掌桥专利:专业的专利平台
掌桥专利
首页

方向性电磁钢板的制造方法

文献发布时间:2023-06-19 12:16:29


方向性电磁钢板的制造方法

技术领域

本发明涉及一种方向性电磁钢板的制造方法。

本申请基于2019年1月16日提出的日本专利申请第2019-005401号主张优先权,在此引用其内容。

背景技术

方向性电磁钢板主要用于变压器。变压器由于在安装后到被废弃的长时间内连续地被励磁,连续发生能量损失,所以交流磁化时的能量损失即铁损为决定变压器性能的主要的指标。

为了降低方向性电磁钢板的铁损,迄今为止提出了多种方法。例如,关于钢板组织有提高向称为高斯取向的{110}<001>取向的聚集的方法,关于钢板有提高使电阻增高的Si等固溶元素的含量的方法、减薄钢板板厚的方法等。

此外,已知对钢板赋予张力在降低铁损方面是有效的方法。因此,通常以降低铁损为目的,在方向性电磁钢板表面上形成有覆盖膜。该覆盖膜通过对方向性电磁钢板赋予张力而使作为钢板单板的铁损降低。该覆盖膜进而在层叠地使用方向性电磁钢板时,通过确保钢板间的电绝缘性而使作为铁芯的铁损降低。

作为形成有覆盖膜的方向性电磁钢板,有在母钢板表面上形成含有Mg的氧化覆盖膜即镁橄榄石覆盖膜,进而在该镁橄榄石覆盖膜的表面上形成有绝缘覆盖膜的方向性电磁钢板。也就是说,在此种情况下,母钢板上的覆盖膜包含镁橄榄石覆盖膜和绝缘覆盖膜。镁橄榄石覆盖膜及绝缘覆盖膜分别担负着绝缘性功能及对母钢板赋予张力的功能这两者的功能。

含有Mg的氧化覆盖膜即镁橄榄石覆盖膜可通过如下的方法而形成:使用在钢板中产生二次再结晶的最终退火,使以氧化镁(MgO)为主成分的退火分离剂与脱碳退火时形成于母钢板上的氧化硅(SiO

绝缘覆盖膜可通过如下的方法而形成:在最终退火后的母钢板上,例如涂布含有磷酸或磷酸盐、胶体二氧化硅、及铬酸酐或铬酸盐的涂布液,在300~950℃烧接(或烘烤)10秒以上而进行干燥。

覆盖膜为了发挥绝缘性及对母钢板赋予张力的功能而在这些覆盖膜与母钢板之间要求高的附着力。

以往,上述附着力主要通过由母钢板和镁橄榄石覆盖膜的界面的凹凸形成的锚固效果来确保。但是,近年来,弄清楚了该界面的凹凸也成为使方向性电磁钢板磁化时的磁畴壁移动的障碍,因而也成为妨碍低铁损化的主要原因。

于是,为了进一步低铁损化,例如,在日本特开昭49-096920号公报(专利文献1)及国际公开第2002/088403号(专利文献2)中,提出了在不存在含Mg的氧化覆盖膜即镁橄榄石覆盖膜的情况下,以使上述界面平滑化的状态确保绝缘覆盖膜的附着力的技术。

在专利文献1所公开的方向性电磁钢板的制造方法中,通过酸洗等除去镁橄榄石覆盖膜,通过化学研磨或电解研磨使母钢板表面平滑。在专利文献2所公开的方向性电磁钢板的制造方法中,最终退火时采用含氧化铝(Al

但是,在专利文献1及专利文献2的制造方法中,在与母钢板表面接触而(在母钢板表面上直接)形成绝缘覆盖膜时,存在绝缘覆盖膜对母钢板表面难以附着(得不到充分的附着力)的问题。

现有技术文献

专利文献

专利文献1:日本特开昭49-096920号公报

专利文献2:国际公开第2002/088403号

发明内容

发明所要解决的课题

本发明是鉴于上述课题而完成的。本发明的目的是,提供一种不具有镁橄榄石覆盖膜、且磁特性(特别是铁损)及覆盖膜附着力优异的方向性电磁钢板的制造方法。

用于解决课题的手段

本发明人为了低铁损化,以在不生成镁橄榄石覆盖膜而使钢板表面平滑化的方向性电磁钢板用钢板的表面上形成绝缘覆盖膜为前提,对提高钢板和绝缘覆盖膜的附着力(覆盖膜附着力)的方法进行了研究。

其结果是,发现通过适当地组合规定的工序,能够制造没有镁橄榄石覆盖膜且磁特性及覆盖膜附着力优异的方向性电磁钢板。

本发明的主旨如下。

(1)本发明的一个方案涉及一种方向性电磁钢板的制造方法,其中,具备以下工序:

热轧工序,其通过对钢坯进行热轧而得到热轧钢板,作为化学组成,所述钢坯以质量%计含有:

C:0.030~0.100%、

Si:0.80~7.00%、

Mn:0.01~1.00%、

S及Se的合计:0~0.060%、

酸可溶性Al:0.010~0.065%、

N:0.004~0.012%、

Cr:0~0.30%、

Cu:0~0.40%、

P:0~0.50%、

Sn:0~0.30%、

Sb:0~0.30%、

Ni:0~1.00%、

B:0~0.008%、

V:0~0.15%、

Nb:0~0.20%、

Mo:0~0.10%、

Ti:0~0.015%、

Bi:0~0.010%,

剩余部分包括Fe及杂质;

