掌桥专利:专业的专利平台
掌桥专利
首页

接合结构体

文献发布时间:2023-06-19 12:24:27


接合结构体

技术领域

本发明涉及一种接合结构体。

本申请主张基于2019年3月22日在日本申请的专利申请2019-055366号的优先权,并将其内容援用于此。

背景技术

作为用于安装LED芯片、功率模块等电子部件的基板之一,已知有金属基底基板。金属基底基板为依次层叠金属基板、绝缘层及电路层而成的层叠体。电路层形成为规定的电路图案,电子部件的电极端子在电路图案上通过焊料等导电性接合材料接合(专利文献1)。在设为这种结构的金属基底基板中,在电子部件产生的热通过绝缘层传递到金属基板,并从金属基板向外部散热。

将电子部件等具备电极端子的被接合部件与电路图案接合而成的接合结构体优选能够将在被接合部件产生的热有效地释放到外部,即散热性高。为了提高接合结构体的散热性,研究了提高导电性接合材料的导热系数(专利文献2~专利文献5)。

专利文献1:日本特开2014-103314号公报

专利文献2:日本特开2018-172792号公报

专利文献3:日本特开2018-168226号公报

专利文献4:日本特开2018-152176号公报

专利文献5:日本特开2016-204733号公报

随着近年来的电子设备的高容量化、高输出化而在接合结构体产生的热量趋于增加。然而,仅通过提高接合材料的导热系数来应对电子设备的进一步高容量化、高输出化是有限的。

发明内容

本发明是鉴于前述的情况而完成的,其目的在于提供一种将电子部件等具备电极端子的被接合部件与电路图案接合而成的接合结构体,该接合结构体能够提高散热性、即能够将在被接合部件产生的热有效地释放到外部。

为了解决上述课题,本发明的一方式的接合结构体(以下,称为“本发明的接合结构体”)是具有电路图案的基板与具备电极端子的被接合部件通过导电性接合材料接合而成,该接合结构体的特征在于,在将所述电路图案与所述导电性接合材料的接触面积设为X,将所述电极端子与所述导电性接合材料的接触面积设为Y,将所述导电性接合材料的导热系数设为λ时,满足下述式(1)。

SQRT(X)/SQRT(Y)≥2.9209×λ

在本发明的接合结构体中,电路图案与导电性接合材料的接触面积X、电极端子与导电性接合材料的接触面积Y及导电性接合材料的导热系数λ满足上述式(1)的关系,因此接合结构体的热阻减少。因此,能够将在被接合部件产生的热有效地释放到外部。

在此,在本发明的接合结构体中,所述被接合部件可以是LED芯片或功率模块。

此时,LED芯片及功率模块随着近年来的电子设备的高功能化、小型化而发热量增加,但是本发明的接合结构体的散热性高,因此即使被接合部件为LED芯片、功率模块,也显示优异的散热性,能够抑制由热引起的LED芯片及功率模块的劣化。

并且,在本发明的接合结构体中,所述导电性接合材料优选为选自银粒子、铜粒子、被锡包覆的铜粒子中的至少一种金属粒子的烧结体。

此时,导电性接合材料具有高导热性,因此能够更可靠地将在被接合部件产生的热有效地释放到外部。并且,金属粒子的烧结体即使在高温状态下也不会熔融,从而不具有流动性,因此能够稳定地固定被接合部件。

根据本发明,能够提供一种能够将在被接合部件产生的热有效地释放到外部的接合结构体。

附图说明

图1是本发明的一实施方式所涉及的接合结构体的概略剖视图。

图2是示意性地表示用于验证式(1)的模拟试验中所使用的接合结构体的剖视图。

图3是图2中所示的接合结构体的俯视图。

图4是表示模拟试验中所获得的SQRT(X)/SQRT(Y)与相对热阻的关系的曲线图。

图5是表示模拟试验中所获得的导电性接合材料的导热系数λ与接合结构体的相对热阻减少2%时的SQRT(X)/SQRT(Y)的关系的曲线图。

具体实施方式

以下,结合附图,对本发明的实施方式的接合结构体进行说明。

图1是本发明的一实施方式所涉及的接合结构体的概略剖视图。

在图1中,接合结构体1为金属基底基板10与被接合部件70接合而成的结构体。金属基底基板10为依次层叠金属基板20、绝缘层30及电路图案40而成的层叠体。被接合部件70具备电极端子71。金属基底基板10的电路图案40与被接合部件70的电极端子71通过导电性接合材料60而接合。

