掌桥专利:专业的专利平台
掌桥专利
首页

一种生物碳酸钙均匀强化再生骨料的制备方法和应用

文献发布时间:2023-06-19 16:06:26



技术领域

本发明涉及建筑材料再生骨料技术领域,具体涉及一种生物碳酸钙均匀强化再生骨料的制备方法和应用。

背景技术

面对建筑垃圾污染环境、天然砂石资源紧缺的难题,可将建筑垃圾破碎成再生骨料进行二次利用,例如用于制备再生混凝土。但再生骨料表面的旧砂浆层包含很多孔隙和微裂隙,导致再生骨料具有高孔隙率、高吸水率和高压碎值的缺点,性能远低于天然骨料。

目前,环境友好的微生物诱导碳酸钙技术已应用于再生骨料强化研究,其原理是通过诱导沉积的生物碳酸钙填补孔隙和修复微裂隙,从而降低再生骨料的吸水率和压碎值,提升再生骨料的性能。目前微生物诱导碳酸钙沉积强化再生骨料一般通过将再生骨料全浸泡于碳酸盐矿化菌处理液中来实现,生物碳酸钙在体相溶液中产生后,受重力作用附着于再生骨料的表面,因此上表面沉积的碳酸钙量较多,而在其他表面沉积的碳酸钙量很少,造成生物碳酸钙在骨料全表面的分布极不均匀,导致骨料的吸水率尤其是强度的改善有限。骨料表面沉积的生物碳酸钙的量及其分布的均匀性直接决定了再生骨料的强化效果。

专利CN202110792934.3公开了一种壳聚糖固定微生物脲酶原位强化再生骨料的制备方法,将再生骨料经由壳聚糖粉末、乙酸和水混合组成的壳聚糖溶液浸泡后烘干,得到表面覆有壳聚糖薄膜的再生骨料;将巴氏生孢八叠球菌接种于微生物培养基中培养而得到微生物菌液;将表面覆有壳聚糖薄膜的再生骨料在微生物菌液中浸泡,得到表面吸附微生物脲酶的再生骨料;将表面吸附微生物脲酶的再生骨料在由尿素、氯化钙和水组成的pH值为9~10的混合溶液中浸泡后烘干,得到强化再生骨料。采用该发明所制备的壳聚糖固定微生物脲酶原位强化再生骨料性能有一定程度提升,与处理前相比,吸水率和压碎指标降低。但吸水率和压碎指标的降低不显著,而且并未制备再生骨料混凝土,验证再生骨料混凝土性能的提升效果。

综上所述,现有技术中的生物碳酸钙在骨料全表面的分布极不均匀,对再生骨料性能的提升有限,未能从根本上提升再生骨料性能。

发明内容

为了解决现有技术中微生物诱导矿化强化再生骨料技术仍存在矿化沉积产物碳酸钙在再生骨料表面分布不均、部分沉积层不够密实以及与再生骨料表面粘接薄弱等问题,影响了微生物矿化处理再生骨料性能,进而限制了该技术的应用的问题。本申请提供了一种生物碳酸钙均匀强化再生骨料的制备方法和应用,进一步降低再生骨料的吸水率和压碎值,既环保又高效地提升再生骨料品质。

一种生物碳酸钙均匀强化再生骨料的制备方法,包括以下步骤:

(1)再生骨料的预处理:将再生骨料完全浸泡于预处理矿化处理液中进行预处理,浸泡时间不低于24小时,取出,自然干燥0.5-2h;

(2)碳酸盐矿化菌在再生骨料全表面的均匀固定:将步骤(1)所得预处理后的再生骨料完全放置于含碳酸盐矿化菌的增稠溶液中进行搅拌,转速不高于60rmp,搅拌时间不低于30秒,取出,自然干燥0.5-2h;

(3)生物碳酸钙在再生骨料全表面的沉积:将步骤(2)所得的全表面固定了碳酸盐矿化菌的再生骨料完全放置在沉积矿化处理液中浸泡,浸泡时间为3~7天;