冷轧工序,其通过对所述热轧钢板实施冷轧而得到冷轧钢板;

脱碳退火工序,其通过对所述冷轧钢板进行脱碳退火而得到脱碳退火板;

退火分离剂涂布工序,其在所述脱碳退火板上涂布含有MgO的退火分离剂并使其干燥;

最终退火工序,其通过对涂布了所述退火分离剂的所述脱碳退火板进行最终退火而得到最终退火板;

退火分离剂除去工序,其从所述最终退火板的表面除去剩余的退火分离剂;以及

绝缘覆盖膜形成工序,其在所述最终退火板的表面上形成绝缘覆盖膜;

在所述脱碳退火工序中,

在氧化度即PH

在所述退火分离剂涂布工序中,

所述退火分离剂进一步含有碱金属或碱土类金属或Bi的氯化物中的至少1种即MCl,将所述MgO和所述MCl的质量比率即MCl/MgO设定为2~40%;

在所述最终退火工序中,

在气氛含氢时将氧化度设定为0.00010~0.2,在由不含氢的不活泼气体构成时将露点设定为0℃以下;

在所述绝缘覆盖膜形成工序中,

涂布含有磷酸和金属化合物,且所述磷酸和所述金属化合物的质量比为2∶1~1∶2的覆盖膜形成溶液,在600~1150℃进行烧接,在降温后涂布含有磷酸盐及胶体二氧化硅但不含金属化合物的覆盖膜形成溶液,在600~1150℃进行烧接,形成绝缘覆盖膜。

(2)在上述(1)所述的方向性电磁钢板的制造方法中,也可以在所述热轧工序与所述冷轧工序之间,具备对所述热轧钢板进行退火的热轧板退火工序、或进行酸洗的热轧板酸洗工序中的至少1个工序。

(3)在上述(1)或(2)所述的方向性电磁钢板的制造方法中,也可以在所述脱碳退火工序中,对所述冷轧钢板进行在含氨的气氛中退火的氮化处理。

(4)在上述(1)~(3)中任一项所述的方向性电磁钢板的制造方法中,也可以具备磁畴控制工序,其在选自所述冷轧工序与所述脱碳退火工序之间、所述脱碳退火工序与所述退火分离剂涂布工序之间、所述退火分离剂除去工序与所述绝缘覆盖膜形成工序之间、或所述绝缘覆盖膜形成工序后之中的任一项中进行磁畴控制处理。

(5)在上述(1)~(4)中任一项所述的方向性电磁钢板的制造方法中,也可以在所述退火分离剂除去工序中,在水洗后采用体积比浓度低于20%的酸性溶液进行酸洗。

(6)在上述(1)~(5)中任一项所述的方向性电磁钢板的制造方法中,作为化学组成,所述钢坯以质量%计含有选自以下元素中的至少1种:

Cr:0.02~0.30%、

Cu:0.05~0.40%、

P:0.005~0.50%、

Sn:0.02~0.30%、

Sb:0.01~0.30%、

Ni:0.01~1.00%、

B:0.0005~0.008%、

V:0.002~0.15%、

Nb:0.005~0.20%、

Mo:0.005~0.10%、

Ti:0.002~0.015%、及

Bi:0.001~0.010%。

发明效果

根据本发明的上述方案,能够提供一种没有镁橄榄石覆盖膜且磁特性及覆盖膜附着力优异的方向性电磁钢板的制造方法。

附图说明

图1是表示本发明的一个实施方式涉及的方向性电磁钢板的制造方法的流程图。

具体实施方式

以下,对本发明的适合的实施方式进行详细说明。不过,本发明并不仅限于本实施方式中公开的构成,可以在不脱离本发明的宗旨的范围内进行各种更改。另外,在本实施方式示出的数值限定范围中,下限值和上限值包含在其范围内。对于表示为“超过”或“低于”的数值,其值不包含在数值范围内。有关各元素的含量的“%”,只要不特别指定就意味着“质量%”。

本发明的一个实施方式涉及的方向性电磁钢板的制造方法(以下有时称为“本实施方式涉及的方向性电磁钢板的制造方法”)是不具有镁橄榄石覆盖膜的方向性电磁钢板的制造方法,其具备以下工序:

(i)通过对具有规定的化学组成的钢坯进行热轧而得到热轧钢板的热轧工序

(ii)通过对所述热轧钢板实施1次或夹着中间退火的两次以上的冷轧而得到冷轧钢板的冷轧工序

(iii)通过对所述冷轧钢板进行脱碳退火而得到脱碳退火板的脱碳退火工序

(iv)在所述脱碳退火板上涂布含有MgO的退火分离剂并使其干燥的退火分离剂涂布工序

(v)通过对涂布了退火分离剂的所述脱碳退火板进行最终退火,而得到最终退火板的最终退火工序

(vi)采用包含水洗或酸洗中的一方或双方的方法,从所述最终退火板的表面除去剩余的退火分离剂的退火分离剂除去工序

(vii)在所述最终退火板的表面上形成绝缘覆盖膜的绝缘覆盖膜形成工序

此外,本实施方式涉及的方向性电磁钢板的制造方法也可以进一步具备以下的工序。

(Ⅰ)对热轧钢板进行退火的热轧板退火工序

(Ⅱ)对热轧钢板进行酸洗的热轧板酸洗工序

(Ⅲ)进行磁畴控制处理的磁畴控制工序

本实施方式涉及的方向性电磁钢板的制造方法在上述的工序中,并非可以只控制一个工序,而是需要复合地且不可分地控制上述各工序。通过按规定的条件控制所有各工序,可使铁损降低,且能够提高覆盖膜附着力。