接合结构体1中,设为电路图案40与导电性接合材料60的接触面积X(单位:mm

SQRT(X)/SQRT(Y)≥2.9209×λ

在式(1)中,SQRT表示平方根。即,SQRT(X)/SQRT(Y)为电路图案40与导电性接合材料60的接触面积X的平方根与电极端子71与导电性接合材料60的接触面积Y的平方根之比。SQRT(X)/SQRT(Y)优选为100以下。

接合结构体1中,通过以满足上述式(1)的方式对导热系数λ的导电性接合材料60设定接触面积X和接触面积Y而使热阻减少,热从电极端子71到电路图案40的传导性得到提高,并且传递到电路图案40的热容易扩散到金属基底基板10内。

电极端子71与导电性接合材料60的接触面积Y根据被接合部件70的电源电压等而不同,但是优选在被接合部件70的底面积的50%以上且90%以下的范围内。若接触面积Y在上述范围内,则能够向被接合部件70稳定地供给电力,并且在被接合部件70产生的热从电极端子71到电路图案40的传导性得到提高。

金属基板20是成为金属基底基板10的基底的部件。作为金属基板20,能够使用铜板、铝板及它们的层叠板。

绝缘层30为用于使金属基板20与电路图案40绝缘的层。绝缘层30由包含绝缘性树脂31和陶瓷粒子32(导热性填料)的绝缘性树脂组合物形成。通过由包含绝缘性高的绝缘性树脂31和导热系数高的陶瓷粒子32的绝缘性树脂组合物形成绝缘层30,能够保持绝缘性,并进一步减少从电路图案40到金属基板20的整个金属基底基板10的热阻。

绝缘性树脂31优选为聚酰亚胺树脂或聚酰胺酰亚胺树脂或它们的混合物。聚酰亚胺树脂及聚酰胺酰亚胺树脂具有酰亚胺键,因此具有优异的耐热性和机械特性。

作为陶瓷粒子32,能够使用二氧化硅(silicon dioxide)粒子、氧化铝(aluminumoxide)粒子、氮化硼(BN)粒子、氧化钛粒子、氧化铝掺杂二氧化硅粒子、氧化铝水合物粒子、氮化铝粒子等。陶瓷粒子32可以单独使用一种,也可以组合使用两种以上。在这些陶瓷粒子中,从导热性高的观点出发,优选氧化铝粒子。陶瓷粒子32的形态并无特别限制,但是优选为微细的陶瓷粒子的凝聚粒子或单晶的陶瓷粒子。

微细的陶瓷粒子的凝聚粒子可以是一次粒子较弱地连结的附聚体(agglomerate),也可以是一次粒子较强地连结的聚集体(aggregate)。并且,可以形成凝聚粒子彼此进一步集合而成的粒子集合体。通过陶瓷粒子32的一次粒子形成凝聚粒子而分散在绝缘层30中,形成由陶瓷粒子32之间的相互接触产生的网络,热容易在陶瓷粒子32的一次粒子之间传导,绝缘层30的导热系数得到提高。

作为微细的陶瓷粒子的凝聚粒子的市售品,能够使用AE50、AE130、AE200、AE300、AE380、AE90E(均为NIPPON AEROSIL CO.,LTD.制造)、T400(Wacker公司制造)、SFP-20M(Denka Company Limited.制造)等二氧化硅粒子、Alu65(NIPPON AEROSIL CO.,LTD.制造)、AA-04(Sumitomo Chemical Co.,Ltd.制造)等氧化铝粒子、AP-170S(Maruka公司制造)等氮化硼粒子、AEROXIDE(R)TiO

