掌桥专利:专业的专利平台
掌桥专利
首页

四管制风冷热泵机组及其控制方法

文献发布时间:2024-01-17 01:13:28


四管制风冷热泵机组及其控制方法

技术领域

本申请涉及热泵空调领域,特别是四管制风冷热泵机组及其控制方法。

背景技术

目前市面上四管制的风冷热泵机组越来越多,但普遍存在冬季制冷+热水模式运行时,当环境温度低于压缩机吸气饱和温度时,制冷剂会向翅片盘管内迁移,导致参与工作的制冷剂循环量减少,机组蒸发温度明显下降,影响机组的运行效率,严重时还会影响机组运行的可靠性。

针对上述问题,现有技术多采用阀门来控制制冷剂向翅片盘管的迁移,具体解决方法如下,解决方法一:在四通阀与翅片盘管连接管上设置电动球阀,制冷+热水模式下,将电动球阀关闭,防止制冷剂从气液分离器经四通阀迁移至翅片盘管内。解决方法二:在四通阀与气液分离器连接管上设置单向阀,当气液分离器内压力高于翅片盘管内压力时,阻隔制冷剂的迁移,例如本申请人的在先申请申请公开号:CN113446756A。但是上述解决方案只能一定程度上阻隔制冷剂往翅片盘管迁移,而且其无法做到将已经积存在翅片盘管内的制冷剂赶回制冷系统参与循环。此外,对于上述的解决方法二,单制热水模式下,低压回气经过单向阀时可能会引起压力损失,进而影响压缩机性能。

发明内容

针对现有技术存在的技术问题,本申请提出了四管制风冷热泵机组及其控制方法,所述热泵机组运行效率高且可靠性好。

一方面,本申请提出了四管制风冷热泵机组,包括压缩机1、四通阀2、翅片盘管3、热水侧换热器9、冷水侧换热器7、三通阀12、第一电子膨胀阀6、第二电子膨胀阀13、气液分离器8,所述翅片盘管3包括进风侧的第一换热回路和出风侧的第二换热回路,第二换热回路的换热面积为第一换热回路的1.5-5倍;所述压缩机1出口与四通阀2的接口D相连,四通阀2的接口C与热水侧换热器9相连,四通阀2的接口E与翅片盘管3的第二换热回路一端相连,所述气液分离器8设有两个进口和一个出口,两个进口之一与四通阀2的接口S连接,另一个进口与冷水侧换热器7出口连接,气液分离器8的出口与压缩机1进口连接;所述热水侧换热器9与三通阀12接口A相连,三通阀12接口B与翅片盘管3的第一换热回路一端相连,第一换热回路另一端与三通阀12接口C并接后分别与第一电子膨胀阀6、第二电子膨胀阀13连接;第一电子膨胀阀6与冷水侧换热器7进口连接,第二电子膨胀阀13与第二换热回路另一端连接且两者间还设有旁路与第一电子膨胀阀6相连;不同运行模式时,第一换热回路、第二换热回路择一作为室外换热器。

特别的,所述热水侧换热器9出口设置有第二单向阀10,第二单向阀10出口与储液器11相连,储液器11与三通阀12接口A相连。

特别的,所述第一换热回路与三通阀12接口C并接后与干燥过滤器5连接,干燥过滤器5出口分别与第一电子膨胀阀6、第二电子膨胀阀13连接。

特别的,所述旁路中设有单向阀4,第一换热回路出口与三通阀12接口C、第一单向阀4出口并接后连接至干燥过滤器5进口。

特别的,所述三通阀12为电动三通阀。

另一方面,本申请提出了四管制风冷热泵机组制冷+热水模式的控制方法,所述四管制风冷热泵机组如上所述,当热泵机组采用制冷+热水模式运行时,所述四通阀2不得电,三通阀12接口A与接口B导通,第二电子膨胀阀13关闭,第一电子膨胀阀6导通;所述压缩机1排出高温高压气体经四通阀2接口D、接口C进入热水侧换热器9,将冷凝过程中产生的热量排放给热水对其进行升温加热后被冷凝成高压液体,高压液体制冷剂后经三通阀12流经翅片盘管3的第一换热回路,后至第一电子膨胀阀6节流降压为低温低压气液两相制冷剂后进入冷水侧换热器7,制冷剂从流经冷水侧换热器7的冷冻水中吸热并将其降温,制冷剂蒸发换热后经气液分离器8回到压缩机吸气口,往复循环。

特别的,当冷水侧负荷需求较大而热水侧负荷需求相对较小时,可以适当开启翅片盘管3的换热风扇,对流经翅片盘管3靠近出风侧的第一换热回路的高压液态制冷剂进行换热以提高其过冷度,提升机组制冷量,平衡冷热负荷,减少机组的模式频繁切换。

