掌桥专利:专业的专利平台
掌桥专利
首页

一种均匀磁源的标定方法

文献发布时间:2023-06-19 12:04:09


一种均匀磁源的标定方法

技术领域

本发明涉及一种均匀磁源的标定方法,属于磁源标定领域。

背景技术

三轴线圈作为一种稳定、可靠的标准磁源,可以通过对其输入电流的控制,在空间中产生任意方向、任意大小的磁场。对于磁传感器的标定、磁传感器阵列的标定等需要标准磁源的应用场景,都需要三轴线圈作为标准磁源为实验提供准确的磁场环境。通常,三轴线圈按照毕奥-伐萨尔定律能够计算得出其磁场-电流比例系数,但由于工艺技术限制,该比例系数存在误差,并且三轴线圈的正交性也不能保证。因此,三轴线圈在作为标准磁源使用以前,均需对其进行标定。通常三轴线圈的标定是在地磁场环境下进行的,在普通环境下,地磁场会随着时间发生一定的漂移,并且其他环境参数如温度、湿度以及其他高频磁场干扰都会随着实验时间的延长对实验结果产生影响。因此,标定过程的时间越长,对实验结果的影响越大。

在对三轴线圈进行标定时,常用的两种方法为矢量法和标量法。

(1)矢量法所需仪器设备昂贵、对实验环境要求高、标定过程复杂:

矢量法是将磁传感器装配到无磁经纬仪上,读取磁传感器磁场示数与无磁经纬仪的精确的角度示数,精确调整磁传感器方向和位置,实现磁传感器示数与标准磁场对准,计算得到三轴线圈的误差参数。该方法所需要的无磁经纬仪及各种高精度定向定位装置价格昂贵,并且标定时所需要的测量的数据多,并且以磁场的三分量分别建立误差模型,实验环境的磁场干扰对标定结果的影响较大,过程相对复杂,标定时间长。

(2)传统标量法标定速度慢,影响线圈标定和磁传感器标定的精度:

标量法是给线圈通入多组幅值相同,使线圈产生多组均匀分布在空间八个象限的磁场的电流,根据磁传感器的磁场数据以及通入电流的数据,对线圈的六个误差参数模型进行拟合,得到线圈的误差参数。标量法相对于矢量法所需的仪器设备更加简单,过程更加简洁,对环境的要求更低。标量法是通过多组数据拟合电流-磁场模值误差模型得到线圈误差参数的,在数学原理上,数据组数越多、数据空间分布越均匀拟合模型的准确性越高,从而标定结果越准确。然而,数据组数越多则标定时间越长,又通常标定线圈后会立马进行磁传感器或磁传感器阵列的标定,线圈标定时间越长,环境中的温度、磁场漂移和磁场噪声等参数变化越大,给标定线圈的精度和后续传感器的标定精度带来的影响越大。

发明内容

本发明的目的在于解决现有磁源标定方法所需仪器设备昂贵、对实验环境要求高、标定过程复杂、标定速度慢、影响线圈标定和磁传感器标定的精度等问题,而公开一种均匀磁源的标定方法。

一种均匀磁源的标定方法,标定方法包括以下步骤:

步骤一、建立线圈误差模型;

步骤二、确定线圈的通电电流;

步骤三、对通电方式以及数据提取方法进行确定;

步骤四、根据不同的通电方式,采用其通电方式对应的数据处理方法将磁传感器的磁场数据处理并提取出来,将电流、磁场数据进行线性叠加形成为均匀分布到球面上的一系列数据;

步骤五、通过最小二乘法得到三轴线圈待标定的六个参数。

进一步的,在步骤一中,具体的:设定圆形三轴亥姆霍兹线圈中,每轴线圈产生的磁场与电流的比值为该轴的比例系数误差,

式(1)为三轴线圈的比例系数误差的数学模型:

B

B

B

其中,B

设理想正交三轴坐标系为O

B

B

B

综合考虑三轴线圈的比例系数误差和非正交性误差,得到三轴线圈产生磁场与其通入电流仪器误差参数之间的数学模型式(3),

B

B

B

将式(3)的磁场三分量求平方和,得到式(4),

进一步的,在步骤二中,具体的:首先确定在每一象限划分的组数m,m=n×n,n为自然数;然后根据n值计算所需电流组数,其中,单独给x轴通电的电流组数为n(n+1)/2组,单独给y轴通电组数为n(n+1)/2组,单独给z轴通电的组数为n组,具体各组的电流取至如下,

