掌桥专利:专业的专利平台
掌桥专利
首页

一种混合型边缘数据缓存方法

文献发布时间:2023-06-19 19:30:30


一种混合型边缘数据缓存方法

技术领域

本发明涉及一种边缘计算场景下的边缘缓存技术,具体涉及边缘计算场景下当终端设备频繁移动时的一种混合型边缘数据缓存方法。

背景技术

近年来,随着智能终端设备爆炸性增长以及IoT的广泛应用,数据传输速率逐渐成为了云计算的瓶颈。虽然以5G为代表的新一代网络技术促进数据传输速率也在加快,但是仍旧无法满足一些对时延敏感型要求较高的应用场景,如人脸识别、虚拟现实、紧急医疗、车联网等。因此,需要将数据处理的任务迁移到网络的边缘(即边缘计算,又称为多接入边缘计算,简称MEC),以缩短响应时间、提高处理效率以及降低网络的压力。

目前,MEC已受到学术界和工业界的广泛关注。不同于集中式的云计算,边缘计算系统采用集中式和分布式相结合的方式,由远程云、边缘云和终端设备层组成;它将原来部署在云中心的服务部署到靠近终端设备的位置(即网络边缘),计算的位置不再局限到云端或终端,可以发生在从终端到云端的任意设备节点,以获得更低的访问延迟,满足时延敏感型应用场景的需要。由于缓存技术具有简单且容易部署和实施特点,是国内外目前MEC的重要研究热点,且已经在实际的场景中得到了成功的应用,如网络视频、车联网等。该技术将边缘计算中的一些节点作为缓存节点,可以基于网络状态、无线信道负载等动态地优化终端设备访问的数据;同时,从终端用户角度来看,由于缓存数据的边缘节点非常接近终端设备的位置,可以结合用户移动性和内容访问日志来优化使用体验;因此,边缘缓存技术能够有效的降低业务时延和设备能耗,并极大的提高资源的利用率。

近年来,国内外学者已经提出了大量的边缘缓存策略和算法。这些工作通常根据边缘网络的特性,对传统有线网络中的一些缓存策略进行修订,并增加一些新的缓存方案(如基于用户偏好、增强学习或多节点协作等),实现优化服务时延、减少总传输开销的目的。一般而言,边缘计算场景下的边缘缓存方案可以分成以下三种类型:基站缓存策略(BS)、设备到设备缓存策略(D2D)以及混合式缓存策略(BS-D2D);其中,BS是指将数据缓存到基站所属的边缘服务器;D2D则是将数据缓存到终端节点;而BS-D2D则结合前两种缓存方式,通过基站和终端设备的协作,将数据缓存到MEC服务器和部分设备端。在这些方法中,他们通常认为缓存数据的节点是“稳定”的(即缓存节点在网络拓扑中的位置变动不频繁),即使拓扑位置发生变动,也可以根据终端用户的行为特征进行预测,确定其拓扑位置;然后,这些方法将一些特定的数据(例如热点数据)缓存到这些“稳定”节点。当终端设备访问数据时,可以快速定位缓存数据的节点,并获取到需要访问的数据。

然而,在实际应用场景下,设备频繁移动的情况非常的常见(如火车站、大型商超、高峰期的交通路口等),得到“稳定”节点较为困难。在这些场景下,虽然可以采用BS数据缓存方式降低数据的访问延迟,但是这些场景下设备一般呈现数量多且类型繁杂的特点,大量设备访问容易导致MEC服务器负载过重,影响用户的服务体验。虽然终端节点参与缓存服务可以有效均衡系统的负载,但是终端设备的移动具有个体行为,且属于用户隐私,它们并不愿意将隐私暴露给边缘服务器;这也导致准确判断某一用户在某一时刻将要去某地十分的困难,进而导致终端设备访问时延过长。此外,传统D2D方式在缓存数据时,通常认为终端设备数据访问具有一定的特征(如用户的行为偏好),且不容易发生变化;因而可以根据终端用户的特征将数据缓存到一些设备节点,供其他终端设备访问。但是在实际应用中,用户的行为偏好容易受到其他因素的影响而进行动态变化,尤其是频繁移动场景下;例如:在终端设备频繁移动时,网络拓扑也在频繁的变化,终端用户经常会因数据得不到及时响应转而请求其他数据;随着访问其他数据量的增长,终端用户会逐渐的对其他数据产生较大的兴趣;而当用户的行偏好发生变化后,原来根据用户行为偏好缓存的数据具有较大的概率不是当前用户真正需要访问的数据,导致了较低的缓存命中率。

