掌桥专利:专业的专利平台
掌桥专利
首页

一种晶须增韧氧化锆陶瓷及其制备方法

文献发布时间:2023-06-19 10:57:17


一种晶须增韧氧化锆陶瓷及其制备方法

技术领域

本发明涉及陶瓷基复合材料技术领域,具体涉及一种晶须增韧氧化锆陶瓷及其制备方法。

背景技术

随着5G时代的到来,通讯宽度越来越高,原来的金属背板因为信号屏蔽,已经不能满足手机背板的要求,5G手机的背板可选择范围只要塑料、陶瓷增强塑料、玻璃、陶瓷几种选择。然而塑料手感差,散热差,只能适用于低端机型。玻璃比塑料质感稍好,色彩丰富,但强度、硬度等性能与陶瓷相比,还是差了一筹。氧化锆陶瓷手感好,同时也可以制备丰富的色彩,在所有材质中强度最高,硬度也最高,是高端顶配机型的首选,当下各高端机型的顶配版都是氧化锆陶瓷背板。虽然氧化锆陶瓷的抗弯强度可以达到1000MPa以上,断裂韧性10PMa以上,抗摔性能比玻璃高很多,但仍然不能达到无论怎么摔都不碎裂的效果。采用纤维/晶须增韧氧化锆陶瓷是一个比较理想的选择,但纤维/晶须增韧技术本身也并不成熟,由于各种氧化物陶瓷纤维/晶须在烧结的时候都会与氧化锆基体材料反应形成新的晶体,纤维/晶须与基体材料二次烧结,失去了增韧效果,目前对氧化物陶瓷的各项研究都集中在了采用氮化硅和碳化硅晶须/短纤增韧,但是氮化硅和碳化硅晶须价格达到1200元人民币/克以上,价格十分不亲民,无法大范围推广应用。要使得纤维/晶须增韧技术真正用于氧化锆陶瓷,必须解决以下两个问题的任意一个:全新的工艺能大幅降低氮化硅晶须或者氮化硅晶须的价格,或者解决氧化物纤维/晶须与氧化锆陶瓷烧结反应的问题。显然要大幅降低氮化硅晶须或者氮化硅晶须非一朝一夕的事情,解决氧化物纤维/晶须与氧化锆陶瓷烧结反应的问题是最行之有效的方法。

发明内容

针对现有技术的不足,本发明旨在提供一种晶须增韧氧化锆陶瓷及其制备方法,减少氧化物晶须与氧化锆陶瓷基体产生二次烧结反应,避免产生烧结物,且可大幅度提高氧化锆陶瓷纤维的强度和韧性。

本发明采用如下技术方案:

一种晶须增韧氧化锆陶瓷,包括氧化锆陶瓷基体、晶须以及设置于所述晶须表面的增韧层;所述增韧层可以是均匀组分的单一界面层,也可以是多种成分的复合界面层,其成分包括Si

作为优选的方案,所述晶须的成分包括氧化铝、氧化锆、莫来石、玄武岩、石英氧化物陶瓷的一种或者多种。

作为优选的方案,所述氧化锆的成分为无机非金属稳定的氧化锆。

作为优选的方案,所述无机非金属稳定的氧化锆为钇稳定氧化锆、钙稳定氧化锆、镁稳定氧化锆的一种或多种。

作为优选的方案,所述氧化锆陶瓷基体中锆的质量百分比大于37wt%。

一种晶须增韧氧化锆陶瓷的制备方法,包括以下步骤:

(1)将所述晶须制成氧化物短纤,对所述氧化物短纤进行预处理,所述预处理步骤包括酸洗、超声清洗和烘干;

(2)对预处理后的氧化物短纤采用化学气相沉积方法或浸渍与反应沉积方法制备增韧层;

(3)取2份已制备增韧层的所述氧化物短纤,98份氧化锆陶瓷基体,均匀混合制备成陶瓷流延浆料;

(4)通过注射成型的方法或流延、叠层、等静压和排胶的工序制备成氧化锆陶瓷样条;

(5)将所述氧化锆陶瓷样条烧结。

作为优选的方案,所述氧化锆短纤对长径比为20:1-30:1。

本发明的有益效果在于:

(1)本发明的创新性在于采用了便宜的耐火材料纤维或者其他氧化物陶瓷纤维,大大降低了生产成本,可广泛使用;本发明通过特殊的界面制备工艺设计了与氧化锆陶瓷基体反应不活跃的界面层。

(2)本发明通过特殊的界面制备工艺在晶须表面制备了致密的、与氧化锆陶瓷基体反应不活跃的氮化物、碳化物或石墨增韧界面层,其界面层成分根据陶瓷的颜色和烧结气氛来选择,例如白色选用BN(氮化硼)界面层,黑色选择SiC(碳化硅)、石墨、Si

(3)本发明中所述的晶须增韧增强的氧化锆陶瓷其应用领域广阔,不限于手机背板、智能穿戴结构件及外观件、电子烟结构件及外观件等范围。

附图说明

图1为本发明的整体示意图;