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重(每24小时内质量变化小于1%)。

上述步骤(1)预处理矿化处理液的组成为尿素、可溶性钙盐和水;其中,尿素和可溶性钙盐的浓度均不低于1mol/L,上述尿素和可溶性钙盐的摩尔比为1:1。

优选的,可溶性钙盐为硝酸钙、醋酸钙和乳酸钙中的任一种。

上述步骤(2)含可碳酸盐矿化菌的增稠溶液中,菌液浓度为10

细菌的培养为现有技术:按5%接种量取种子培养液于培养基中,置于温度28℃、转速130rpm摇床中培养24h,制得菌液;培养基为液体培养基,每1L液体培养基中包含有20g尿素和20g酵母提取物,余量为去离子水。液体培养基中,溶液的pH为8。

上述步骤(2)增稠溶液为增稠剂的水溶液,上述增稠剂选自海藻酸钠、阿拉伯胶、黄原胶、明胶或卡拉胶中的任一种,其中增稠剂浓度范围为0.2%~0.5%。

上述步骤(3)沉积矿化处理液包括0.25~1mol/L的尿素和0.25~1mol/L的可溶性钙盐,上述尿素和可溶性钙盐两者的摩尔比为1:1。

上述步骤(4)烘干温度为40℃~60℃,烘干时间为1~3天。

一种生物碳酸钙均匀强化再生骨料的应用,基于权利要求1~6任意一项上述的一种生物碳酸钙均匀强化再生骨料的制备方法制备的再生骨料在混凝土材料中的应用。

本发明制备的生物碳酸钙均匀强化再生骨料能够在混凝土应用中全部替代未处理再生骨料,进一步提高再生骨料混凝土的力学强度和耐久性能。

本发明相比现有技术具有以下优点:

1、本发明通过利用增稠剂的协同作用促进微生物在骨料的全表面沉积碳酸钙,提高生物碳酸钙在再生骨料上的分布均匀性,达到均匀强化再生骨料的目的。

2、本申请的增稠剂溶于水时可形成粘稠的凝胶状溶液,同时具有良好的生物相容性,与钙离子螯合后形成的网络结构能够有效包裹细菌,将碳酸盐矿化菌均匀地固定于再生骨料全表面,碳酸钙沉积以细菌作为成核位点,从而实现生物碳酸钙在再生骨料表面原位沉积,提高生物碳酸钙在再生骨料表面的分布均匀性,进一步降低再生骨料的吸水率和压碎值,从而提高再生骨料在混凝土中的利用率,同时实现混凝土的可持续发展,促进再生骨料在混凝土领域中的规模化应用;

3、本发明方法有利于提高再生骨料的二次利用效率,环境友好且具备良好的推广前景及应用价值。

附图说明

图1a为实施例1制备的海藻酸钠协同微生物强化后的再生骨料顶面的显微镜图像;

图1b为实施例1制备的海藻酸钠协同微生物强化后的再生骨料底面的显微镜图像;

图2为实施例1海藻酸钠协同微生物强化后的再生骨料的扫描电镜图像;

图3a为对比例1未有步骤(1)矿化处理液预处理的强化再生骨料顶面的显微镜图像;

图3b为对比例1未有步骤(1)矿化处理液预处理的强化再生骨料底面的显微镜图像;

图4为对比例1未有步骤(1)矿化处理液预处理的强化再生骨料的扫描电镜图像;

图5a为对比例2未有步骤(3)沉积矿化处理液浸泡的再生骨料顶面的显微镜图像;

图5b为对比例2未有步骤(3)沉积矿化处理液浸泡的再生骨料底面的显微镜图像;

图6为对比例2未有步骤(3)沉积矿化处理液浸泡的再生骨料的扫描电镜图像;

图7a为对比例3制备的壳聚糖协同微生物强化后的再生骨料顶面的显微镜图像;

图7b为对比例3制备的壳聚糖协同微生物强化后的再生骨料底面的显微镜图像;

图8为对比例3制备的壳聚糖协同微生物强化后的再生骨料的扫描电镜图像;

具体实施方式

下面将结合本发明实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌30秒,搅拌速度为60rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.25mol/L的尿素、0.25mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例2

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1.5mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌60秒,搅拌速度为60rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡5天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.5mol/L的尿素、0.5mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为50℃,烘干时间为1天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例3

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌90秒,搅拌速度为40rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡7天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为1mol/L的尿素、1mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为60℃,烘干时间为1天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例4

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1.5mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌120秒,搅拌速度为40rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡7天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.5mol/L的尿素、0.5mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例5

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌180秒,搅拌速度为30rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.25mol/L的尿素、0.25mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为60℃,烘干时间为2天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例6

