的PVDF静电纺丝溶液;

(2)将步骤(1)所制备的纺丝液使用注射器吸取5mL,选用直径为0.9mm的针头,设置纺丝条件为:电压24KV,接收距离15cm,流速0.5mL/h,接收方式为滚筒接收,滚筒转速800rpm;进行静电纺丝,获得PVDF纳米纤维膜;

(3)将步骤(2)中获得的PVDF纳米纤维膜裁剪并标记试样后将样品放在恒温烘箱中烘干,纤维膜烘干工序设置为60℃下烘2h。

(4)将步骤(3)中处理过后的PVDF纳米纤维膜利用电化学工作站记录材料的压电输出信号为547±22mV。

(5)将步骤(4)得到的PVDF纳米纤维膜与碳纤维布铺层,利用压机热压固化制备成复合材料,采用万能试验机在三点弯曲模式下对压电复合材料进行弯曲加载,并利用电化学工作站记录所述复合材料压电输出信号。

实施例5中压电PVDF静电纺丝膜增强复合材料的载荷和电压随时间的变化曲线趋势与实施例1基本一致。

技术分类

06120112212717