以下,对各工序详细地进行说明。

<热轧工序>

在热轧工序中,通过对作为化学组成以质量%计含有C:0.030~0.100%、Si:0.80~7.00%、Mn:0.01~1.00%、S+Se的合计:0~0.060%、酸可溶性Al:0.010~0.065%、N:0.004~0.012%、Cr:0~0.30%、Cu:0~0.40%、P:0~0.50%、Sn:0~0.30%、Sb:0~0.30%、Ni:0~1.00%、B:0~0.008%、V:0~0.15%、Nb:0~0.20%、Mo:0~0.10%、Ti:0~0.015%、Bi:0~0.010%,剩余部分包括Fe及杂质的钢坯进行热轧而得到热轧钢板。本实施方式中,将热轧工序后的钢板称为热轧钢板。

供于热轧工序的钢坯(板坯)的制造方法没有限定。例如只要熔炼具有规定的化学组成的钢水,采用该钢水制造板坯就可以。也可以用连续铸造法制造板坯,也可以采用钢水制造铸锭,对铸锭进行开坯轧制来制造板坯。此外,也可以用其它方法制造板坯。

板坯的厚度没有特别的限定,例如为150~350mm。板坯的厚度优选为220~280mm。作为板坯,也可以使用厚度为10~70mm的所谓薄板坯。

首先,对钢坯的化学组成的限定理由进行说明。以下,有关化学组成的%意味着质量%。

[C:0.030~0.100%]

C(碳)对于控制一次再结晶组织是有效的元素,但对磁特性产生不良影响,所以是在最终退火前要通过脱碳退火除去的元素。如果钢坯的C含量超过0.100%,则脱碳退火时间延长,使生产率下降。因此,将C含量设定为0.100%以下,优选为0.085%以下,更优选为0.070%以下。

优选C含量低,但在考虑到工业生产中的生产率及制品的磁特性时,C含量的实质的下限为0.030%。

[Si:0.80~7.00%]

硅(Si)提高方向性电磁钢板的电阻,使铁损降低。如果Si含量低于0.80%,则在最终退火时产生γ相变,损害方向性电磁钢板的晶体取向。所以,Si含量为0.80%以上。Si含量优选为2.00%以上,更优选为2.50%以上。

另一方面,如果Si含量超过7.00%,则冷加工性下降,冷轧时容易发生裂纹。所以,Si含量为7.00%以下。Si含量优选为4.50%以下,更优选为4.00%以下。

[Mn:0.01~1.00%]

锰(Mn)提高方向性电磁钢板的电阻,使铁损降低。此外,Mn通过与S或Se结合而生成MnS或MnSe,作为抑制剂发挥功能。在Mn含量在0.01~1.00%的范围内时,二次再结晶稳定。所以,Mn含量为0.01~1.00%。Mn含量的优选的下限为0.08%,更优选为0.09%。Mn含量优选的上限为0.50%,更优选为0.20%。

[S及Se中的任一方或双方的合计:0~0.060%]

S(硫)及Se(硒)是通过与Mn结合而形成作为抑制剂发挥功能的MnS及/或MnSe的元素。

如果S及Se中的任一方或双方的合计(S+Se)超过0.060%,则热轧后MnS及MnSe的析出分散不均匀。在此种情况下,得不到所希望的二次再结晶组织,磁通密度降低,或纯化后MnS残存在钢中,使磁滞损耗劣化。因此,将S和Se的合计含量设定为0.060%以下。

S和Se的合计含量的下限没有特别的限制,可以为0%。也可以将其下限设定为0.003%以上。在作为抑制剂使用时优选为0.015%以上。

[酸可溶性Al(Sol.Al):0.010~0.065%]

酸可溶性Al(铝)(Sol.Al)是通过与N结合而生成作为抑制剂发挥功能的AlN及(Al、Si)N的元素。在酸可溶性Al低于0.010%时,不能充分表现出效果,不能充分进行二次再结晶。因此,将酸可溶性Al含量设定为0.010%以上。酸可溶性Al含量优选为0.015%以上,更优选为0.020%以上。

另一方面,如果酸可溶性Al含量超过0.065%,则AlN及(Al、Si)N的析出分散不均匀,得不到所要的二次再结晶组织,磁通密度下降。因此,将酸可溶性Al(Sol.Al)设定为0.065%以下。酸可溶性Al优选为0.055%以下,更优选为0.050%以下。

[N:0.004~0.012%]

N(氮)是通过与Al结合而生成作为抑制剂发挥功能的AlN及(Al、Si)N的元素。在N含量低于0.004%时,AlN及(Al、Si)N的形成不充分,所以将N设定为0.004%以上,优选为0.006%以上,更优选为0.007%以上。