第三方面,本申请提出了四管制风冷热泵机组热水模式的控制方法,所述四管制风冷热泵机组如上所述,当机组采用单热水模式运行时,所述四通阀2不得电,三通阀12流通方向为A到C,第一电子膨胀阀6关闭,第二电子膨胀阀13导通;所述压缩机1排出的高温高压气体经四通阀2进入热水侧换热器9将热量排放给热水对其进行升温加热,制冷剂被冷凝成带一定过冷度的高压液体,后经三通阀12流至第二电子膨胀阀13被节流成低温低压气液两相制冷剂,后流入翅片盘管3的第二换热回路,蒸发换热成低压气体后经四通阀2流经气液分离器8后回到压缩机吸气口,如此往复循环。

第四方面,本申请提出了9.四管制风冷热泵机组制冷模式的控制方法,所述四管制风冷热泵机组如上所述,当机组采用单制冷模式运行时,四通阀2得电,第二电子膨胀阀13关闭,第一电子膨胀阀6工作,三通阀12流通方向无要求;所述压缩机1排出高温高压气体经四通阀2进入翅片盘管3的第二换热回路,将热量排放至大气后,制冷剂冷凝换热成高压液体,后流经第二电子膨胀阀13与第二换热回路间的旁路至第一电子膨胀阀6,节流成低温低压气液两相制冷剂后流入冷水侧换热器7,并从流经冷水侧换热器7的冷冻水中吸热,并将冷冻水降温后,制冷剂蒸发换热成低压过热气体,后经气液分离器8回到压缩机吸气口,往复循环。

特别的,当该机组在环境温度低于-10℃且热水侧设定水温已经达到或热水侧无热水需求时,关闭进出热水侧换热器9的热水流量,四通阀2失电即流向为D接口至C接口,三通阀12流向切换至从A接口到B接口,压缩机1排出的高温高压气态制冷剂只在翅片盘管3换热面积较小的第一换热回路内进行放热冷凝,冷凝器内压力得到提升,机组在超低温下的单制冷运行可靠性得到保障。

在符合本领域常识的基础上,上述各优选条件可任意组合,即得本申请各优选实例。

上述技术方案具有如下优点或有益效果:本申请的四管制风冷热泵机组,可根据环境及工况的需求,通过使用不同的翅片盘管换热回路,当环境温度低于压缩机吸气饱和温度时,翅片盘管内仍不会积存制冷剂,可使尽可能多的制冷剂参与到制冷系统的循环,防止因参与工作的制冷剂循环量减少而导致机组蒸发温度明显下降。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1是根据本申请的一种四管制风冷热泵机组的结构示意图。

图2是根据本申请的翅片盘管的结构示意图。

其中,1-压缩机;2-四通阀;3-翅片盘管;30-第一换热管;31-铝箔;32-端板;33-笛型进液管;311-进液接口;34-笛型中间液管;35-笛型出液管;312-出液接口;36-分配器组件;322-含液侧接口;313-毛细分液管;37-弯头;38-集气管;39-第二换热管;4-第一单向阀;5-干燥过滤器;6-第一电子膨胀阀;7-冷水侧换热器;8-气液分离器;9-热水侧换热器;10-第二单向阀;11-储液器;12-三通阀;13-第二电子膨胀阀。

具体实施方式

下面结合本申请的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,旨在用于解释发明构思。基于本申请的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

描述所用术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“多个”的含义是两个或两个以上,除非另有明确具体的限定。

除非另有明确的规定和限定,描述所用术语“相连”、“连通”等应做广义理解,例如,可以是固定连接、可拆卸连接,或成一体;可以是机械连接、电连接;可以是直接相连、通过中间媒介间接相连;可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在实施例中的具体含义。

描述所用术语“一个具体实施例”意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

参考图1,本申请的一个具体实施例公开了一种四管制风冷热泵机组,所述热泵机组包括压缩机1、四通阀2、翅片盘管3、热水侧换热器9、冷水侧换热器7、三通阀12、第一电子膨胀阀6、第二电子膨胀阀13、气液分离器8,所述三通阀12优选为电动三通阀。

所述压缩机1出口与四通阀2的接口D相连,四通阀2的接口C与热水侧换热器9相连,四通阀2的接口E与翅片盘管3相连,所述气液分离器8设有两个进口和一个出口,气液分离器8两个进口之一与四通阀2的接口S连接,另一个进口与冷水侧换热器7的出口连接,气液分离器8的出口与压缩机1进口连接。

参考图2,本申请的一个具体实施例公开了一种四管制风冷热泵机组的翅片盘管,所述翅片盘管3包括端板32和铝箔31组成的壳体,壳体一侧设换热风扇,壳体内进风侧设有第一换热管30,壳体内出风侧设有第二换热管39。笛型进液管33与若干第一换热管30、笛型中间液管34及笛型出液管35依次串联组成第一换热回路,其中笛型进液管33的进液接口311与三通阀12接口B相连,笛型出液管35的出液接口312与三通阀12接口C、第一单向阀4出口并接后连接至干燥过滤器5进口。第二换热管39与弯头37连接成组,分配器组件36与若干毛细分液管313、成组的第二换热管39、集气管38串联组成第二换热回路,其中集气管38的气侧接口321连接至四通阀2接口E,分配器组件36的含液侧接口322分别与第二电子膨胀阀13和第一单向阀4进口连接。所述第一换热回路为面积较小的辅换热区,所述第二换热回路为面积较大的主换热区,优选的,主换热区换热面积为辅换热区的1.5-5倍,最优选的为2-3倍。

