掌桥专利:专业的专利平台
掌桥专利
首页

一种多维空间梯度孔型极小曲面骨植入体材料及其设计方法

文献发布时间:2023-06-19 19:33:46


一种多维空间梯度孔型极小曲面骨植入体材料及其设计方法

技术领域

本发明属于假体材料或假体被覆材料技术领域,具体涉及一种多维空间梯度孔型极小曲面骨植入体材料及其设计方法。

背景技术

肿瘤切除手术或创伤性骨折等通常会导致大范围骨缺损,当缺损范围大于骨圆周50%或长度大于2cm时,机体往往不能自行愈合,需要骨移植或修复材料来恢复缺损部位的形态和功能。当前主流骨移植手术通常采用自体骨移植、同种异体骨移植或异种组织的骨移植。在上述三种移植手术中,同种异体骨移植和异种组织的骨移植常常会带来免疫排斥反应,自体骨移植是骨移植手术中最好的选择,然而自体骨移植通常会包含供体骨量受限,供体受体区域骨骼不匹配,供体区域并发症高等相关缺陷。

骨组织工程使用人工合成的生物材料进行骨骼支架的合成,以达到较好的骨生成,骨传导和骨骼诱导等效果,能够持续填充切除的空隙,提供高效的载荷转移,并允许骨内生长和血管形成,具有极其广阔的发展潜力。

目前大部分人造骨科植入物采用均匀的多孔结构或改变单一方向上孔隙率参数或密度的梯度设计,而实际上骨组织不仅是单一方向上孔隙率具有梯度变化,而是在三维空间上均存在梯度分布的孔,现有人造骨科植入物并不能很好地贴近骨骼空间多维梯度变化,难以实现高度定制化的梯度骨植入体以及应力遮挡问题,造成骨质疏松从而引起植入物松动,需进行矫正手术,因此需要开发生物相容性更为优越的人工骨植入体。

发明内容

本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种多维空间梯度孔型极小曲面骨植入体材料及其设计方法,该骨植入体材料采用拓扑构型梯度设计,在孔空间上具有多维梯度分布,更好地贴近人体仿生功能,明显增加在动载荷作用下的压缩行为,具有更好的吸能能力。

为解决上述技术问题,本发明提供的技术方案是:

提供一种多维空间梯度孔型极小曲面骨植入体材料,所述骨植入体材料在三维空间上具有孔隙率梯度变化的网格拓扑三周期极小曲面多孔结构。利用极小曲面设计大大降低材料本身的弹性模量使其匹配天然骨组织的模量的同时,也保留了其内部连通性,有利于骨细胞的附着及营养物质传输。

按上述方案,所述骨植入体材料中孔隙的直径为100~1000μm,孔隙率为10~90%。

在一种可能的实现方式中,骨植入体材料由外表面向内孔隙率逐渐减小。这种结构梯度设计实现了内部的实心结构,在保证骨组织高强度的同时具有更小的密度。

在一种可能的实现方式中,骨植入体材料由外表面向内孔隙率逐渐增大。

按上述方案,所述骨植入体材料为医用钛合金或羟基磷灰石中的一种或2种。

优选的是,所述骨植入体材料由40wt%羟基磷灰石与60wt%钛合金混合得到,原料粉体直径为16~53μm。

本发明还包括上述多维空间梯度孔型极小曲面骨植入体材料的设计方法,具体步骤如下:

1)针对需要定制化的骨组织结构(缺损骨)进行立体网格划分区域,首先在计算机上将骨组织结构按三维空间划分成更小的子区域,每个子区域占总体积的1~5%,利用电子计算机断层扫描(CT)技术对骨组织结构每个区域的密实疏松特征进行识别,提取每个区域的孔隙率数据,利用Matlab软件,基于最大内切圆算法生成三维空间二进制矩阵,将空间二进制矩阵映射为结构内部的孔隙特征(即:将提取的孔隙率数据映射到极小曲面数学方程的水平值上,利用空间离散化思想将孔隙特征映射到三维空间矩阵来拟合植入体内部的孔隙变化);

2)建立梯度多孔植入体模型:将步骤1)得到的三维空间二进制矩阵通过Matlab软件基于极小曲面方程重建植入体三维模型,并根据需要构建任意维度的梯度孔型植入体三维模型;

3)基于步骤2)构建的植入体三维模型,通过有限元软件(如abaqus)在准静态及动载荷下构建有限元分析模型,计算得到植入体的结构刚度与屈服应力,获得骨组织结构的生物力学特性,对比人体骨组织的生物力学性能,针对人体全身不同部位建立骨组织特征与生物力学性能之间的模型数据库,根据患者骨组织缺损信息从数据库中提取相应骨组织的模量分布和骨组织密度,通过Matlab软件调整植入体三维模型的孔隙密度,生成模型STL文件;