单晶的陶瓷粒子优选为具有α氧化铝(αAl

绝缘层30的陶瓷粒子32的含量优选在5体积%以上且60体积%以下的范围内。若陶瓷粒子32的含量变得过少,则绝缘层30的导热性有可能不会充分提高。另一方面,若陶瓷粒子32的含量变得过多,则绝缘性树脂31的含量相对减少,有可能无法稳定地保持绝缘层30的形状。并且,陶瓷粒子32容易形成过大的凝聚粒子,绝缘层30的表面粗糙度Ra有可能会变大。为了可靠地提高绝缘层30的导热性,陶瓷粒子32的含量优选为10体积%以上。并且,为了可靠地提高绝缘层30的形状的稳定性,并降低表面粗糙度Ra,陶瓷粒子32的含量尤其优选为50体积%以下。

绝缘层30的膜厚并无特别限制,但是优选在1μm以上且200μm以下的范围内,尤其优选在3μm以上且100μm以下的范围内。

作为电路图案40的材料,能够使用铝、铜、银、金、锡、铁、镍、铬、钼、钨、钯、钛、锌及这些金属的合金。在这些金属中,优选铝、铜,尤其优选铝。作为电路图案40的成型方法,并无特别限制,例如,能够使用蚀刻法。

电路图案40的膜厚优选在10μm以上且1000μm以下的范围内,尤其优选在20μm以上且100μm以下的范围内。若电路图案40的膜厚变得过薄,则热阻有可能会变高。另一方面,若电路图案40的膜厚变得过厚,则有可能难以通过蚀刻法形成电路图案。并且,若电路图案40的膜厚变得过厚,则由于构成接合结构体1的各材料的热膨胀系数的差异,施加到电路图案40的热应力变大,在冷热循环中绝缘层30和电路图案40有可能会变得容易剥离。

作为被接合部件70的例子,并无特别限制,可举出半导体元件、电阻、电容器、晶体振荡器等。作为半导体元件的例子,可举出MOSFET(Metal-oxide-semiconductor fieldeffect transistor:金属-氧化物-半导体场效应晶体管)、IGBT(Insulated Gate BipolarTransistor:绝缘栅双极晶体管)、LSI(Large Scale Integration:大型积体电路)、LED(发光二极管)、LED芯片、LED-CSP(LED-ChipSize Package:LED-芯片尺寸封装)。

作为导电性接合材料60的材料,能够使用金属或合金。导电性接合材料60优选为金属粒子的烧结体。作为金属粒子,能够使用银粒子、铜粒子、被锡包覆的铜粒子(锡包覆铜粒子)。这些金属粒子可以单独使用一种,也可以组合使用两种以上。导电性接合材料60的厚度优选在1μm以上且100μm以下的范围内。

金属粒子的烧结体能够通过在金属基底基板10的电路图案40与被接合部件70的电极端子71之间插入包含金属粒子的膏的状态下进行加热而使金属粒子烧结来形成。

接着,对本实施方式的接合结构体的制造方法进行说明。

接合结构体例如能够通过包括如下工序的方法来制造:涂布工序,在金属基底基板的电路图案涂布金属粒子膏而形成金属粒子膏层;装载工序,在金属粒子膏层上装载被接合部件;及接合工序,对装载了被接合部件的金属基底基板进行加热而生成金属粒子烧结体。

在涂布工序中,关于金属粒子膏的涂布量,预先求出通过金属粒子膏的加热生成的金属粒子烧结体的导热系数λ,设定成通过金属粒子膏的加热生成的金属粒子烧结体与电路图案的接触面积X及金属粒子烧结体与电极端子的接触面积Y满足上述式(1)。作为在金属基底基板的电路图案涂布金属粒子膏的方法,能够使用丝网印刷法等方法。