所述热水侧换热器9出口设置有第二单向阀10,第二单向阀10出口与储液器11相连,储液器11与三通阀12接口A相连,三通阀12接口B与翅片盘管3的第一换热回路的一端相连,第一换热回路的另一端与三通阀12接口C、第一单向阀4出口并接后连接至干燥过滤器5的进口。

当机组采用制冷+热水模式运行时,所述四通阀2不得电,三通阀12接口A与接口B导通,第二电子膨胀阀13关闭,第一电子膨胀阀6导通。

当机组采用制冷+热水模式运行时,制冷剂流程及其换热情况如下:所述压缩机1排出高温高压气体经四通阀2接口D、接口C进入热水侧换热器9,将冷凝过程中产生的大量热量排放给热水对其进行升温加热后被冷凝成高压液体。高压液体制冷剂后经第二单向阀10流入储液器11,高压液态制冷剂再经三通阀12流经翅片盘管3的第一换热回路、干燥过滤器5至第一电子膨胀阀6,节流降压为低温低压气液两相制冷剂后进入冷水侧换热器7,制冷剂从流经冷水侧换热器7的冷冻水中吸热并将其降温,制冷剂蒸发换热成低压过热气体,后经气液分离器8回到压缩机吸气口,往复循环。

当环境温度低于压缩机吸气饱和温度时,通过高压液态制冷剂流经翅片盘管3并对其加热,不但可以防止系统中制冷剂通过气液分离器8迁移至翅片盘管3内,还可对积存在翅片盘管3第二换热管内的制冷剂加热以迁移至压力相对较低的气液分离器8内,使这些制冷剂参与制冷循环。进一步的,当冷水侧负荷需求较大而热水侧负荷需求相对较小时,可以适当开启翅片盘管3的换热风扇,对流经翅片盘管3的第一换热回路的高压液态制冷剂进行换热以提高其过冷度,提升机组制冷量,平衡冷热负荷,减少机组的模式频繁切换。

当机组采用单热水模式运行时,所述四通阀2不得电,三通阀12流通方向为A到C,第一电子膨胀阀6关闭,第二电子膨胀阀13导通。

当机组采用单热水模式运行时,制冷剂流程及其换热情况如下:所述压缩机1排出的高温高压气体经四通阀2进入热水侧换热器9将大量热量排放给热水对其进行升温加热,制冷剂被冷凝成带一定过冷度的高压液体后经第二单向阀10流入储液器11,再经三通阀12流经干燥过滤器5至第二电子膨胀阀13,节流成低温低压气液两相制冷剂后流入翅片盘管3的第二换热回路蒸发换热成低压气体,再经四通阀2流经气液分离器8后回到压缩机吸气口,如此往复循环。

当冬季气温较低,由单热水模式切换至制冷+热水模式时,若翅片盘管上有轻微结霜残留,流经翅片盘管3第一换热回路的高压液态冷媒可对翅片盘管表面进行加热并融化霜层,减少单制热水模式下的化霜频率,提高制热运行效率。

当机组采用单制冷模式运行时,四通阀2得电,第二电子膨胀阀13关闭,第一电子膨胀阀6工作,三通阀12流通方向无要求。

当机组采用单制冷模式运行时,制冷剂流程及其换热情况如下:所述压缩机1排出高温高压气体经四通阀2进入翅片盘管3,将热量排放至大气后,制冷剂冷凝换热成高压液体,后流经第一单向阀4至干燥过滤器5,后至第一电子膨胀阀6,节流成低温低压气液两相制冷剂后流入冷水侧换热器7,并从流经冷水侧换热器7的冷冻水中吸热,并将冷冻水降温后,制冷剂蒸发换热成低压过热气体,后经气液分离器8回到压缩机吸气口,往复循环。

进一步的,当该机组在冬季环境温度低于-10℃甚至需要更低环境温度下制冷,而热水侧设定水温已经达到或热水侧无热水需求时,此时单制冷模式下由于翅片盘管换热太好无法维持足够冷凝压力,机器可能出现低压报警停机时可以做如下操作:关闭进出热水侧换热器9的热水流量,四通阀2失电即流向由D接口至E接口切换到D接口至C接口,三通阀12流向切换至从A接口到B接口。此时压缩机1排出的高温高压气态制冷剂只在翅片盘管3换热面积较小的第一换热回路内进行放热冷凝,冷凝器内压力得到提升,机组在超低温下的单制冷运行可靠性得到保障。

尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制。在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。

技术分类

06120116062611