发明内容

本发明针对边缘计算终端场景下当设备频繁移动时导致的边缘缓存数据命中率低、访问时延长且负载容易失衡的问题,提出一种新的混合型边缘数据缓存方法,目的是通过基站和终端设备协作并缓存数据,提高终端设备的缓存数据命中率、降低用户的数据访问延迟,并均衡边缘计算的负载。

本发明采用的技术方案:

一种混合型边缘数据缓存方法,包括终端设备自适应交换标签、终端设备缓存数据和边缘服务器缓存数据三个部分,其中,

在终端设备自适应交换标签中,终端设备采用分散自适应方式动态的获取自身的行为偏好,并在移动过程中与其他终端设备交换行为偏好标签;

在终端设备缓存数据过程中,基站采用集中式方式选择其通信区域内活跃性强、通信链路短且服务能力强的终端设备集合作为数据缓存节点集合,并获取通信区域内的热点数据作为缓存数据,最后根据缓存终端设备节点的行为偏好标签中每类数据占比情况动态分配终端设备缓存空间长度,并按照热点数据类别缓存数据;

在边缘服务器缓存数据过程中,边缘服务器所在的基站首先采用集中式方式周期性获取其通信区域内缓存数据的终端设备的行为偏好,并采用预测算法分类别预测下一周期数据的访问情况,然后根据预测情况按照数据类别分配边缘服务器的缓存长度,最后根据数据类别和分配的缓存空间大小缓存热点数据。

本发明属于边缘计算场景下的混合型数据缓存方法,通过基站和终端设备的协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据,达到在终端设备频繁移动时提高缓存数据的命中率、降低数据访问时延并均衡系统负载的目的。

通过基站和终端设备协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据到缓存节点,从而提高缓存数据的命中率、降低数据访问时延并均衡系统负载。由终端设备采用分散自适应的方式在终端设备移动过程中进行行为偏好标签互换,只记录终端设备用户的访问数据的类别,隐藏了终端设备移动轨迹的隐私。

根据行为标签动态变化的情况,按照数据类别动态的分配终端设备的缓存数据空间,并按照热点数据的类别缓存数据,以提高D2D通信方式下的缓存数据命中率。边缘服务器根据通信区域内的数据访间特征,对下一时刻的数据访问情况进行预测,并根据预测情况按照数据类别分配边缘服务器的缓存空间和缓存热点数据,以提高终端设备请求MEC服务器缓存数据的命中率。

所述的混合型边缘数据缓存方法,终端设备自适应交换标签过程:终端设备采用分散自适应方式根据历史数据的访问特征和数据类别得到自身的行为偏好;并将行为偏好标签化;在终端设备移动时,采用最近最久未使用算法与其他终端设备交换行为偏好标签。

所述的混合型边缘数据缓存方法,终端设备缓存数据的过程:首先,基站根据其通信范围内终端设备行为偏好标签交换的情况得到候选缓存终端设备集合;然后,以候选设备集合为论域,以标签交换频率、通信回程链路、终端设备负载、存储空间、剩余带宽等条件为指标,采用模糊细分法和帕累托分布的2-8原理获取到最佳缓存终端设备集合;同时,选择基站通信区域内的热点数据作为缓存数据,并根据缓存终端设备的标签交换情况按照数据类别动态分配缓存空间,分类别缓存热点数据。