4)将步骤3)获得的模型STL文件输入3D打印设备软件中进行切片,获得打印所需的二维切片信息,选择生物相容性材料作为3D打印材料进行3D打印成型,得到多维空间梯度孔型极小曲面骨植入体材料。

本发明还包括上述多维空间梯度孔型极小曲面骨植入体材料在医用植入体材料方面的应用。

本发明的多维空间梯度孔型极小曲面骨植入体材料根据所需植入体的生物特性及孔隙率要求,优化模型中的孔隙分布特征及植入体在承载中应力分布特点,依据受力特点合理配置设计植入体材料孔隙分布,利用数学软件控制植入体模型结构孔隙率在10~90%之间,提高了多孔植入材料的生物匹配度,能让多孔植入体的设计更加满足个性化定制要求,更具备实用价值,同时还能促进体液与各类物质在植入体内流动、运输。本发明骨植入体材料根据人体骨骼弹性模量的分布,密质区域的杨氏模量为12~23.3GPa,松质区域的杨氏模量为0~10GPa。孔拓扑构型通过水平值控制,力学性能随着拓扑构型而变化,杨氏模量沿着x、y、z三维空间位置坐标渐变,避免应力屏蔽现象。将水平值空间矩阵沿着单一轴向线性变化,致密化的孔隙区域分布在结构中部,植入体的泊松比沿着轴向方向可调,可实现变形过程中的零泊松比效应。

本发明的有益效果在于:1、本发明提供的多维空间梯度孔型极小曲面骨植入体材料能够根据所需植入体的生物特性及孔隙率要求调节孔隙率分布,解决了传统骨修复难以实现高度定制化的梯度骨植入体以及应力遮挡问题,相较于传统的梯度多孔植入体,本发明能够在植入体材料中成型不同内孔形状和尺寸的网格结构阵列,区域化地改变多孔结构密度,能更有针对性地对修复骨组织进行弹性模量匹配,在压缩性能、吸能能力、生物匹配性、应力屏蔽方面更具优势。2、本发明的设计方法能够针对骨组织中不同的区域进行有效地多维梯度化设计,与3D打印联合根据实际需要实现骨组织植入体定制化快速制备,减少手术等待时间,是一种植入体的梯度化定制新方案。

附图说明

图1为本发明实施例1骨组织孔隙特征提取及极小曲面水平值映射示意图;

图2为实施例1植入体模型的单一轴方向梯度孔隙结构示意图;

图3为实施例1所制备的打印样品照片;

图4为实施例1所制备的骨植入体材料准静态压缩变形下在应变为15%、25%和40%时的照片;

图5为实施例1所制备的植入体材料在准静态压缩下的应力应变曲线;

图6为实施例1所制备的植入体材料在准静态压缩下的杨氏模量及屈服应力;

图7为实施例1所制备的植入体材料与常规多孔植入体及单一梯度植入体的杨氏模量和能量吸收对比图;

图8为实施例2所制备的植入体材料的正视结构示意图。

具体实施方式

为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。

实施例1

多维空间梯度孔型极小曲面骨植入体材料的设计方法,具体步骤如下:

1)从骨缺损患者所需的修复骨组织(人胫骨)中提取所需骨组织结构的轮廓数据,在计算机上将骨组织结构按三维空间划分成更小的子区域,每个子区域占总体积的1%,利用CT技术,对骨组织结构每个区域的密实疏松特征进行识别,提取每个区域的孔隙率数据,骨组织孔隙特征提取及极小曲面水平值映射示意图如图1所示,利用Matlab软件,基于最大内切圆算法生成三维空间二进制矩阵,将空间二进制矩阵映射为结构内部的孔隙特征;

2)将步骤1)得到的三维空间二进制矩阵通过Matlab软件基于极小曲面方程重建植入体三维模型,将三维空间二进制矩阵映射为三周期极小曲面方程的水平值,利用marching cubes方程针对植入体三维模型中不同区域水平值进行等值面抽取,根据所需的植入体的尺寸,控制植入体模型的尺寸大小,植入体模型规格为:长(L)20mm,宽(W)20mm,高(H)20mm,该结构具有均匀的壁厚,结构中间朝两侧孔隙由密向疏梯度变化,其内部为相互串通的连续网络状结构,孔隙为不规则的类圆形;