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含球型芽孢杆菌的黄原胶溶液中搅拌30秒,搅拌速度为60rmp;

该步骤含球型芽孢杆菌的黄原胶溶液,是将培养的菌液离心重悬后,加入到黄原胶水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含球型芽孢杆菌的黄原胶溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.25mol/L的尿素、0.25mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

实施例7

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含球型芽孢杆菌的卡拉胶溶液中搅拌180秒,搅拌速度为30rmp;

该步骤含球型芽孢杆菌的卡拉胶溶液,是将培养的菌液离心重悬后,加入到卡拉胶水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含球型芽孢杆菌的卡拉胶溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.5mol/L的尿素、0.5mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天,最终实现生物碳酸钙在再生骨料全表面的均匀沉积。

对比例1

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的海藻酸钠溶液中搅拌30秒,搅拌速度为60rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天。

对比例2

(1)将再生骨料放置于含巴氏芽孢杆菌的海藻酸钠溶液中搅拌30秒,搅拌速度为60rmp;

该步骤含巴氏芽孢杆菌的海藻酸钠溶液,是将培养的菌液离心重悬后,加入到海藻酸钠水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(2)将再生骨料从含巴氏芽孢杆菌的海藻酸钠溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.25mol/L的尿素、0.25mol/L的硝酸钙的混合溶液。

(3)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天。

对比例3

(1)将预处理矿化处理液倒入装有再生骨料的容器中,直至预处理矿化处理液完全浸泡再生骨料,然后将容器置于室温下24小时;

该步骤预处理矿化处理液中尿素和硝酸钙的浓度均为1mol/L。

(2)将再生骨料从矿化处理液中取出,自然干燥1小时,转移至含巴氏芽孢杆菌的壳聚糖溶液中搅拌30秒,搅拌速度为60rmp;

该步骤含巴氏芽孢杆菌的壳聚糖溶液,是将培养的菌液离心重悬后,加入到壳聚糖水溶液中混合搅拌制备而成的,溶液中细菌浓度为10

(3)将再生骨料从含巴氏芽孢杆菌的壳聚糖溶液中取出,自然干燥1小时,转移至沉积矿化处理液中浸泡3天,沉积矿化处理液完全浸泡再生骨料即可;

该步骤矿化处理液为0.25mol/L的尿素、0.25mol/L的硝酸钙的混合溶液。

(4)将再生骨料从沉积矿化处理液中取出,用清水轻轻冲洗后,烘干至恒重,烘干的温度为40℃,烘干时间为3天。

测试例1:吸水率、压碎值测试

依据《JTG E42-2005公路工程集料试验规程》中吸水率测试方法;依据《GB/T14685-2001建筑用卵石、碎石》中压碎值测试方法:测试结果见表1:

表1

由表1中测试结果可知,未处理再生骨料的吸水率为5.29%,实施例1制备的海藻酸钠协同微生物作用后的再生骨料的吸水率为3.58%,而对比例1和对比例2再生骨料的吸水率分别为5.20%和4.25%,说明海藻酸钠协同微生物诱导碳酸钙方法能够显著降低吸水率;对比例3壳聚糖协同微生物作用后的再生骨料的吸水率为4.10%,说明海藻酸钠比壳聚糖对再生骨料的吸水率降低效果更加明显。

表1测试结果同时可知,未处理再生骨料的压碎值为17.38%,实施例1制备的海藻酸钠协同微生物作用后的再生骨料的压碎值为14.98%,而对比例1和对比例2再生骨料的压碎值为17.30%和16.34%,说明海藻酸钠协同微生物诱导碳酸钙方法能够显著降低压碎值,从而提高再生骨料的力学强度;对比例3壳聚糖协同微生物作用后的再生骨料的压碎值为15.97%,说明海藻酸钠比壳聚糖对再生骨料的压碎值降低效果更加明显。

