掌桥专利:专业的专利平台
掌桥专利
首页

汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法

文献发布时间:2023-06-19 19:07:35


汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法

技术领域

本发明涉及汽车用(automotive)碰撞能量吸收(crashworthiness energyabsorption)部件(parts)、该汽车用碰撞能量吸收部件的制造方法,特别是涉及在从车身(automotive body)的前方或后方输入了碰撞载荷(crashworthiness load)时,发生轴压坏(axial crush)而吸收碰撞能量的汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法。

背景技术

作为提高汽车的碰撞能量吸收性能(absorptive properties)的技术,存在汽车部件的形状(shape)/构造(structure)/材料(material)等的最适化(optimization)等较多的技术。此外,近年来,提出了使树脂(resin)发泡而填充于具有闭截面构造(closedcross section shape)的汽车部件(automotive part)的内部,由此同时实现该汽车部件的碰撞能量吸收性能的提高和轻量化(weight reduction of automotive body)的多个技术。

例如,专利文献1公开了一种技术,在将边梁(side sill)、地板构件(floormember)、支柱(pillar)等帽截面(hat-shaped cross section)部件的顶板(top portion)方向对齐并将凸缘(flange portion)重叠而在内部形成了闭锁空间的构造的汽车用构造构件中,通过向其内部填充发泡填充材料(foam filler),来抑制重量增加并提高该汽车用构造构件的弯曲强度(bending strength)、抗扭刚性(torsional stiffness),提高车身的刚性及碰撞安全性(collision safety)。

另外,专利文献2公开了一种技术,向使帽截面部件相对而使凸缘部对合的支柱等闭截面构造的内部空间内填充高刚性发泡体(high stiffness foam body)时,通过由该高刚性发泡体的填充及发泡产生的压缩反力(compressive counterforce)将高刚性发泡体固定,实现抑制振动音(vibration sound)的传递的防振性(vibration dampingperformance)的提高,并提高强度、刚性、碰撞能量吸收性能。

专利文献3公开了将层叠多个纤维层(fiber layer)而成的CFRP(carbon fiberreinforced plastics)制的加强材料(reinforcement material)通过热固化性粘接剂(thermosetting adhesive)粘接(adhere)于金属构件(metal member)的表面,为了在粘接后通过金属构件与加强材料的线膨胀系数(coefficient of linear thermal expansion)差使热固化性粘接剂产生的残留剪切应力(residual shear stress)缓和,具有厚度从加强材料的主体部朝向端缘(outer edge)逐渐减少的由残留剪切应力缓和部构成的构造的金属-CFRP复合材料(composite material)。

此外,专利文献4公开了一种汽车部件,具备前纵梁(front side member),所述前纵梁(front side member)由通过来自轴向的输入载荷而从输入端侧依次发生压坏(sequential axial crush)的筒状截面的FRP(fiber reinforced plastic)制能量吸收部、与之相连地由FRP形成而与车身部件(automotive parts)接合的支承部构成,所述能量吸收部将强化纤维等分地沿着前纵梁的长度方向和与之垂直的方向配向,所述支承部能够进行具有各向同性地将强化纤维(reinforcement fiber)配向的一体成形。

在先技术文献

专利文献

专利文献1:日本特开2006-240134号公报

专利文献2:日本特开2000-318075号公报

专利文献3:日本特开2017-61068号公报

专利文献4:日本特开2005-271875号公报

发明内容

发明的概要

发明要解决的课题

根据专利文献1及专利文献2公开的技术,通过向汽车部件的内部填充发泡填充材料或发泡体(foam body),能够提高该汽车部件的相对于弯曲变形(bending deformation)的强度、碰撞能量吸收性能、进而相对于扭转变形(torsional deformation)的刚性,能够抑制该汽车部件的变形。

然而,对于如前纵梁或碰撞吸能盒(crash box)那样从汽车的前方或后方输入碰撞载荷(crashworthiness load)而发生轴压坏时压曲变形(buckling deformation)为波纹状(bellows-shaped)而吸收碰撞能量的汽车部件,即使适用向该汽车部件的内部填充发泡填充材料、发泡体的技术,也仅是填充于汽车部件的内部,汽车部件与发泡填充材料或发泡材料的粘接力(adhesion force)不足。其结果是,存在如下课题:部件内部的发泡填充材料或发泡剂(foaming agent)从碰撞时在部件的接合部产生的间隙等喷出,难以提高碰撞能量的吸收性能。而且,也存在产生将发砲树脂无间隙地填充这样的追加工序而汽车部件制造中的生产成本上升这样的问题。

另外,根据专利文献3、专利文献4公开的技术,通过在金属表面粘接CFRP而能够提高弯曲耐力(bending strength),考虑CFRP其本身的配向性(orientation)而一体制造部件,由此能够实现部件组装工时的减少、紧固部件的削减引起的重量增加的削减。