另一方面,如果N含量超过0.012%,则有钢板中形成鼓泡(孔隙)的顾虑。因此,将N含量设定为0.012%以下。

上述钢坯的化学组成含有上述元素,剩余部分包括Fe及杂质。但是,考虑到化合物的形成对抑制剂功能的强化及磁特性的影响,也可以取代Fe的一部分,而按以下的范围含有选择元素中的1种或两种以上。作为取代Fe的一部分而含有的选择元素,例如可列举Cr、Cu、P、Sn、Sb、Ni、B、V、Nb、Mo、Ti、Bi。但是,选择元素由于也可以不含有,所以其下限分别为0%。此外,即使这些选择元素以杂质含有,也不损害上述效果。另外,所谓“杂质”,指的是在工业化制造钢时,从作为原料的矿石及废钢材、或制造环境等混入的成分。

[Cr:0~0.30%]

Cr(铬)与Si同样,是对提高电阻降低铁损有效的元素。所以,也可以含有Cr。在得到上述效果时,Cr含量优选为0.02%以上,更优选为0.05%以上。

另一方面,如果Cr含量超过0.30%,则磁通密度的下降成为问题,所以Cr含量的上限优选为0.30%,更优选为0.20%,进一步优选为0.12%。

[Cu:0~0.40%]

Cu(铜)也是对提高电阻降低铁损有效的元素。所以,也可以含有Cu。在要得到该效果时,Cu含量优选为0.05%以上,更优选为0.10%以上。

另一方面,如果Cu含量超过0.40%,则降低铁损的效果饱和,而且有时在热轧时成为“铜鳞状折叠”这个表面缺陷的原因。因此,Cu含量的上限优选为0.40%,更优选为0.30%,进一步优选为0.20%。

[P:0~0.50%]

P(磷)也是对提高电阻降低铁损有效的元素。所以,也可以含有P。在要得到该效果时,P含量优选为0.005%以上,更优选为0.010%以上。

另一方面,如果P含量超过0.50%,则有时轧制性出现问题。因此,P含量的上限优选为0.50%,更优选为0.20%,进一步优选为0.15%。

[Sn:0~0.30%]

[Sb:0~0.30%]

Sn(锡)及Sb(锑)是对使二次再结晶稳定化、使{110}<001>取向发达有效的元素。所以,也可以含有Sn或Sb。在要得到该效果时,Sn含量优选为0.02%以上,更优选为0.05%以上。此外,Sb含量优选为0.01%以上,更优选为0.03%以上。

另一方面,如果Sn超过0.30%,或Sb超过0.30%,则有对磁特性产生不良影响的顾虑。因此,优选将Sn含量、Sb含量的上限分别设定为0.30%。Sn含量的上限更优选为0.15%,进一步优选为0.10%。Sb含量的上限更优选为0.15%,进一步优选为0.10%。

[Ni:0~1.00%]

Ni(镍)也是对提高电阻降低铁损有效的元素。此外,Ni在通过控制热轧钢板的金属组织来提高磁特性上也是有效的元素。所以,也可以含有Ni。在要得到该效果时,Ni含量优选为0.01%以上,更优选为0.02%以上。

另一方面,如果Ni含量超过1.00%,则有时二次再结晶不稳定。因此,优选将Ni含量设定为1.00%以下,更优选设定为0.20%以下,进一步优选设定为0.10%以下。

[B:0~0.008%]

B(硼)对于通过与N结合而形成发挥抑制剂效果的BN是有效的元素。所以,也可以含有B。在要得到该效果时,B含量优选为0.0005%以上,更优选为0.0010%以上。

另一方面,如果B含量超过0.008%,则有对磁特性产生不良影响的顾虑。因此,B含量的上限优选为0.008%,更优选为0.005%,进一步优选为0.003%。

[V:0~0.15%]

[Nb:0~0.20%]

[Ti:0~0.015%]

V(钒)、Nb(铌)及Ti(钛)是通过与N或C结合而作为抑制剂发挥功能的元素。所以,也可以含有V、Nb或Ti。在要得到该效果时,V含量优选为0.002%以上,更优选为0.010%以上。Nb含量优选为0.005%以上,更优选为0.020%以上。Ti含量优选为0.002%以上,更优选为0.004%以上。

另一方面,如果钢坯含有超过0.15%的V、超过0.20%的Nb、超过0.015%的Ti,则这些元素残留在最终制品中,作为最终制品有时V含量超过0.15%,Nb含量超过0.20%,或Ti含量超过0.015%。在此种情况下,有最终制品(电磁钢板)的磁特性劣化的顾虑。

因此,V含量的上限优选为0.15%,更优选为0.10%,进一步优选为0.05%。Ti含量的上限优选为0.015%,更优选为0.010%,进一步优选为0.008%。Nb含量的上限优选为0.20%,更优选为0.10%,进一步优选为0.08%。

[Mo:0~0.10%]

Mo(钼)也是对提高电阻降低铁损有效的元素。所以,也可以含有Mo。在要得到该效果时,Mo含量优选为0.005%以上,更优选为0.01%以上。

另一方面,如果Mo含量超过0.10%,则有时钢板的轧制性出现问题。因此,Mo含量的上限优选为0.10%,更优选为0.08%,进一步优选为0.05%。

[Bi:0~0.010%]

Bi(铋)对于使硫化物等析出物稳定化,强化作为抑制剂的功能是有效的元素。所以,也可以含有Bi。在要得到该效果时,Bi含量优选为0.001%以上,更优选为0.002%以上。