测试例2:碳酸钙分布均匀性

对实施例1和对比例1~3制备的强化再生骨料的顶面和底面分别利用显微镜拍摄,从而比较海藻酸钠协同微生物作用后的再生骨料表面的碳酸钙分布均匀性是否提升。

图像显示,实施例1制备的海藻酸钠协同微生物作用后的再生骨料的顶面和底面均有白色碳酸钙沉淀覆盖,且覆盖率高,参见图1a和图1b;但是,对比例1再生骨料的顶面和地面均无白色碳酸钙覆盖,参见图3a和图3b,这是因为步骤3无沉积矿化处理液浸泡,则无法形成碳酸钙沉淀;对比例2再生骨料的顶面有白色碳酸钙沉淀覆盖,但是底面碳酸钙沉淀覆盖甚少,参见图5a和图5b,说明实施例1中步骤1形成的海藻酸钙网状结构能够包裹更多细菌,从而使得碳酸钙均匀分布于再生骨料表面;对比例3壳聚糖协同微生物作用后的再生骨料的顶面有白色碳酸钙沉淀覆盖,底面碳酸钙覆盖率却没有实施例1的高,参见图7a和图7b,说明海藻酸钠与钙离子螯合后形成的网络结构比壳聚糖固定细菌的能力更强。

对实施例1和对比例1~3制备的再生骨料分别进行扫描电镜观测。实施例1制备的海藻酸钠协同微生物作用后的再生骨料表面出现了大量的细菌印记(方框标出)参见图2;而在对比例1和对比例2再生骨料中并未观察到较多细菌印记,分别参见图4和图6,说明步骤1形成的海藻酸钙网状结构能够将大量细菌均匀固定于再生骨料表面;对比例3壳聚糖协同微生物作用后的再生骨料表面出现了一部分细菌印记,参见图8,但没有实施例1中多、也没有实施例1的分布均匀。

整个反应在室温下进行,说明本发明方法可有效提升再生骨料表面碳酸钙分布均匀性、进一步降低吸水率和压碎值,所使用的材料成本低廉,反应过程无污染,达到了保护环境、建筑垃圾再利用的目的,具有良好的推广前景和应用价值。

应用例:

将各实施例和各对比例制备的强化再生骨料应用于混凝土材料的制备中,具体包括以下步骤:选用再生骨料等体积取代天然骨料,与基准水泥、水、河砂进行搅拌,最终水灰比为0.5;

成型试块:搅拌、振捣之后倒入尺寸为100mm×100mm×100mm的模具进行成型;

试块养护:成型一天后拆模,置于标准养护箱中(相对湿度>95%,温度20±2℃)养护28天龄期。养护28天后制得各再生骨料混凝土试块。

混凝土配合比见表2。

表2

对各实施例和对比例制备的强化再生骨料混凝土,利用伺服压力试验机测试28天抗压强度,同时测试饱和吸水率,每例各制备3个重复样,结果取平均值,实验结果见表3。

表3

表3结果可知,实施例1海藻酸钠协同微生物强化的再生骨料混凝土28天抗压强度为38.8MPa,对比例1和对比例2再生骨料混凝土28天抗压强度分别为32.2MPa和34.2MPa,说明海藻酸钠协同微生物强化后的再生骨料能够有效提高再生混凝土的抗压强度;对比例3壳聚糖协同微生物强化的再生骨料混凝土28天抗压强度为35.0MPa,低于实施例1,说明海藻酸钠比壳聚糖提升再生骨料混凝土抗压强度的效果更加显著。

表3结果可知,实施例1海藻酸钠协同微生物强化的再生骨料混凝土饱和吸水率为5.15%,而对比例1和对比例2的再生骨料混凝土饱和吸水率分别为5.95%和5.86%,说明海藻酸钠协同微生物强化后的再生骨料能够有效提高再生混凝土的抗渗性能,从而提升了再生混凝土的耐久性;对比例3壳聚糖协同微生物强化的再生骨料混凝土饱和吸水率为5.59%,比实施例1高,说明海藻酸钠比壳聚糖提升再生骨料混凝土抗渗性能的效果更加显著。

综上所述,与现有再生骨料强化技术相比,利用海藻酸钠这类增稠剂的协同作用,将细菌均匀固定于再生骨料表面,由于碳酸钙形成是以细菌作为成核位点的,从而提高碳酸钙于再生骨料表面的分布均匀性,进一步降低再生骨料的吸水率和压碎值,提升再生混凝土的力学和耐久性能。进而提高再生骨料在混凝土中的利用率,同时实现混凝土的可持续生产。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

相关技术
  • 一种生物碳酸钙均匀强化再生骨料的制备方法和应用
  • 一种ECC材料在再生骨料强化中的应用、再生强化骨料及其制备方法和应用
技术分类

06120114704446