然而,即使将CFRP向伴有变形的轴压坏部件适用,CFRP的强度高,其反面是延展性(elongation)显著低,因此在正当波纹状的变形开始的时候会产生CFRP的折弯(break)/断裂(fracture),存在碰撞能量吸收性能未提高的课题。而且,CFRP也存在成本显著高的课题。

本发明是为了解决上述那样的课题而作出的发明,其目的在于提供一种在前纵梁或碰撞吸能盒那样的从车身的前方或后方输入碰撞载荷而发生轴压坏时,在外表面形成涂料(coating)厚的膜(coating film)而提高碰撞能量的吸收效果,并能够作为吸收车身产生的振动(vibration)的减振材料(vibration-damping material)发挥作用,并且能够减少追加的生产工序,因此生产成本未较大地上升的汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法。

用于解决课题的方案

发明者仔细研讨解决上述课题的方法,得到了通过有效利用汽车制造的涂装工序(coating process)中通常使用的电沉积涂料(electrodeposition paint),不需要将发泡树脂等的填充材料无间隙地填充这样的追加工序而能够提高碰撞能量的吸收效果这样的见解。本发明是基于上述的见解而作出的发明,具体而言,由以下的结构构成。

本发明的汽车用碰撞能量吸收部件设置在车身的前部或后部,在从该车身的前方或后方输入碰撞载荷时发生轴压坏而吸收碰撞能量,其中,所述汽车用碰撞能量吸收部件具有:筒状构件(tubular member),使用具有顶板部(top portion)和纵壁部(side-wallportion)的帽截面构件(hat-shaped section part)而形成;涂膜形成构件(coatingparts),在所述顶板部和所述纵壁部的外表面中的包含将所述顶板部与所述纵壁部连结(connect)的拐角部(corner portion)的部分,与所述顶板部外表面及所述纵壁部外表面及所述拐角部外表面隔开0.2mm以上且3mm以下的间隙(gap)地配置,由强度比所述筒状构件低的材质(material)构成;及涂膜(coating film),形成于所述间隙且由电沉积涂料形成。

本发明的汽车用碰撞能量吸收部件的制造方法中,所述汽车用碰撞能量吸收部件设置在车身的前部或后部,在从该车身的前方或后方输入碰撞载荷时发生轴压坏而吸收碰撞能量,其中,所述汽车用碰撞能量吸收部件的制造方法包括:部件制造工序,制造涂装前部件,所述涂装前部件具有筒状构件和涂膜形成构件,所述筒状构件使用具有顶板部和纵壁部的帽截面构件而形成,所述涂膜形成构件在该筒状构件的外表面中的包含将所述顶板部与所述纵壁部连结的拐角部的部分,与所述顶板部外表面及所述纵壁部外表面及所述拐角部外表面隔开0.2mm以上且3mm以下的间隙地配置,由强度比所述筒状构件低的材质构成;及涂膜形成工序(coating process),在将该涂装前部件安装于所述车身的状态下,在包含所述间隙的部件表面,通过基于电沉积涂装(electrodeposition coating)的电沉积工序(electrodeposition coating process)形成涂料层,通过与之接续的涂料烘烤处理(paint baking treatment)使所述涂料层(coating layer)热固化(thermosetting)而形成涂膜。

发明效果

根据本发明,在从车身的前方或后方输入了碰撞载荷时发生轴压坏而吸收碰撞能量的筒状构件发生压缩变形(compressive deformation)的过程中,能够提高该筒状构件的压曲耐力(buckling strength),并且不使该筒状构件的变形阻力(deformationresistance)下降而能够呈波纹状地产生压曲变形,并且能够防止所述筒状构件的所述压曲变形中的弯曲部(bending portion)的断裂,能够大幅提高碰撞能量的吸收性能。而且,能够吸收来自汽车发动机的振动、在汽车行驶(driving automobile)时从各方向向车身(automotive body)输入的振动,提高减振性。此外,在本发明中具有涂膜形成构件,因此能够形成在汽车制造的涂装工序中通常进行的电沉积涂装中设为目标的厚度的涂膜,能够沿用以往的汽车制造生产线来制造。

附图说明

图1是表示本发明的实施方式1的汽车用碰撞能量吸收部件的立体图。

图2是表示在本发明的实施方式1的汽车用碰撞能量吸收部件形成涂膜之前的状态的立体图。

图3是表示钢板的断裂极限弯曲半径(critical curvature radius forfracture)与板厚之比和钢板的抗拉强度(tensile strength)之间的关系的坐标图。