另一方面,如果Bi含量超过0.010%,则有时对磁特性产生不良影响。因此,Bi含量的上限优选为0.010%,更优选为0.008%,进一步优选为0.006%。

上述的化学组成可以采用普通的钢分析方法进行测定。例如,化学组成可以采用ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)进行测定。另外,sol.Al可以采用用酸将试样加热分解后的滤液通过ICP-AES进行测定。此外,C及S可以采用燃烧-红外吸收法,N采用不活泼气体熔融-热导率法,O采用不活泼气体熔融-非分散型红外吸收法进行测定。

接着,对热轧上述钢坯时的条件进行说明。

热轧条件没有特别的限定。例如条件如下:

热轧前对板坯进行加热。将板坯装入周知的加热炉或周知的均热炉中进行加热。作为一种方法,将板坯加热至1280℃以下。通过将板坯的加热温度设定为1280℃以下,例如可避免在高于1280℃的温度下加热时的诸多问题(需要专用的加热炉及熔融氧化皮量大等)。板坯的加热温度的下限值没有特别的限定。在加热温度过低时,有时热轧困难,生产率下降。所以,考虑到生产率,加热温度按1280℃以下的范围进行设定即可。板坯的加热温度的优选的下限为1100℃。板坯的加热温度的优选的上限为1250℃。

此外,作为其它方法,有将板坯加热至1320℃以上的高的温度。通过加热到1320℃以上的高温,通过使AlN、Mn(S、Se)熔解,在其后的工序中使其微细析出,能够稳定地出现二次再结晶。

也可将板坯加热工序本身省略,在铸造后、板坯温度下降前开始热轧。

接着,对被加热的板坯实施采用热轧机的热轧,制作出热轧钢板。热轧机例如具备粗轧机和配置在粗轧机的下游的精轧机。粗轧机具备排列成一列的粗轧机架。各粗轧机架包含上下配置的多个辊。精轧机也同样,具备排列成一列的精轧机架。各精轧机架包含上下配置的多个辊。在通过粗轧机将加热的钢材轧制后,再通过精轧机进行轧制,由此制造热轧钢板。

热轧工序中的精轧温度(精轧机中最后压下钢板的精轧制机架的出口侧的钢板温度)例如为700~1150℃。通过以上的热轧工序,可制造热轧钢板。

<热轧板退火工序>

在热轧板退火工序中,根据需要对通过热轧工序得到的热轧钢板进行退火(热轧板退火),得到热轧退火板。本实施方式中,将热轧板退火工序后的钢板称为热轧退火板。

进行热轧板退火的目的是,使热轧时产生的不均匀组织尽量均匀化,控制抑制剂即AlN的析出(微细析出),控制第二相/固溶碳等。退火条件可以根据目的选择公知的条件。例如在使热轧时产生的不均匀组织均匀化时,将热轧钢板在750~1200℃的退火温度(热轧板退火炉中的炉温)下保持30~600秒。

热轧板退火未必需要进行,热轧板退火工序的实施与否,可根据最终制造的方向性电磁钢板所要求的特性及制造成本来决定。

<热轧板酸洗工序>

在热轧板酸洗工序中,对于热轧工序后的热轧钢板,或在进行了热轧板退火时对于热轧板退火工序后的热轧退火板,为了根据需要除去生成于表面的氧化皮而进行酸洗。酸洗条件没有特别的限定,可以按公知的条件进行。

<冷轧工序>

在冷轧工序中,对热轧工序后、热轧板退火工序后或热轧板酸洗工序后的热轧钢板或热轧退火板实施1次或夹着中间退火的两次以上的冷轧,形成冷轧钢板。本实施方式中,将冷轧工序后的钢板称为冷轧钢板。

最终的冷轧中的优选的冷轧率(不进行中间退火的累积冷轧率或进行了中间退火后的累积冷轧率)优选为80%以上,更优选为90%以上。最终的冷轧率的优选的上限为95%。

这里,最终的冷轧率(%)按以下定义。

最终的冷轧率(%)=(1-最终的冷轧后的钢板的板厚/最终的冷轧前的钢板的板厚)×100

<脱碳退火工序>

在脱碳退火工序中,对通过冷轧工序制造的冷轧钢板,在根据需要进行了磁畴控制处理后实施脱碳退火,使其一次再结晶。此外,在脱碳退火中,从钢板中除去对磁特性产生不良影响的C。本实施方式中,将脱碳退火工序后的钢板称为脱碳退火板。

为达到上述目的,在脱碳退火中,将退火气氛(炉内气氛)中的氧化度(PH

如果氧化度(PH

此外,如果退火温度低于750℃,则脱碳速度变得缓慢,不仅生产率下降,而且产生脱碳不良,使最终退火后的磁性劣化。另一方面,如果超过900℃,则一次再结晶粒径超过所希望的尺寸,因此最终退火后的磁性劣化。