3)基于步骤2)构建的植入体三维模型,通过abaqus有限元软件在准静态及动载荷下构建有限元分析模型,计算得到植入体的结构刚度与屈服应力,获得骨组织结构的生物力学特性,对比人体骨组织的生物力学性能,针对人体全身不同部位建立骨组织特征与生物力学性能之间的模型数据库,根据患者骨组织缺损信息从数据库中提取相应骨组织的模量分布和骨组织密度,通过Matlab软件调整植入体三维模型的孔隙密度,具体为将得到的有限元分析模型与对应的人胫骨轮廓模型在三维模型处理软件Magics进行布尔并运算,根据所需植入体所需的生物力学特性及孔隙率要求,利用数学软件控制曲面沿厚度方向进行加厚,得到植入体三维模型,生成模型STL文件;

4)将步骤3)获得的模型STL文件输入3D打印设备软件中进行切片,获得打印所需的二维切片信息,选择生物相容性材料(40wt%羟基磷灰石+60wt%钛合金,选取直径范围为16-53μm的原料粉体)作为3D打印材料进行3D一体化打印成型,得到多维空间梯度孔型极小曲面骨植入体材料,具体步骤如下:将原料粉体平铺在粉床式激光选区烧结系统制造,该系统具有400W镱光纤激光器,工艺参数为:激光功率350W,扫描速度1000mm/s,每层层厚20μm,在粉末室中使用氮气环境以减少制造过程中的氧化,打印成型之后,使用线切割从基板上切割所得样品,然后在600℃下热处理2小时,然后随炉冷却,最终得到打印样品。

此设计方法大大提高了体制化植入体的设计效率,以及植入体与患者的匹配度,延长了植入体的使用寿命。

如图2所示为本实施例植入体材料内部孔隙结构示意图,所述的植入体沿着模型单一轴向方向构建水平值梯度矩阵,疏松的极小曲面单元结构由外表面向内表面梯度过渡,从外向内由疏变密。骨组织疏松区域1处于结构的最外端,骨密实区域2位于结构的中间部位。所述植入体的孔隙率从结构两端区域88%过渡到中间密实区域57%,平均孔隙率85%。

如图3所示为本实施例所得打印样品照片,可见其孔隙直径在100~300μm。

通过万能力学试验机测试本实施例所制备的骨植入体材料准静态压缩变形下的行为,压缩速率为1.2mm/min,在应变为15%、25%和40%下拍照记录,其过程变形照片如附图4所示。获得压缩过程中x方向和z方向的应变,计算结构变形中的泊松比,计算结果显示设计的植入体具有零泊松比效应。

通过上述万能力学试验机获得的应力应变曲线,如图5所示,通过提取应力应变曲线弹性阶段的斜率,计算得到本实施例制备的骨植入体材料不同孔隙率区域在准静态压缩下的杨氏模量及屈服应力,如图6所述,左侧线条表示杨氏模量,右侧线条表示屈服应力,可知骨植入体材料的杨氏模量随着孔隙疏密变化呈现梯度特征。

抽取本实施例制备的骨植入体材料在5%应变下的杨氏模量,同时计算应变20-40%之间的平台应力,得到的杨氏模量与生物骨组织匹配,植入体的比吸能在15-25J/g之间可调节,与常规多孔植入体(孔隙率85%,材质与本实施例生物相容性材料相同不锈钢,孔隙均匀,无梯度分布)及单一梯度植入体(总孔隙率85%,材质与本实施例生物相容性材料相同,疏松区域处于结构的两端,密实区域位于结构的中间部位)相比有显著提高,三种样品杨氏模量和能量吸收对比图如图7所示(图中左侧线条表示杨氏模量,右侧线条表示能量吸收,多维梯度植入体即为本实施例制备的骨植入体材料)。

实施例2

设计制备多维空间梯度孔型极小曲面骨植入体材料,步骤与实施例1相似,所得植入体材料内部孔隙结构正视示意图如图8所示,所述的植入体沿着中心区域向四周任意方向利用插值函数或三角函数来构建水平值梯度矩阵,疏松的极小曲面单元结构孔隙由中心向四周径向梯度过渡,由内向外由疏变密,孔隙的直径按三维水平值矩阵梯度分布,骨组织疏松区域3处于结构的最中心,骨密实区域4位于结构的四周外围。基于Marching cube算法对极小曲面的三维曲面进行抽取,所述植入体的孔隙率从结构中间区域88%过渡到两端密实区域57%。

以上所述仅为本发明优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡对本发明所作的任何等同替换、改进等,均应包含在本发明之内。

相关技术
  • 一种极小曲面连续梯度多孔结构的获取方法
  • 一种极小曲面骨修复植入体的生成方法
  • 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法
技术分类

06120115953121