图4是本发明的实施方式2的汽车用碰撞能量吸收部件的制造方法的说明图。

图5是表示本发明的汽车用碰撞能量吸收部件的另一形态的图(其1)。

图6是表示本发明的汽车用碰撞能量吸收部件的另一形态的图(其2)。

图7是表示本发明的汽车用碰撞能量吸收部件的另一形态的图(其3)。

图8是表示本发明的汽车用碰撞能量吸收部件的另一形态的图(其4)。

图9是表示本发明的汽车用碰撞能量吸收部件的另一形态的图(其5)。

图10是说明实施例的轴压坏试验(axial crushing test)方法的图。

图11是说明实施例的打击振动试验(impact vibration test)方法的图。

图12是表示在实施例的打击振动试验方法进行的振动特性(vibrationcharacteristics)评价中设为固有振动频率(character frequency)算出的对象的振动模式(vibration mode)的图。

图13是表示在实施例中作为发明例使用的试验体的构造的图。

图14是表示在实施例中作为比较例使用的试验体的构造的图。

具体实施方式

[实施方式1]

以下,对本实施方式的汽车用碰撞能量吸收部件进行说明。需要说明的是,在本说明书及附图中,对于实质上具有相同的功能、结构的要素,通过标注同一标号而省略重复说明。

本实施方式的汽车用碰撞能量吸收部件1(图1)是设置在车身的前部或后部,在从该车身的前方或后方输入了碰撞载荷时发生轴压坏而吸收碰撞能量的结构,在安装于所述车身的状态下,在表面形成基于电沉积涂料的涂料层,通过涂料烘烤处理而所述涂料层固化,形成涂膜。如图1所示,在使用帽截面构件形成的筒状构件3的外表面侧设置涂膜形成构件5,在帽截面构件与涂膜形成构件5之间的间隙形成基于电沉积涂料的涂膜13。图2是表示汽车用碰撞能量吸收部件1的电沉积涂装前的状态(以后,称为涂装前部件2)的图。基于图1及图2,以下,对各构件进行说明。

<筒状构件>

筒状构件3由钢板等金属板(metal sheet)构成,是将帽截面形状的外部部件(outer parts)7(本发明中的帽截面构件)与平板状的内部部件(inner parts)9通过作为外部部件7的凸缘部的接合部10接合而形成为筒状的结构,所述外部部件7具有顶板部7a、纵壁部7b及将顶板部7a与纵壁部7b连结的拐角部7c。具有这样的筒状构件3的汽车用碰撞能量吸收部件1是在向汽车用碰撞能量吸收部件1的轴向前端输入碰撞载荷且筒状构件3超过压曲耐力地发生轴压坏的过程中,通过使筒状构件3呈波纹状地反复产生压曲变形而吸收碰撞能量的结构。

<涂膜形成构件>

涂膜形成构件5由钢板等金属板构成,在外部部件7的外表面侧且在包含拐角部7c的部分以形成0.2mm以上且3mm以下的间隙11的方式配置,在接合部12通过点焊(spotwelding)等接合(joining)(参照图2)。涂膜形成构件5可以遍及外部部件7的轴向的全长地设置,但是也可以仅设置于汽车用碰撞能量吸收部件1中的想要进行波纹变形的范围。例如在将汽车用碰撞能量吸收部件1设置于车身的前部且想要使从前端至轴向中途的范围发生波纹变形的情况下,只要在外部部件7的该范围设置涂膜形成构件5即可。并且,外部部件7中的未设置涂膜形成构件5的部分,例如轴向的从中途至后端的范围为了提高变形强度(deformation strength),只要例如形成沿轴向延伸的加强筋形状(bead-shape)或者增厚板厚即可。

在该间隙11,在汽车制造的一般的涂装工序之一的电沉积涂装时,形成基于电沉积涂料的涂膜13(参照图1)。作为电沉积涂料的种类,可列举例如聚氨酯系(polyurethane)阳离子电沉积涂料(cationic electrodeposition paint)、环氧系(epoxy)阳离子电沉积涂料、氨基甲酸乙酯(urethane)阳离子电沉积涂料、丙烯酸系(acrylic)阴离子电沉积涂料、氟树脂(fluororesin)电沉积涂料等。关于电沉积涂装,在后述的实施方式2中具体进行说明。

通常进行电沉积涂装时,在钢板的表面形成0.05mm左右的涂膜,但是在本实施方式中,通过在涂装前部件2中的外部部件7的外表面侧设置涂膜形成构件5而电沉积涂料进入间隙11并形成涂料层,通过对其进行热处理(heat treatment)而能够形成图1所示那样的具有0.2mm以上且3mm以下的厚度的涂膜13。以下说明通过形成这样的涂膜13而汽车用碰撞能量吸收部件1的碰撞能量吸收效果提高的理由。

具有由钢板等金属板形成的筒状构件的汽车用碰撞能量吸收部件在向该汽车用碰撞能量吸收部件的轴向前端输入碰撞载荷且该筒状构件超过压曲耐力地发生轴压坏的过程中,通过使该筒状构件反复产生波纹状的压曲变形而吸收碰撞能量。

