掌桥专利:专业的专利平台
掌桥专利
首页

视角发光方向可调制型机载显示器

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及机载显示领域,具体为一种视角发光方向可在一定范围内可随驱动电压调制的机载显示器。

背景技术

随着当代飞行技术的发展和飞机性能的日益提升,相关的飞行信息越来越多,现代飞机驾驶舱内充满了各式的显示器。部分显示器会有较大的离轴视角,如西锐SR20型飞机和钻石DA42NG型飞机的多功能飞行显示器在极轴方向上与主驾驶位呈约45°的视角,同时在方位轴方向上与主驾驶位呈约30°的视角。在某些特殊的飞行状态下,离轴视角还会变得更大。常规驾驶舱显示器的发光方向会随着离轴视角的增加而降低,因此位于飞行员大离轴视角方向的显示器的显示效果与可读性会随之降低;针对不同的飞行场景,驾驶舱内的显示器既需要同时适用于多种外部光照条件(如全日光的亮态或夜晚时的暗态等),又需要满足多种飞行运动场景(如急速爬坡、旋转等),因此对于驾驶舱显示器的显示画面质量有着非常高的要求,但现有技术存在着明显的缺陷。

在面对复杂的外部光照条件和特殊的飞行运动场景时,飞行员需要不时的调整身体姿态才能看到显示器的有效信息,这会对飞行安全造成了很大隐患:(1)飞行员在执行繁重的飞行任务过程中既要观察外部环境又要追踪关键飞行数据,驾驶舱显示系统的信息传递不清晰需要飞行员花费更多的时间和精力去识别飞行数据,会给飞行员造成额外负担并导致其难以应对的局面,更有甚者可能导致飞行员操作不及时或在慌乱中做出错误判断等问题;(2)飞行过程中当飞行员受到科里奥利加速度作用时,会因为惯性力偶矩作用于前庭半规管感受器引起错误知觉;如果此时飞行员为了识别显示信息而移动身体会加剧此效应,造成飞行员的自主神经功能紊乱,出现眩晕、恶心等不良生理现象,可能会导致严重的飞行事故。

本发明意在提出一种视角发光方向可调制型机载显示器对飞行员的相对位置进行针对性的优化,将显示器发出的光波集中于两个(或多个)飞行员的方向,实现大视角显示画面质量的提升,该技术具有以下优势:(1)提升飞行员视角方向的显示亮度,降低强光环境下对显示画面的干扰,提升驾驶舱显示器的可读性;(2)降低飞行员视角方向的显示色偏,使显示画面信息得到更好的还原,降低飞行员误读飞行参数从而导致错误操作的风险;综上所述,本专利所提技术可以有效提升现有驾驶舱显示系统在复杂环境和飞行运动场景下的综合性能,使飞行数据可以更加方便、快捷且准确的传递给飞行员,帮助飞行员更快速的做出正确的判断和操作,从而提升飞行安全。

本发明是通过以下技术方案实现的:

本发明结构由上至下依次为:上基板1、上电极层2、液晶层3、微结构层4、下电极层5、下基板6、上偏光片7、显示模组8、下偏光片9和背光源10。

所述的上基板1和下基板6均为透明基板。

所述的电极层2和下电极层5是平面透明电极,平面透明电制作材料优选氧化铟锡(ITO),电极厚度为0.05~0.15μm。

所述的液晶层3采用向列相液晶材料或蓝相液晶材料,液晶层厚度为1~200μm,液晶材料的双折射率差为0.05~0.3。

所述的微结构层4为锯齿状非对称结构,锯齿结构的上表面在水平轴两个方向的坡度不同,高、低坡度在水平轴上占据的尺寸大小比例为1:1~1:100;一个锯齿结构的周期大小为1~500μm,微结构高度为0.5~50μm;微结构层4的材料优选紫外固化胶或热固化胶,微结构层4在固化后的材料折射率小于液晶材料4中的非寻常轴折射率。

所述的上偏光片7和下偏光片9为碘系吸收型偏光片,上偏光片7的透光轴与下偏光片9的透光轴夹角为90度。

所述的显示模组8包括彩色滤光膜、液晶材料、薄膜场效应晶体管驱动(Thin FilmTransistor TFT)、子像素等结构。

所述的背光源10优选发光二极管(light emitting diode,LED)背光源。

与传统技术相比,本发明的增益效果是可以使机载显示器上的显示信息存在两个优先传播方向,这两个优先传播方向分别对应驾驶舱中两个飞行员的位置;在飞行过程中飞行员因为旋转、加速、爬坡等目视位置发生变化时,本发明提出的机载显示器可实时调整机载显示器的发光方向,始终保证飞行员目视方向显示画面的高质量,保证飞行信息和数据能够及时准确的传递给飞行员,降低飞行员的负担和产生数据误判的风险,从而提升飞行安全。