此外,如果保持时间低于10秒,则不能充分进行脱碳。另一方面,如果超过600秒,则生产率下降,而且一次再结晶粒径超过所希望的尺寸,因此最终退火后的磁性劣化。

另外,也可以根据上述的氧化度(PH

此外,在脱碳退火工序中,也可以进一步在上述的保持之前、中途、之后的任一个或两个以上的阶段,在含氨的气氛中进行通过退火使冷轧钢板氮化的氮化处理。在板坯加热温度低的情况下,优选脱碳退火工序包含氮化处理。由于通过在脱碳退火工序中进一步进行氮化处理,在最终退火工序的二次再结晶之前生成AlN及(Al、Si)N等抑制剂,所以能够稳定地出现二次再结晶。

氮化处理的条件没有特别的限定,但优选以氮含量增加0.003%以上,优选增加0.005%以上,更优选增加0.007%以上的方式进行氮化处理。如果氮(N)含量为0.030%以上,则效果饱和,因此也可以以达到0.030%以下的方式进行氮化处理。

氮化处理的条件没有特别的限定,可以按公知的条件进行。

例如,在氧化度(PH

<退火分离剂涂布工序>

在退火分离剂涂布工序中,对脱碳退火工序后的脱碳退火板(也包含进行了氮化处理的脱碳退火板),在根据需要进行了磁畴控制处理后,涂布退火分离剂,然后使涂布的退火分离剂干燥。

该退火分离剂以MgO为主体,进一步含有碱金属或碱土类金属、或Bi的氯化物中的至少1种即MCl,上述MgO和上述MCl的质量比率即MCl/MgO为2~40%。

在本实施方式涉及的方向性电磁钢板的制造方法中,作为退火分离剂,采用含有碱金属或碱土类金属或Bi的氯化物中的至少1种即MCl的退火分离剂。通过采用含有MCl的退火分离剂,在最终退火时,因退火分离剂中的MCl的腐蚀作用而能够得到未形成镁橄榄石覆盖膜的、且表面平滑的钢板。

在退火分离剂中,将MgO和MCl的质量比率即MCl/MgO设定为2~40%。

在MCl/MgO低于2%时,不能充分抑制镁橄榄石覆盖膜的形成,有时残存粗大的Mg复合氧化物。在使方向性电磁钢板变形时Mg复合氧化物容易产生局部的应力集中,结果有时损害覆盖膜附着力。另一方面,在MCl/MgO超过40%时,有时难以通过后道工序将剩余的退火分离剂除去。

另外,含在退火分离剂中的碱金属的氯化物优选为Li、Na、K等的氯化物。此外,含在退火分离剂中的碱土类金属的氯化物优选为Ca、Ba、Mg等的氯化物。此外,作为含在退火分离剂中的Bi的氯化物,可列举氯氧化铋(BiOCl)及三氯化铋(BiCl

<最终退火工序>

通过对涂布了上述退火分离剂的脱碳退火板进行最终退火而形成最终退火板。通过对涂布了退火分离剂的脱碳退火板实施最终退火而进行二次再结晶,使晶体取向聚集在{110}<001>取向。本实施方式中,将最终退火工序后的钢板称为最终退火板。

在最终退火时,在气氛(炉内气氛)含有氢的情况下,将氧化度(PH

通过根据气氛将露点或氧化度设定为上述的范围,能够稳定地出现二次再结晶,提高取向聚集度。

在气氛含氢的情况下,如果氧化度低于0.00010,则通过脱碳退火形成的稠密的表面二氧化硅膜在最终退火的二次再结晶之前还原,二次再结晶不稳定。另一方面,如果氧化度超过0.2,则促进AlN及(Al、Si)N等抑制剂的分解,二次再结晶不稳定。此外,在气氛为不含氢的不活泼气体的情况下,如果露点超过0℃,则促进AlN及(Al、Si)N等抑制剂的分解,二次再结晶不稳定。露点的下限没有特别的限定,例如可以设定为-30℃。

<退火分离剂除去工序>

在退火分离剂除去工序中,采用包含水洗或酸洗中的一方或双方的方法从最终退火后的钢板(最终退火板)的表面,除去在最终退火中未与钢板反应的未反应的退火分离剂等剩余的退火分离剂。

在钢板表面的剩余的退火分离剂的除去不充分时,占空因数恶化,作为铁芯的性能下降。

为了除去剩余的退火分离剂,除了水洗、酸洗以外,也可以进一步采用洗涤器进行除去。通过采用洗涤器,能够确实将使绝缘覆盖膜形成工序中的润湿性恶化的剩余退火分离剂除去。

此外,在为了除去剩余的退火分离剂而进行酸洗时,可以采用体积比浓度低于20%的酸性溶液进行酸洗。例如,优选采用含有合计低于20体积%的选自硫酸、硝酸、盐酸、磷酸、氯酸、氧化铬水溶液、铬酸硫酸混合液、高锰酸、过氧化硫酸及过氧化磷酸中的1种或两种以上的溶液,更优选低于10体积%。体积比浓度的下限没有特别的限定,例如可以设定为0.1体积%。通过采用这样的溶液,能够有效地除去钢板表面的剩余的退火分离剂。

此外,在进行酸洗时,优选将溶液的液温设定为20~80℃。通过将液温设定在上述范围,能够有效地除去钢板表面的剩余退火分离剂。

<绝缘覆盖膜形成工序>

在绝缘覆盖膜形成工序中,在根据需要对退火分离剂除去工序后的最终退火板的表面进行了磁畴控制处理后,形成绝缘覆盖膜。本实施方式中,将绝缘覆盖膜形成工序后的钢板称为方向性电磁钢板。