然而,波纹状的弯曲部分成为金属板固有的小的弯曲半径,因此在弯曲部分的外表面集中应力(stress)而容易产生破裂(fracture),如果在轴压坏的过程中在弯曲部分产生破裂,则碰撞能量的吸收效果显著减少。因此,为了提高碰撞能量的吸收效果,需要防止在呈波纹形状地压曲变形的筒状构件产生的破裂。

特别是近年来,以碰撞特性和轻量化的同时实现为目的而采用于汽车部件的高强度钢板与以往的强度的钢板相比延展性小。表1及图3所示的钢板抗拉强度等级与钢板的断裂极限弯曲半径R/板厚t之间的关系(参照下述的参考文献1)表示在相同板厚的情况下,钢板的抗拉强度TS越大,则越是大的弯曲半径,既便如此,断裂(fracture)也越容易发生。即,当使用了高强度钢板的汽车用碰撞能量吸收部件呈波纹状地压曲变形时,伴随着钢板强度的增加而波纹形状的弯曲前端容易产生破裂,这也成为阻碍为了汽车车身的轻量化而使汽车用碰撞能量吸收部件使用的钢板的进一步的高强度化进展的主要原因。(参考文献1)长谷川浩平,金子真次郎,濑户一洋,“对驾驶室周边的车身部件的轻量化作出贡献的高强度冷轧/合金化熔融锌镀敷(GA)钢板”,JFE技报,No.30(2012年8月),p.6-12.

[表1]

相对于此,本发明在碰撞时筒状构件3呈波纹状地压曲变形之际,在呈凹状地变形的弯曲部,在金属板与金属板之间介有并夹着物品而使其压缩(compression),由此增大呈凹状地变形的弯曲部的弯曲半径,防止波纹形状的弯曲前端的破裂。在此,作为介于金属板与金属板之间的物品,为了避免汽车用碰撞能量吸收部件的重量增加优选尽可能轻量,此外,不是如现有例的发泡树脂(foam resin)等那样在部件制造中需要材料、工序的追加,优选沿用以往的汽车制造生产线能够制造。因此,本发明有效利用了在汽车制造中通常进行的电沉积涂装的涂料。

另外,在筒状构件3中吸收碰撞能量的能力高的部位是将顶板部7a与纵壁部7b连结的拐角部7c,但拐角部7c也是在对外部部件7进行冲压成形时最容易受到加工而发生加工固化(work hardening)的部位,由于加工固化而延展性进一步下降。由此,拐角部7c中的波纹形状的弯曲前端部分是特别容易发生破裂的部位。

因此,在本发明中,在外部部件7的包含拐角部7c的外表面侧,以与该外表面之间产生0.2mm~3mm的间隙11的方式设置涂膜形成构件5,由此,在电沉积涂装时电沉积涂料进入间隙11而能够形成具有规定的厚度的涂料层。涂料层在电沉积涂装的烘烤工序(bakingprocess)中固化并固定于间隙11而成为涂膜13。本实施方式的汽车用碰撞能量吸收部件1在碰撞时筒状构件3发生压曲变形之际,通过在波纹形状的凹状弯曲部的内侧介有涂膜13而增大凹状弯曲部的弯曲半径从而能够抑制波纹形状的弯曲前端部分发生破裂,因此碰撞能量吸收效果提高。需要说明的是,关于涂膜13的适当的厚度为0.2mm~3mm的情况,在后述的实施例中说明。

本实施方式的汽车用碰撞能量吸收部件1的涂膜13也作为吸收振动的减振材料(vibration-damping material)发挥作用。例如,在使用汽车用碰撞能量吸收部件1作为使其轴压坏而吸收碰撞能量的部件即前纵梁的情况下,涂膜13吸收搭载于该前纵梁的汽车发动机(automotive engine)的振动,减振性提高。关于该减振性提高的效果,也在后述的实施例中进行说明。

如上所述,涂膜形成构件5以在电沉积涂装时形成规定厚度的涂膜13的情况为目的而不需要强度,因此也可以是与外部部件7及内部部件9相比强度低、板厚较薄的结构。进而言之,如果涂膜形成构件5的强度过高,则会阻碍碰撞时的筒状构件3的顺畅的波纹状的压曲变形,因此优选为例如440MPa级(MPa-class)以下。

[实施方式2]

在本实施方式中,说明实施方式1中说明过的汽车用碰撞能量吸收部件1的制造方法。本实施方式的汽车用碰撞能量吸收部件1的制造方法包括:部件制造工序,制造在筒状构件3设有涂膜形成构件5的涂装前部件2;及涂膜形成工序,在将涂装前部件2安装于车身之后,在涂装前部件2形成涂料层,通过烘烤处理使涂料层热固化而形成涂膜13。关于各工序,以下,使用图1及图2所示的汽车用碰撞能量吸收部件1的剖视图即图4进行具体说明。