在装载工序中,以被接合部件的电极端子与金属粒子膏层接触的方式,装载被接合部件。

在接合工序中,优选一边对被接合部件进行加压一边进行金属基底基板的加热。金属基底基板的加热温度为金属粒子膏的金属粒子烧结的温度,优选在200℃以上且350℃以下的范围内。加热气氛优选为非氧化气氛。

根据设为如上所述的结构的本实施方式的接合结构体1,电路图案40与导电性接合材料60的接触面积X、被接合部件70的电极端子71与导电性接合材料60的接触面积Y及导电性接合材料60的导热系数λ满足上述式(1)的关系,因此接合结构体1的热阻减少。因此,能够将在被接合部件产生的热有效地释放到外部。

并且,在本实施方式的接合结构体1中,即使被接合部件70为LED芯片、功率模块,也显示优异的散热性,能够抑制由热引起的LED芯片及功率模块的劣化。

并且,在本实施方式的接合结构体1中,在导电性接合材料60为选自银粒子、铜粒子、被锡包覆的铜粒子中的至少一种金属粒子的烧结体的情况下,由于导电性接合材料60具有高导热性,因此能够更可靠地将在被接合部件70产生的热有效地释放到外部。

以上,对本发明的实施方式进行了说明,但是本发明并不限定于此,能够在不脱离该发明的技术思想的范围内进行适当变更。

例如,在本实施方式的接合结构体1中,作为导电性接合材料60,例示了银粒子、铜粒子、被锡包覆的铜粒子等金属粒子的烧结体,但是导电性接合材料60并不限定于这些。例如,作为导电性接合材料60,可以使用焊料。

实施例

以下,通过实施例对本发明的作用效果进行说明。

[本发明例1:模拟试验]

图2是示意性地表示用于验证所述式(1)的模拟试验中所使用的接合结构体的剖视图。图3是图2的接合结构体的俯视图。关于模拟试验,使用LISA有限元分析系统(Sonnenhof Holdings公司制造)来进行。

在图2、图3中所示的接合结构体1S中,金属基底基板10S为依次层叠金属基板20S、绝缘层30S及铜箔40S而成的层叠体。铜箔40S整体形成于绝缘层30S上。被接合部件70S通过AlN(氮化铝)部件72S与电极端子71S连接。被接合部件70S设为LED芯片,电极端子71S设为铜端子。接合结构体1S的各部件的特性如下。

金属基板20S:平面尺寸:5mm×5mm,传热系数:300W/m

绝缘层30S:厚度:100μm,导热系数:10W/mK

铜箔40S:厚度:35μm,导热系数:400W/mK

导电性接合材料60S:厚度、导热系数记载于下述表1中。

电极端子71S:厚度:35μm,导热系数:400W/mK

AlN部件72S:厚度:635μm,导热系数:170W/mK

被接合部件70S:厚度:100μm,导热系数:1000000000W/mK,发热密度:20W/m

铜箔40S与导电性接合材料60S的接触面积X(mm

通过模拟试验,获得了被接合部件70S发热时的接合结构体1S的热分布。然后,求出接合结构体1S的各部件中的最高温度(℃)、最低温度(℃)及最高温度与最低温度的温差(最高温度-最低温度)。将其结果示于表1中。

并且,根据接合结构体1S的最高温度与最低温度的温差和被接合部件70S的发热量(W),通过下述式计算出接合结构体1S内的热阻。然后,关于导电性接合材料60S的导热系数λ相同,SQRT(X)/SQRT(Y)不同的接合结构体1S,求出将SQRT(X)/SQRT(Y)=1.2的热阻设为100时的热阻的相对值。将该结果作为相对热阻(%)而示于表1中。

热阻(K/W)=(最高温度-最低温度)/发热量

[表1]

图4是表示模拟试验中所获得的SQRT(X)/SQRT(Y)与相对热阻的关系的曲线图。在图4中,以线的形式连接导电性接合材料60S的导热系数λ相同的接合结构体1S中所获得的模拟试验结果。根据图4的结果可知,在导电性接合材料60S的导热系数λ相同的情况下,随着SQRT(X)/SQRT(Y)增加而相对热阻下降。并且,可知伴随导电性接合材料60S的导热系数λ变大,随着SQRT(X)/SQRT(Y)增加而相对热阻的下降量变大。