图2为已制备增韧层的晶须的示意图;

图3本发明的制备方法流程图。

具体实施方式

以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。

在本实施例中,如图1所示,一种晶须增韧氧化锆陶瓷,包括氧化锆陶瓷基体1、晶须3以及设置于所述晶须3表面的增韧层2;所述增韧层2可以是均匀组分的单一界面层,也可以是多种成分的复合界面层,其成分包括Si

本实施例中,所述晶须3的成分包括氧化铝、氧化锆、莫来石、玄武岩、石英氧化物陶瓷的一种或者多种。

更进一步地,所述氧化锆的成分为无机非金属稳定的氧化锆,可选地具有钇稳定氧化锆、钙稳定氧化锆、镁稳定氧化锆的一种或多种。

更进一步地,所述氧化锆陶瓷基体1中锆的质量百分比大于37wt%。

如图2所示,在本实施例中,一种晶须增韧氧化锆陶瓷的制备方法,包括以下步骤:

(1)将所述晶须制成氧化物短纤,对所述氧化物短纤进行预处理,所述预处理步骤包括酸洗、超声清洗和烘干;

(2)对预处理后的氧化物短纤采用化学气相沉积或浸渍与反应沉积方法制备增韧层;

(3)取2份已制备增韧层的所述氧化物短纤,98份氧化锆陶瓷基体,均匀混合制备成陶瓷流延浆料;

(4)通过注射成型的方法或流延、叠层和静压的工序制备成氧化锆陶瓷样条;

(5)将所述氧化锆陶瓷样条烧结。

需要说明的是,所述注射成型工艺包括注射-冷却-脱模,将陶瓷流延浆料通过注射机器的压力,用一定的速度注入模具内,模具通过水道冷却将陶瓷流延浆料固化而得到氧化锆陶瓷样条;所述流延、叠层、等静压和排胶工序对陶瓷流延浆料进行流延制成薄膜,再切割成许多小片进行叠层,进行等静压后排胶而得到氧化锆陶瓷样条,再进行烧结。

优选地,所述氧化物短纤长径比为20:1-30:1。

实施例1

本实施例中,所述晶须制成氧化锆短纤,增韧层成分为SiC。

具体实施步骤如下:

(1)对长径比为20:1-30:1的氧化锆短纤进行预处理,预处理步骤包括酸洗、超声清洗和烘干;

(2)以聚碳硅烷为前驱体,对进行预处理后的氧化锆短纤通过化学气相沉积方法制备SiC增韧层,所得增韧层厚度为5-10μm;

(3)取2份已制备增韧层的氧化锆短纤,98份黑色氧化锆陶瓷粉体(XRF测得氧化锆的比例为94.65wt%),均匀混合制备成陶瓷喂料,通过注射成型制得氧化锆陶瓷样条,再经过1350℃烧结,得到短纤增韧黑色氧化锆陶瓷,测试其密度为5.98g/cm,抗弯强度为1350MPa,对照组的抗弯强度为980MPa。

实施例2

本实施例与实施例1的不同之处在于,所述晶须制成氧化铝短纤,增韧层成分为BN。

具体实施步骤如下:

(1)对长径比为20:1-30:1的氧化铝短纤进行预处理,预处理步骤包括酸洗、超声清洗和烘干;

(2)对进行预处理后的氧化铝短纤通过浸渍、反应沉积等流程制备BN增韧层,所得增韧层厚度为5-8μm;

(3)取2份已制备增韧层的氧化铝短纤,98份白色氧化锆陶瓷粉体(XRF测得氧化锆的比例为94.65wt%),均匀混合制备成陶瓷流延浆料,通过流延、叠层、等静压和排胶等工序,制备氧化锆陶瓷样条,再在氮气气氛经过1400℃烧结,得到短纤增韧白色氧化锆陶瓷,测试其密度为6.02g/cm,抗弯强度为1460MPa,对照组的抗弯强度为1070MPa。

综上所述,本发明的晶须增韧陶瓷材料采用了成本较为便宜的氧化物晶须,然后通过上述制备方法在氧化物晶须表面制备了致密的氮化物、碳化物或石墨增韧界面层,其界面层成分根据陶瓷的颜色和烧结气氛来选择,从而解决了便宜的氧化物晶须与氧化锆陶瓷基体产生二次烧结反应的问题,降低生产成本。

根据烧结后的成品测试,本发明的陶瓷材料具有比对照组高的抗弯强度,其韧性得到提升。

对于本领域的技术人员来说,可以根据以上的技术方案和构思,给出各种相应的改变和变形,而所有的这些改变和变形,都应该包括在本发明权利要求的保护范围之内。

相关技术
  • 一种硅化钼晶须增韧氧化锆陶瓷手机背板的制备方法
  • 一种硅化钼晶须增韧氧化锆陶瓷手机背板的制备方法
技术分类

06120112746570