<部件制造工序>

部件制造工序是制造涂装前部件2的工序,所述涂装前部件2在将外部部件7及内部部件9接合而成的筒状构件3的外表面侧设有涂膜形成构件5。如图4(a)示出例子那样,在外部部件7的包含拐角部7c的范围的外侧,在与外部部件7的外表面之间隔开0.2mm~3mm的间隙11地设置涂膜形成构件5,通过点焊等而接合于纵壁部7b的外表面。而且,也可以使涂膜形成构件5接触、进而接合于外部部件7的顶板部7a(参照图6(b)、图7(b))。外部部件7与内部部件9的接合及外部部件7与涂膜形成构件5的接合哪个先进行均可。

<涂膜形成工序>

涂膜形成工序是在间隙11形成涂膜13的工序。在将通过上述的部件制造工序制造的涂装前部件2安装于车身的状态下,实施汽车的制造过程中通常进行的电沉积涂装,由此在间隙11形成涂膜13。以下,概略说明电沉积涂装及汽车制造中的其他的涂装工序,并说明本工序。

通常,在汽车的车身,为了提高耐候性(weatherability)、外观设计性(design)、防蚀性(anticorrosion property)等而对于钢板顺次实施电沉积涂装、中间涂层(intermediate coat)涂装、外涂层(top coat)打底涂装、外涂层透明涂装(clear coat)。其中,对于钢板首先实施的电沉积涂装是为了提高车身的防锈性(rust prevention)而重要的工序,被广泛使用。电沉积涂装实施通过电沉积而在钢板形成涂料层的处理和通过干燥炉(drying furnace)(烤炉(oven))等使涂料层固化的处理。以下说明电沉积涂装的一例,示出与本实施方式的涂膜形成工序的对应。

在一般的电沉积涂装中,首先,对于通过钢板的冲压成形(press-forming)等形成的车身部件,进行脱脂(degreasing)、水洗(washing)、化学转化处理(chemicalconversion treatment)等表面处理(surface treatment)作为前处理,进行了表面处理的车身部件之后浸渍于装有电沉积涂料的电沉积槽(electrodeposition tank),以被涂物(object to be coated)(车身部件)为阴极(cathode),以电沉积涂料为阳极(anode)进行通电(conducting),由此在钢板表面形成由电沉积涂料形成的涂料层(阳离子电沉积涂装)。通过电沉积槽内的通电而在表面形成有电沉积涂料的涂料层的车身部件经由之后的水洗等处理而向高温的干燥炉(烤炉)搬运,通过烘烤处理(baking treatment)使涂料层固化。

本实施方式的通过部件制造工序制造的涂装前部件2(参照图4(a))也是以安装于车身骨架的状态浸渍于上述的电沉积槽时,电沉积涂料进入间隙11,通过之后的通电形成涂料层。在间隙11以外的其他的部位,在钢板表面也形成由电沉积涂料形成的涂料层,但是其厚度薄至0.05mm左右,因此省略图示。

形成有涂料层的汽车用碰撞能量吸收部件1之后经由前述那样的烘烤处理而涂料层固化,在间隙11固定有规定厚度的涂膜13(图4(b))。需要说明的是,涂膜13优选遍及间隙11内的整个区域地以实心状态(solid state)形成,但是也可考虑以在间隙11的一部分存在空隙(void)的状态形成涂膜13的情况,即使在这样的情况下与没有涂膜13的情况相比也能够发挥本发明的效果,因此不排除在间隙11的一部分存在空隙的情况。

电沉积涂装对于被涂物的沉积特性(deposition property ofelectrodeposition coating)(涂料向未涂装部扩展的性能)高,因此对于凹凸多的内板构件(车身骨架部分、发动机室等)特别有效。电沉积涂料存在各个种类,根据涂装对象、要求功能(沉积特性、节能性(energy saving)、防蚀性等)而分开使用。设想本发明的汽车用碰撞能量吸收部件1适用主要在内板(内装)用中使用的基于软质涂料(flexible coatingfilm)的电沉积涂装,作为其种类,可列举例如聚氨酯系阳离子电沉积涂料、环氧系阳离子电沉积涂料、氨基甲酸乙酯阳离子电沉积涂料、丙烯酸系阴离子电沉积涂料、氟树脂电沉积涂料等。

实施了电沉积涂装的车身部件被实施中间涂层涂装、外涂层打底涂装、外涂层透明涂装。它们主要利用被称为静电涂装(electrostatic painting)的将带电的涂料通过喷雾等向被涂物喷射的方法进行,中间涂层涂装具有电沉积涂装面的粗糙度隐蔽(roughnessmasking)、光线透过抑制(light transmittance restraining)、外涂层打底涂装及外涂层透明涂装着色(coloring)等外观设计性、耐久性(durability)等功能。作为中间涂层涂装、外涂层打底涂装及外涂层透明涂装使用的涂料的例子,可列举聚酯-三聚氰胺系涂料(polyester-melamine paint)、丙烯酸-三聚氰胺系涂料(acrylic-melamine paint)、丙烯酸-聚酯-三聚氰胺系涂料(acrylic-polyester-melamine paint)、醇酸-聚酯三聚氰胺系涂料(alkyd-polyester-melamine paint)等。