I

其中,

一共n(n+2)组电流。

进一步的,在步骤三中,具体的:采用三种通电方式,分别适用于不同的工况,

第一种、阶跃通电:

当环境的磁场干扰以低频磁场为主时,使用阶跃通电方式:以确定好的电流组数及其电流值为依据,依次给线圈通以该电流值的阶跃信号,并依次读取对应各组电流磁传感器的输出数据,数据读取方式为将线圈通电前和通电后的磁传感器数据作傅里叶分解,并提取直流量;

第二种、交流通电:

当环境的磁场干扰以高频磁场为主时,使用交流通电方式:以确定好的电流组数的各个电流值为有效值,频率为0.1Hz,给线圈依次通各组的电流,并依次记录相对应的磁传感器的示数,利用傅里叶分解将所得的数据的0.1Hz分量提取出来;

第三种、直流通电:

当环境几乎没有静态磁场且磁场干扰也较小时,使用直流通电的方式:以确定好的电流组数及各组的电流值的大小给线圈通以直流电,依次记录各组电流对应的磁传感器的输出数据,对数据的处理方式为将数据作傅里叶分解并取其直流量。

进一步的,在步骤四中,具体的:对线圈进行通电后,根据不同的通电方式,采用其通电方式对应的数据处理方法将磁传感器的磁场数据处理并提取出来,将电流、磁场数据进行线性叠加形成为均匀分布到球面上的一系列数据,方法如下:

首先对各组通电电流及其对应的磁传感器的示数进行命名,规则如下。

I

(p=1,2......n)

其中,p、q分别代表θ和φ选取第p个、第q个值,B

再对上述电流、磁场数据进行线性组合,形成8n

(I

(I

......

(I

(I

(I

(I

......

(I

......

(I

(I

......

(I

第一象限共n

进一步的,在步骤五中,具体的:将步骤四中得到的8n

目标函数为:

F=|B|

本发明的有以下优点:

(1)针对现有的三轴线圈的标定的标量法标定精度与标定时间以及标定环境之间的矛盾,提出了一种改进的标量标定法,提升了标定的速度,减小了标定环境中由于时间变化引入的对标定及后续实验的影响。

(2)当普通标量法需要测量8n

(3)与其他现有的三轴线圈标定方法相比,目前公开资料未见类似方法。

附图说明

图1为圆形三轴亥姆霍兹线圈的示意图;

图2为理想正交坐标系与非正交坐标系的示意图。

具体实施方式

下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提出了一种均匀磁源的标定方法,所述标定方法包括以下步骤:

步骤一、建立线圈误差模型;

步骤二、确定线圈的通电电流;

步骤三、对通电方式以及数据提取方法进行确定;

步骤四、根据不同的通电方式,采用其通电方式对应的数据处理方法将磁传感器的磁场数据处理并提取出来,将电流、磁场数据进行线性叠加形成为均匀分布到球面上的一系列数据;

步骤五、通过最小二乘法得到三轴线圈待标定的六个参数。

进一步的,在步骤一中,具体的:普通的三轴圆形亥姆霍兹线圈如图1所示,对三轴线圈进行标定的误差参数为线圈三轴的比例系数误差和线圈三轴间的非正交性误差。三轴线圈的每轴线圈都是根据毕奥-萨伐尔定律对其磁场-电流比例系数进行设计的,因此,理论上没轴线圈产生的磁场与其通入电流的比例系数是已知的。但是在对线圈进行装配和绕制的过程中会与设计时产生偏差,导致比例系数发生变化,需要进行标定。

在本实施例中,设定圆形三轴亥姆霍兹线圈中,每轴线圈产生的磁场与电流的比值为该轴的比例系数误差,

式(1)为三轴线圈的比例系数误差的数学模型:

B

B

B

其中,B

三轴线圈在设计时是按照三条轴线相互正交装备的,但在实际加工中,由于设备精度的限制,三轴线圈的三轴线并不可能完全正交。因此理想正交的三轴坐标系O

本实施例设理想正交三轴坐标系为O

B

B

B

综合考虑三轴线圈的比例系数误差和非正交性误差,得到三轴线圈产生磁场与其通入电流仪器误差参数之间的数学模型式(3),

B

B

B

根据标量法的原理,需要得到磁场模值与各个误差参数之间的关系,将式(3)的磁场三分量求平方和,得到式(4),

进一步的,在步骤二中,具体的:得到三轴线圈的磁场、电流与误差参数的数学模型后,需要对标定的通电电流组数进行确定。多组电流向量(I

对电流组数进行选取的方法为:首先确定在每一象限划分的组数m,m=n×n,n为自然数;然后根据n值计算所需电流组数,其中,单独给x轴通电的电流组数为n(n+1)/2组,单独给y轴通电组数为n(n+1)/2组,单独给z轴通电的组数为n组,具体各组的电流取至如下,

I

其中,

一共n(n+2)组电流,而如用传统标量法需测量8n

进一步的,在步骤三中,具体的:确定好通电电流后,对通电方式以及数据提取方法进行确定。采用三种通电方式,分别适用于不同的工况,

第一种、阶跃通电:

当环境的磁场干扰以低频磁场为主时,使用阶跃通电方式:以确定好的电流组数及其电流值为依据,依次给线圈通以该电流值的阶跃信号,并依次读取对应各组电流磁传感器的输出数据,数据读取方式为将线圈通电前和通电后的磁传感器数据作傅里叶分解,并提取直流量;

第二种、交流通电:

当环境的磁场干扰以高频磁场为主时,使用交流通电方式:以确定好的电流组数的各个电流值为有效值,频率为0.1Hz,给线圈依次通各组的电流,并依次记录相对应的磁传感器的示数,利用傅里叶分解将所得的数据的0.1Hz分量提取出来;

第三种、直流通电:

当环境几乎没有静态磁场且磁场干扰也较小时,使用直流通电的方式:以确定好的电流组数及各组的电流值的大小给线圈通以直流电,依次记录各组电流对应的磁传感器的输出数据,对数据的处理方式为将数据作傅里叶分解并取其直流量。

进一步的,在步骤四中,具体的:对线圈进行通电后,根据不同的通电方式,采用其通电方式对应的数据处理方法将磁传感器的磁场数据处理并提取出来,将电流、磁场数据进行线性叠加形成为均匀分布到球面上的一系列数据,方法如下:

首先对各组通电电流及其对应的磁传感器的示数进行命名,规则如下。

I

(p=1,2......n)

其中,p、q分别代表θ和φ选取第p个、第q个值,B

再对上述电流、磁场数据进行线性组合,形成8n

(I

(I

......

(I

(I

(I

(I

......

(I

......

(I

(I

......

(I

第一象限共n

进一步的,在步骤五中,具体的:将步骤四中得到的8n

目标函数为:

F=|B|

以下为一具体实施例:

以n=2,即生成32组空间中均匀分布的电流、磁场数据,I=1A,即电流模值为1A为例,对参数如表1所示的三轴亥姆霍兹线圈进行标定的过程如下。

将线圈放置于边长为1.85m的立方磁屏蔽体内,将已标定的磁通门放置于线圈中心。

根据n=2,电流模值I=1A,对所需通入的电流组数和电流值进行计算。

n=2

θ

所需的电流组数为n×(n+2)=8组,各组所需通电的电流值的计算过程如下。

I=1

(1):

(2):

(3):

(4):

(5):

(6):

(7):I

(8):I

由于在磁屏蔽室内进行标定,磁场干扰小,采用阶跃通电的方式对线圈依次通入上述8组电流,将各组电流通电后线圈产生的磁场采集出来,如下。

(1)B

(2)B

(3)B

(4)B

(5)B

(6)B

(7)B

(8)B

然后再对电流、磁场数据进行线性叠加组合,使其成为8×n×n=32组均匀分布在一个球面上的数据。组合后的第一象限的4组数据如下。

根据1至8象限的符号规定,进行线性组合,扩展为32组数据,组合后的32组数据如下。

然后将其带入式(4),用非线性最小二乘法对该误差模型进行拟合,拟合出的误差参数,将其与传统方法测量32组数据的标定结果作对比如下。

可以证明,相比于传统方法所需要测量32组数据,新方法仅需测量8组数据,对线圈的六个误差参数进行标定的准确性不变。

以上实施示例只是用于帮助理解本发明的方法及其核心思想,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

相关技术
  • 一种均匀磁源的标定方法
  • 一种飞机测试用降雨强度与均匀性标定系统及标定方法
技术分类

06120113149630