该绝缘覆盖膜通过对方向性电磁钢板赋予张力而使作为钢板单板的铁损下降,同时在层叠地使用方向性电磁钢板时,通过确保钢板间的电绝缘性而使作为铁芯的铁损下降。

绝缘覆盖膜可通过如下的方法而形成:在最终退火板的表面上涂布含有磷酸和金属化合物、磷酸和金属化合物的质量比为2∶1~1∶2的覆盖膜形成溶液(覆盖膜形成溶液1),在600~1150℃进行烧接,在降温后涂布含有磷酸盐及胶体二氧化硅但不含金属化合物的覆盖膜形成溶液(覆盖膜形成溶液2),在600~1150℃进行烧接。

金属化合物是通过与磷酸反应而形成金属磷化物的化合物,例如为氯化物、硫酸盐、碳酸盐、硝酸盐、磷酸盐、金属单质等,但作为金属磷化物,在确保与钢板的良好的附着力这点上,优选Fe

涂布的覆盖膜形成溶液1中的磷酸和金属化合物的比率以按质量比达到2∶1~1∶2,优选达到1∶1~1∶1.5的方式进行调整。通过将磷酸和金属化合物的比率设定在上述范围内,能够充分提高绝缘覆盖膜的附着力。

该覆盖膜形成溶液1除了控制上述的磷酸和金属化合物以外,可以设定为与覆盖膜形成溶液2同等的溶液。例如,覆盖膜形成溶液1可以以磷酸盐或胶体二氧化硅为主成分。

覆盖膜形成溶液1的烧接的温度及保持时间没有特别的限定,但从促进磷酸和金属化合物的反应的观点出发,优选烧接温度为600~1150℃。在金属化合物为FeCl

进行了覆盖膜形成溶液1的烧接,例如在降温到室温(大约25℃)后,涂布含有磷酸盐及胶体二氧化硅但不含金属化合物的覆盖膜形成溶液(覆盖膜形成溶液2),在600~1150℃进行烧接。

作为含在覆盖膜形成溶液2中的磷酸盐,优选Ca、Al、Sr等的磷酸盐,其中更优选铝磷酸盐。胶体二氧化硅并不特别限定于特定性状的胶体二氧化硅。粒子尺寸也并不特别限定于特定的粒子尺寸,但优选为200nm(个数平均粒径)以下。例如为5~30nm。如果粒子尺寸超过200nm,则覆盖膜形成溶液2中有时沉降。此外,覆盖膜形成溶液2也可以进一步含有铬酸酐或铬酸盐。

覆盖膜形成溶液2的烧接的温度及保持时间没有特别的限定,但从促进磷酸盐和胶体二氧化硅的反应的观点出发,优选烧接温度为600~1150℃。此外,优选将烧接时间设定为10~600秒。另外,气氛也没有特别的限定,但优选设定为氮气氛。

覆盖膜形成溶液1及覆盖膜形成溶液2例如可用辊涂布机等湿式涂布方法涂布在钢板表面上。

<磁畴控制工序>

在本实施方式涉及的方向性电磁钢板的制造方法中,也可以具备在选自冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、退火分离剂除去工序与绝缘覆盖膜形成工序之间(第3)、或绝缘覆盖膜形成工序后(第4)之中的任一项中,进行磁畴控制处理的磁畴控制工序。

通过进行磁畴控制处理,能够使方向性电磁钢板的铁损进一步降低。当在冷轧工序与脱碳退火工序之间、脱碳退火工序与退火分离剂涂布工序之间、退火分离剂除去工序与绝缘覆盖膜形成工序之间进行磁畴控制处理的情况下,可以通过沿着轧制方向,按规定间隔形成向与轧制方向交差的方向延伸的线状或点状的槽部,使180°磁畴的宽度窄化(将180°磁畴细分化)。

此外,在绝缘覆盖膜形成工序后进行磁畴控制处理的情况下,可以通过沿着轧制方向,按规定间隔形成向与轧制方向交差的方向延伸的线状或点状的应力-应变部及槽部,使180°磁畴的宽度窄化(将180°磁畴细分化)。

在形成应力-应变部的情况下,能够采用激光束照射、电子射线照射等。此外,在形成槽部的情况下,可采用利用齿轮等的机械的槽形成法、利用电解腐蚀形成槽的化学的槽形成法及利用激光照射的热的槽形成法等。在因应力-应变部及槽部的形成而在绝缘覆盖膜发生损伤,使绝缘性等特性劣化的情况下,也可以通过再次形成绝缘覆盖膜来修补损伤。

图1中示出本实施方式涉及的方向性电磁钢板的制造方法的一个例子。实线围住的工序表示为必须工序,用虚线围住的工序表示为任意的工序。

按本实施方式涉及的制造方法制造的方向性电磁钢板不具有镁橄榄石覆盖膜。具体地讲,该方向性电磁钢板具有母钢板、相接地配置在母钢板上的中间层、相接地配置在中间层上成为最表面的绝缘覆盖膜。

方向性电磁钢板有没有镁橄榄石覆盖膜,可通过X射线衍射进行确认。例如,可以对从方向性电磁钢板上除去了绝缘覆盖膜的表面进行X射线衍射,将得到的X射线衍射光谱与PDF(Powder Diffraction File)对照。例如,要鉴别镁橄榄石(Mg