如以上所述,根据本实施方式中说明的汽车用碰撞能量吸收部件1的制造方法,通过在筒状构件3设置涂膜形成构件5,在通过汽车制造的涂装工序通常进行的电沉积涂装时,由于在筒状构件3与涂膜形成构件5之间的间隙11形成由电沉积涂料形成的涂膜13,因此能够不使生产成本较大地上升而制造碰撞能量的吸收效果高的汽车用碰撞能量吸收部件1。

在实施方式1及2中,说明了在图4示出了剖视图那样的外部部件7的纵壁部7b设置涂膜形成构件5的接合部12,在顶板部7a、拐角部7c及纵壁部7b的一部分的外表面形成涂膜13的例子,但是本发明并不局限于此。例如也可以如图5所示,在纵壁部7b为稍微一点且以顶板部7a及拐角部7c为主体的外表面形成涂膜。而且,如前所述,如果在碰撞时特别容易发生破裂的拐角部7c的外表面形成涂膜,则能够期待碰撞能量吸收效果的提高,因此也可以如图6所示在以拐角部7c为主体的外表面形成涂膜13。此时,也可以使用两个涂膜形成构件5而在顶板部7a和纵壁部7b分别设置接合部(joining portion)12(图6(a)),也可以使用一个涂膜形成构件5与顶板部7a的中央接触,进而接合,在纵壁部7b设置接合部12(图6(b))。

另外,也可以如图7所示,在纵壁部7b及拐角部7c的外表面形成涂膜13。与图6同样,也可以使用两个涂膜形成构件5而在顶板部7a和纵壁部7b分别设置接合部12(图7(a)),也可以使用一个涂膜形成构件5与顶板部7a的中央接触,进而接合,在纵壁部7b设置接合部12(图7(b))。此外,也可以将图8所示那样的帽截面型的涂膜形成构件5对合于外部部件7和内部部件9而利用接合部10接合。

在本实施方式中,列举由帽截面形状的外部部件7和平板形状的内部部件9构成的筒状构件3为例,但是本发明并不局限于此,也可以适用于图9示出例子的使帽截面构件相对而使凸缘部(flange portion)对合而成的筒状构件。图9(a)是在相对的帽截面构件分别设置图5所示的形态的涂膜形成构件5的例子。同样,图9(b)是设有图6(a)所示的形态的涂膜形成构件5的例子,图9(c)是设有图7(b)所示的形态的涂膜形成构件5的例子,图9(d)是设有图8所示的形态的涂膜形成构件5的例子。需要说明的是,在图9中,关于外部部件7,标注与图4~图8相同的标号,关于内部部件9,标注与外部部件7对应的标号。而且,在图9中,示出了外部部件7和内部部件9为相同形状的帽截面构件的例子,但内部部件9也可以是与外部部件7不同的形状的帽截面构件。

实施例

进行了用于确认本发明的汽车用碰撞能量吸收部件1的效果的试验,因此以下说明其结果。

在本实施例中,将本发明的汽车用碰撞能量吸收部件设为试验体,进行了基于轴压坏试验的碰撞能量的吸收特性的评价、基于打击振动试验中的频率响应函数(frequencyresponse function)的测定和固有振动频率(character frequency)的算出的减振特性(damping characteristic)的评价。

在轴压坏试验中,如图10所示沿着具有筒状构件3的试验体21的轴向以试验速度17.8m/s输入载荷,测定使试验体长度(试验体21的轴向长度L0)从200mm至120mm轴压坏变形80mm时的表示载荷与行程(轴压坏变形量(amount of axial crush deformation))之间的关系的载荷-行程曲线(load-stroke curve),并且进行基于高速度相机的摄影而观察了变形状态和筒状构件3中的断裂发生的有无。此外,根据测定到的载荷-行程曲线,求出了行程为0~80mm的吸收能量。

另一方面,在打击振动试验中,如图11所示,对于悬吊的试验体21,将加速度传感器(acceleration sensor)(小野测器制:NP-3211)安装在外部部件7的顶板部7a内侧的边缘附近,通过冲击锤(impact hammer)(小野测器制:GK-3100)对试验体21的外部部件7的纵壁部7b内侧进行打击施振(impact vibration),将施振力(impact force)和试验体21产生的加速度(acceleration)向FFT分析器(小野测器制:CF-7200A)取入,算出了频率响应函数。在此,频率响应函数通过5次的打击的平均化处理和曲线拟合(curve fitting)算出。并且,通过算出的频率响应函数进行振动模式解析(vibration mode analysis),求出了同一模式下的固有振动频率。图12示出设为对象的振动模式。