图5是表示模拟试验中所获得的导电性接合材料的导热系数λ与接合结构体的相对热阻减少2%时的SQRT(X)/SQRT(Y)的关系的曲线图。图5中所示的曲线图中的黑色圆点为绘制导电性接合材料60S的导热系数λ与接合结构体S1的相对热阻减少2%时(在图4中所示的曲线图中相对热阻成为98%时)的SQRT(X)/SQRT(Y)的关系的点。并且,曲线图中的曲线为将绘制的黑色圆点进行数据拟合而得的乘方拟合曲线。该乘方拟合曲线由SQRT(X)/SQRT(Y)=2.9209×λ

[本发明例2:在导电性接合材料使用了银粒子烧结体的接合结构体]

在铜基板(30mm×20mm×0.3mmt)上依次层叠包含含有氧化铝粒子的聚酰亚胺树脂的绝缘层(厚度:30μm,氧化铝粒子含量:60体积%)和铜层(厚度:35μm)而制作了铜基底基板。通过蚀刻法对该铜基底基板的铜层进行蚀刻而形成了电路图案。

在铜基底基板的电路图案涂布银粒子膏(银粒子的平均粒径:150nm)而形成了银粒子膏涂布层(宽度:10mm,厚度:50μm)。接着,在银粒子膏上装载了LED芯片的电极端子(端子尺寸:1.65mm×0.45mm)。然后,一边对所装载的LED芯片进行加压(10Pa),一边在氮气氛下在300℃进行加热,使银粒子膏的银粒子烧结,从而制作了铜基底基板与LED芯片通过银粒子烧结体接合而成的接合结构体。

分别测定了所获得的接合结构体的电路图案与银粒子烧结体的接触面积(X)、LED芯片的电极端子与银粒子烧结体的接触面积(Y)及银粒子烧结体的导热系数λ。然后,计算SQRT(X)/SQRT(Y)和2.9209×λ

[本发明例3:在导电性接合材料使用了铜粒子烧结体的接合结构体]

使用了铜粒子膏(铜粒子的平均粒径:150nm)来代替银粒子膏,除此以外,以与本发明例2相同的方式,制作了铜基底基板与LED芯片通过铜粒子烧结体接合而成的接合结构体。

分别测定了所获得的接合结构体的电路图案与银粒子烧结体的接触面积(X)、LED芯片的电极端子与银粒子烧结体的接触面积(Y)及铜粒子烧结体的导热系数λ。然后,计算SQRT(X)/SQRT(Y)和2.9209×λ

[本发明例4:在导电性接合材料使用了锡包覆铜粒子烧结体的接合结构体]

使用了锡包覆铜粒子膏(锡包覆铜粒子的平均粒径:9μm)来代替银粒子膏,除此以外,以与本发明例2相同的方式,制作了铜基底基板与LED芯片通过锡包覆铜粒子烧结体接合而成的接合结构体。

分别测定了所获得的接合结构体的电路图案与银粒子烧结体的接触面积(X)、LED芯片的电极端子与银粒子烧结体的接触面积(Y)及锡包覆铜粒子烧结体的导热系数λ。然后,计算SQRT(X)/SQRT(Y)和2.9209×λ

产业上的可利用性

本发明的接合结构体能够将在被接合部件产生的热有效地释放到外部。因此,即使被接合部件为LED芯片、功率模块等发热量多的电子部件,也能够抑制由热引起的劣化。

符号说明

1、1S-接合结构体,10、10S-金属基底基板,20、20S-金属基板,30、30S-绝缘层,31-绝缘性树脂,32-陶瓷粒子,40-电路图案,40S-铜箔,60、60S-导电性接合材料,70、70S-被接合部件,71、71S-电极端子,72S AlN-(氮化铝)部件。

技术分类

06120113279831