下述的参考附图和实施例说明是以详细解释本发明为目的,而不是作为本发明设计范围的设定。

附图说明

图1是本发明提出的视角发光方向可调制型机载显示器的结构示意图。

图2是使用向列相液晶材料的本发明在大视角调制模式下的光路图。

图3是使用向列相液晶材料的本发明在小视角调制模式下的光路图。

图4是使用蓝相液晶材料的本发明在大视角调制模式下的光路图。

图5是使用蓝相液晶材料的本发明在小视角调制模式下的光路图。

图6是未使用本发明结构的机载显示器的光学仿真模拟图。

图7是本发明实施例在小视角调制模式下的光学仿真模拟图。

图8是本发明实施例在大视角调制模式下的光学仿真模拟图。

具体实施方式

为使本领域的技术人员能进一步了解本发明,下面将结合附图详细地说明本发明的具体实施方式;需要说明的是,附图仅以说明为目的,并非按照原始的尺寸比例作图。

本发明的结构示意图如图1所示,该装置包括:

上基板1、上电极层2、液晶层3、微结构层4、下电极层5、下基板6、上偏光片7、显示模组8、下偏光片9和背光源10;上基板1和下基板6可以选择透明玻璃材料或柔性塑料、树脂材料基底可包含液晶分子取向层;液晶层3选择向列相液晶材料或蓝相液晶材料。采用向列相液晶材料时在不加驱动电压的状态下液晶层2的指向矢为平行于上基板1和下基板6排列(也是液晶分子取向处理的方向);采用蓝相液晶材料时在不加驱动电压的状态下液晶层2呈各向同性,不用对液晶层2表面做分子取向处理;上电极层2和下电极层5上的驱动电压可调谐,从而控制液晶层3的指向矢分布;上偏光片7和下偏光片9的透光轴夹角为90度,微结构层4的栅线方向与上偏光片7的透光轴方向相同;显示模组8可控制入射光波的偏振方向,通过上偏光片7、下偏光片9和显示模组8共同控制入射光波是否能传递到下基板6中;背光源10起发光作用;上述各膜层之间紧密贴附,不存在空气间隙。

图2是使用了向列相液晶材料的本发明机载显示器在大视角调制模式下的光路图,此时上电极层2和下电极层5上的驱动电压均为0V,电场不会对液晶分子指向矢的排列产生作用,液晶分子的长轴排列方向与上偏光片7的透光轴方向相同;此时液晶层3对光波的等效折射率最大,液晶层3与微结构层4的折射率差也最大,因此在经过液晶层3与微结构层4后光波传播方向的偏转较大,显示器适合在大视角观看。

图3是使用了向列相液晶材料的本发明机载显示器在小视角调制模式下的光路图,此时给上电极层2和下电极层5上施加一个驱动电压,在电场作用下液晶分子会发生偏转,液晶分子的长轴垂直于上基板1和下基板6;此时液晶层3对光波的等效折射率最小,液晶层3与微结构层4的折射率差也最小,因此在经过液晶层3与微结构层4后光波传播方向的偏转最小,显示器适合在小视角观看。

图4是使用了蓝相液晶材料的本发明机载显示器在大视角调制模式下的光路图,此时上电极层2和下电极层5上的驱动电压均为0V,此时蓝相液晶呈光学各向同性态,此时液晶层3对光波的等效折射率较大,液晶层3与微结构层4的折射率差也较大,因此在经过液晶层3与微结构层4后光波传播方向的偏转较大,显示器适合在大视角观看。

图5是使用了蓝相液晶材料的本发明机载显示器在小视角调制模式下的光路图,此时给上电极层2和下电极层5上施加一个驱动电压,在电场的作用下蓝相液晶分子会沿着电场方向(垂直于上基板1和下基板6的方向)诱导出双折射,此时液晶层3对光波的等效折射率较小,液晶层3与微结构层4的折射率差也较小,因此在经过液晶层3与微结构层4后光波传播方向的偏转较小,显示器适合在小视角观看。

本发明实施例中的参数为:液晶层3采用向列相液晶材料,其寻常轴折射率no=1.6,非寻常轴折射率ne=1.7;微结构层4的折射率为1.4,最小周期为10微米,微结构层4的最大高度为5微米;单个微结构在水平方向上的角度分别为29.0度和78.7度。

当不使用本发明结构时,垂直出射的光没有扩散作用,光波集中在0度极角上,图6是未使用本发明结构的机载显示器的光学仿真模拟图。

图6是本发明实施例在小视角调制模式下的光学仿真模拟图,通过电压控制驱动液晶层3与微结构层4的折射率差约为0.2,此时的显示器适合在极轴方向离轴角度为0度和极轴方向离轴角度为30度下使用。

图6是本发明实施例在大视角调制模式下的光学仿真模拟图,通过电压控制驱动液晶层3与微结构层4的折射率差约为0.3,此时的显示器适合在极轴方向离轴角度为10度和极轴方向离轴角度为40度下使用。

相关技术
  • 视角发光方向可调制型机载显示器
  • 一种用于机载显示器的收视角高光通量显示模组
技术分类

06120114725054