图13示出形成有前述的实施方式1及2的涂膜13的汽车用碰撞能量吸收部件1(图1及图4(b))即试验体21的构造及形状。试验体21具有将外部部件7与内部部件9通过点焊接合而成的筒状构件3,将涂膜形成构件5接合于外部部件7的纵壁部7b的外表面。在外部部件7与涂膜形成构件5之间形成涂膜13。

图13示出了从顶板部7a至拐角部7c、纵壁部7b的与涂膜形成构件5之间的间隙11设为3mm的例子,但是在本实施例中也准备将间隙11设为2mm、1mm、0.2mm的试验体21,一边改变形成于间隙11内的涂膜13的厚度,一边进行了试验。

进而,作为比较例,准备具有图14所示那样的筒状构件3及涂膜形成构件5且未形成涂膜13的试验体31,与发明例同样地进行了轴压坏试验及打击振动试验。表2示出作为发明例的试验体21及作为比较例的试验体31的构造及涂膜的各条件及试验体重量、进而进行了轴压坏试验时的吸收能量的算出结果、通过打击振动试验求出的固有振动频率的结果。

[表2]

发明例1~发明例5都是使用了具备涂膜形成构件5和涂膜13的试验体21(图13)的例子,使外部部件7及涂膜形成构件5的强度(材质)、涂膜13的厚度变化。另一方面,比较例1~比较例4是具备涂膜形成构件5,但使用了未形成涂膜13的试验体31(图14)的例子,使外部部件7的强度(材质)及板厚、外部部件7与涂膜形成构件5之间的间隙11变化。比较例5是不具备涂膜形成构件5而成膜的例子。比较例6是与试验体21同样地具备涂膜形成构件5和涂膜13,但涂膜形成构件5的材质超过外部部件7及内部部件9的材质的强度的例子。

表2所示的试验体重量关于形成有涂膜13的例子是外部部件7、内部部件9、涂膜形成构件5及涂膜13的各重量的总和,关于没有涂膜13的例子(比较例1~比较例4)是外部部件7、内部部件9及涂膜形成构件5的各重量的总和。

比较例1的试验体重量为1.08kg,吸收能量为6.5kJ。此外,固有振动频率为155Hz。

比较例2是相对于比较例1而变更了外部部件7的板厚、外部部件7与涂膜形成构件5之间的间隙的例子,试验体重量为1.19kg,吸收能量为7.0kJ,与比较例1相比增加。固有振动频率为175Hz。

比较例3是将外部部件7设为980MPa级的高强度钢板(high-strength steelsheet)的例子,试验体重量为1.08kg。吸收能量为8.1kJ,与比较例2相比进一步增加,但是筒状构件3发生了断裂。固有振动频率为155Hz。

比较例4是将外部部件7设为1180MPa级的高强度钢板的例子,试验体重量为1.09kg。吸收能量为8.5kJ,与比较例3相比进一步增加,但在筒状构件3发生了断裂。固有振动频率为155Hz。

比较例5是将外部部件7设为1180MPa级的高强度钢板,未设置涂膜形成构件5而成膜的例子,涂膜13的厚度为0.05mm。试验体重量为0.96kg,吸收能量为8.7kJ,与比较例4相比增加,但是在筒状构件3发生了断裂。固有振动频率为155Hz。

比较例6是涂膜形成构件5的材质超过外部部件7及内部部件9(筒状构件3)的材质的强度的例子,还形成有3mm的厚度的涂膜13。试验体重量为1.28kg,吸收能量为8.1kJ,与比较例1相比增加,但是在筒状构件3发生了断裂。固有振动频率为350Hz。

发明例1是将外部部件7设为钢板强度590MPa级的钢板,使用了涂膜13的厚度为3mm的试验体21的例子。发明例1中的吸收能量为11.1kJ。与未形成涂膜13的同一材质的比较例1的吸收能量(=6.5kJ)相比大幅提高,在筒状构件3未发生断裂。而且,与将外部部件7设为980MPa级的高强度钢板的比较例3(=8.1kJ)、1180MPa级的比较例4(=8.5kJ)相比,吸收能量也大幅提高。发明例1的试验体重量(=1.28kg)与比较例1(=1.08kg)、比较例3(=1.08kg)及比较例4(=1.09kg)相比增加,但是将吸收能量除以试验体重量而得到的每单位重量的吸收能量为8.7kJ/kg,与比较例1(=6.0kJ/kg)、比较例3(=7.5kJ/kg)及比较例4(=7.8kJ/kg)相比提高。而且,发明例1的固有振动频率为430Hz,与比较例1、比较例3及比较例4(=155Hz)相比大幅上升。