另外,要从方向性电磁钢板只除去绝缘覆盖膜,可以将具有覆盖膜的方向性电磁钢板浸渍在高温的碱溶液中。具体地讲,通过在NaOH:30质量%+H

按本实施方式涉及的制造方法制造的方向性电磁钢板因不具有镁橄榄石覆盖膜而使磁特性(铁损特性)优异,且因分别最佳地控制各制造工序而使覆盖膜附着力也优异。

实施例1

接着,对本发明的实施例进行说明,但实施例中的条件是为确认本发明的可实施性及效果而采用的一个条件例子,本发明并不限定于该一个条件例子。本发明只要不脱离本发明的主旨、达到本发明的目的,就可采用多种条件。

在表1所示的化学组成的钢板坯中,将No.A13及No.a11加热至1350℃,供于热轧,形成板厚2.6mm的热轧钢板。对该热轧钢板实施一次冷轧或夹着中间退火的多次冷轧,形成最终板厚0.22mm的冷轧钢板。对板厚0.22mm的冷轧钢板,作为脱碳退火工序,按表2~4所示的条件实施了脱碳退火。

此外,在表1所示的化学组成的钢板坯中,将除No.A13及No.a11以外的钢板坯加热至1150℃,供于热轧,形成板厚2.6mm的热轧钢板。对该热轧钢板实施一次冷轧或夹着中间退火的多次冷轧,形成最终板厚0.22mm的冷轧钢板。对板厚0.22mm的冷轧钢板,作为脱碳退火工序,按表2~4所示的条件实施了脱碳退火,在降温途中实施了在含氨的气氛中保持的氮化处理。

另外,关于No.B5,在对热轧后的热轧钢板实施了在1100℃退火、接着在900℃退火的热轧板退火后,进行酸洗,除去生成于表面的氧化皮,然后进行了冷轧。

此外,在脱碳退火时,到退火温度的升温过程中的平均加热速度为15℃/秒以上。

对上述的脱碳退火后的脱碳退火板,涂布以MgO为主体、含有氯化物MCl、表2~4所示的条件的退火分离剂,并使其干燥。

对涂布了退火分离剂的脱碳退火板,在1100℃或1200℃进行了20小时的最终退火。此时,如表5~7所示,在气氛含氢(H

在最终退火后,对No.B8、B10及B12,通过水洗从钢板除去剩余的退火分离剂,除No.B8、B10及B12以外,对剩余的退火分离剂进行水洗,进而通过浸渍在硫酸水溶液中(硫酸的体积比浓度:1体积%)进行了酸洗。

然后,涂布按表5~7所示的比例含有磷酸和金属化合物(FeCl

此外,在各实施例中,如表8~10所示,在冷轧工序与脱碳退火工序之间(第1)、脱碳退火工序与退火分离剂涂布工序之间(第2)、退火分离剂除去工序与绝缘覆盖膜形成工序之间(第3)、或绝缘覆盖膜形成工序后(第4)中的任一时间点进行了磁畴控制。磁畴控制中,以机械的方式或化学的方式形成槽,或采用激光形成应力-应变部或槽部。

对得到的方向性电磁钢板No.B1~B46、b1~b33,评价了铁损及覆盖膜附着力。

<铁损>

对从制作的方向性电磁钢板采集的试样,基于JIS C2550-1:2000,通过Epstein试验测定了励磁磁通密度1.7T、频率50Hz时的铁损W17/50(W/kg)。对于进行了磁畴控制的方向性电磁钢板,将铁损W17/50低于0.7W/kg时判断为合格。此外,对于未进行磁畴控制的方向性电磁钢板,将铁损W17/50低于1.0W/kg时判定为合格。

<覆盖膜附着力>

将从制造的方向性电磁钢板上采集的试验片卷曲成直径20mm的圆筒(180°弯曲),按回弯时的覆盖膜残存面积率评价了绝缘覆盖膜的覆盖膜附着力。绝缘覆盖膜的覆盖膜附着力的评价,通过肉眼判断了绝缘覆盖膜的剥离的有无。将没有从钢板剥离的、覆盖膜残存面积率为90%以上的作为◎(非常好),将85%以上且低于90%的作为○(好),将80%以上且低于85%的作为△(次),将低于80%的作为×(不好)。将覆盖膜残存面积率为85%以上时(上述的◎或○)判定为合格。

表8~10中示出结果。

表1

表2

表3

表4

表8

表9

表10

由表1~10得知,发明例即No.B1~B46中的所有工序条件都满足本发明范围,铁损低。此外,覆盖膜附着力也优异。

与此相对照,比较例即No.b1~b33中的1个以上的工序条件不符合本发明范围,铁损及/或覆盖膜附着力差。另外,关于比较例No.b25,因不能轧制而未进行其后的评价。

产业上的可利用性

根据本发明的上述方案,能够提供一种没有镁橄榄石覆盖膜且磁特性及覆盖膜附着力优异的方向性电磁钢板的制造方法。由于得到的方向性电磁钢板的磁特性及覆盖膜附着力优异,所以本发明在产业上的可利用性高。

相关技术
  • 方向性电磁钢板用原板、成为方向性电磁钢板用原板的材料的方向性硅钢板、方向性电磁钢板用原板的制造方法及方向性电磁钢板的制造方法
  • 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
技术分类

06120113236377