发明例2是使用与发明例1相同的材质,将涂膜13的厚度设为2mm的例子。试验体重量为1.21kg,与发明例1(=1.28kg)相比成为轻量。发明例2的吸收能量为9.0kJ,与同一形状且外部部件7的板厚较厚的比较例2的吸收能量(=7.0kJ)相比提高。在筒状构件3未发生断裂。此外,发明例2的每单位重量的吸收能量为7.4kJ/kg,与比较例2(=5.9kJ/kg)相比提高。而且,发明例2的固有振动频率为340Hz,与比较例2(=175Hz)相比大幅上升。

发明例3是与发明例2同样地将涂膜13的厚度设为2mm,将涂膜形成构件5的钢板强度设为440MPa级的例子。在涂膜形成构件5的钢板强度超过外部部件7的钢板强度的780MPa的比较例6中,在筒状构件3发生了断裂,但是在发明例3中未发生断裂。而且,发明例3的吸收能量为9.5kJ,与比较例6(=8.1kJ)相比提高。

发明例4是将外部部件7设为钢板强度1180MPa级的高强度钢板,将涂膜13的厚度设为1mm的例子。发明例4的吸收能量为11.2kJ,在筒状构件3未发生断裂。外部部件7使用同一原料的钢板,与发生断裂的比较例4(=8.5kJ)相比吸收能量大幅提高。而且,发明例4的试验体重量是与发明例1相比为轻量的1.17kg,此外,每单位重量的吸收能量(=9.6kJ/kg)与发明例1(=8.7kJ/kg)及比较例4(=7.8kJ/kg)相比提高。此外,发明例4的固有振动频率为310Hz,与比较例4(=155Hz)相比大幅上升。

发明例5是与发明例4相同原料,将涂膜13的厚度设为与通常的层压钢板(laminated steel sheet)中的层压相同程度的0.2mm,试验体重量为1.10kg。发明例5的吸收能量为10.7kJ,每单位重量的吸收能量为9.7kJ/kg,与不具备涂膜形成构件5而形成了0.05mm的涂膜的比较例5(=9.1kJ/kg)相比提高。而且,比较例5在筒状构件发生了断裂,但是发明例5未发生断裂。此外,发明例5中的固有振动频率为280Hz,与比较例5(=155Hz)相比上升。

需要说明的是,虽然未记载在表中,但是在将外部部件7与涂膜形成构件5之间的间隙设为4mm以上的情况下,即,形成了4mm以上的厚度的涂膜13的情况下,在电沉积涂装的烘烤处理中无法进行充分的干燥,产生涂料的液体而干燥的涂膜未形成至规定间隙。由此,将本发明的涂膜13的适当的厚度设为0.2mm~3mm。

通过以上所述,本发明的汽车用碰撞能量吸收部件1在沿轴向输入碰撞载荷而发生轴压坏的情况下,表现出能够抑制重量的增加并高效地提高碰撞能量的吸收效果,并且施加了冲击时的固有振动频率上升而能够提高减振性的情况。

需要说明的是,由于固有振动频率上升而减振性提高的理由如以下所述。上述的前纵梁那样的碰撞构件即筒状构件3的固有振动频率进入搭载于该构件的发动机的振动的频率范围时,发生共振(sympathetic vibration)而振动增大。例如,当发动机以通常行驶的高旋转区域的4000rpm旋转时,曲轴(crankshaft)以相同的转速转动,在四冲程发动机每旋转两圈爆发一次地振动,因此振动的频率在四气缸(cylinder)发动机中成为133Hz,在六气缸发动机中成为200Hz,在八气缸发动机中成为267Hz。因此,原因是,如果为本发明的约280Hz以上的固有振动频率,则能够可靠地防止上述的共振而减振性提高。

产业上的可利用性

根据本发明,能够提供一种在前纵梁、碰撞吸能盒那样的从车身的前方或后方输入碰撞载荷而发生轴压坏时,能够在外表面形成涂料厚的膜而提高碰撞能量的吸收效果,并作为吸收车身产生的振动的减振材料发挥作用,并且能够减少追加的生产工序,因此生产成本不会较大地上升的汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法。

标号说明

1 汽车用碰撞能量吸收部件

2 涂装前部件

3 筒状构件

5 涂膜形成构件

7 外部部件

7a 顶板部

7b 纵壁部

7c 拐角部

9 内部部件

9a 顶板部

9b 纵壁部

9c 拐角部

10 接合部(筒状构件)

11 间隙

12 接合部(涂膜形成构件)

13 涂膜

21 试验体(发明例)

31 试验体(比较例)。

相关技术
  • 汽车构造部件用拉深成形体、汽车构造部件用拉深成形体的制造方法及汽车构造部件用拉深成形体的制造装置
  • 汽车用碰撞能量吸收部件、该汽车用碰撞能量吸收部件的制造方法
  • 汽车用碰撞能量吸收部件及其制造方法
技术分类

06120115803570