终端设备缓存数据过程中,基站采用集中式方式选择其通信区域内活跃性强、通信链路短且服务能力强的终端设备集合作为数据缓存设备,并将通信区域内的热点数据作为缓存数据。采用模糊聚类分析法和帕累托2-8原理选择活动能力强、回程链路短且服务能力强的终端设备作为数据缓存设备,以降低终端设备的数据访问延迟并均衡系统的负载。

发明有益效果:

1、本发明混合型边缘数据缓存方法,解决了终端设备在频繁移动场景下边缘缓存数据命中率低、访问时延长、负载失衡的问题。通过基站和终端设备协作,由终端设备节点采用分散自适应的方式根据用户行为偏好的动态变化缓存数据,而边缘服务器所在的基站则采用集中式方式根据区域内通信数据的请求变化情况采用预测方式缓存数据,通过选择合理的存储设备集合缓存热点数据以提高终端设备频繁移动场景下的缓存数据命中率,并降低终端设备的数据访问延迟,同时均衡边缘计算系统的负载。

2、本发明设计了一种新的边缘计算场景下的混合型边缘数据缓存方法,目标是通过基站和终端设备协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据,以提高缓存数据的命中率、降低数据访问时延并均衡系统负载。

3、本发明混合型数据缓存方法,由终端设备采用分散自适应的方式在终端设备移动过程中交换行为偏好标签,隐藏了终端设备移动轨迹的隐私。根据行为标签动态变化的情况,按照数据类别动态分配缓存设备的缓存数据空间,并按照热点数据的类别缓存数据,以提高D2D通信方式下的缓存数据命中率。

4、本发明混合型数据缓存方法,采用模糊聚类分析法和帕累托28原理选择活动能力强、回程链路短且服务能力强的终端设备作为数据缓存设备,以降低终端设备的数据访问延迟并均衡系统的负载。

5、本发明混合型数据缓存方法,边缘服务器根据通信区域内的数据访问特征,对下一时刻的数据访问情况进行预测,并根据预测情况按照数据类别分配边缘服务器的缓存空间,并缓存热点数据,以提高边缘服务器的缓存命中率。

附图说明

图1所示为本发明混合型数据缓存方法总体技术构思;

图2所示为本发明混合型数据缓存方法总体流程图;

图3所示为本发明混合型数据缓存方法终端设备自适应交换行为偏好标签流程图;

图4所示为本发明混合型数据缓存方法选择最佳缓存终端设备集合流程图;

图5所示为热点数据缓存到最佳终端设备集合流程图;

图6所示为边缘服务器缓存热点数据流程图。

具体实施方式

为了使发明创造实现其发明目的的技术构思及优点更加清楚明白,下面结合附图对本发明的技术方案作进一步的详细描述。应当理解的是,以下各实施例仅用以解释和说明本发明的优选实施方式,不应当构成对本发明要求专利保护的范围的限定。

实施例1

参见图1、图2,本发明混合型边缘数据缓存方法,包括终端设备自适应交换标签、终端设备缓存数据以及边缘服务器缓存数据的过程,其中,

终端设备自适应交换标签过程中,终端设备采用分散自适应方式动态的获取自身的行为偏好,并在移动过程中与其他终端设备交换行为偏好标签;

终端设备缓存数据过程中,基站采用集中式方式选择其通信区域内活跃性强、通信链路短且服务能力强的终端设备集合作为数据缓存节点集合,并获取通信区域内的热点数据作为缓存数据,最后根据选择的缓存终端设备节点的行为偏好标签中每类数据占比情况动态分配终端设备缓存空间长度,并按照热点数据类别缓存数据;

边缘服务器缓存数据过程中,边缘服务器所在的基站采用集中式方式周期性获取其通信区域内缓存数据终端设备的行为偏好,并采用预测算法分类别预测下一周期数据的访问情况;然后根据预测情况按照数据类别分配边缘服务器的缓存长度;最后根据数据类别和分配的缓存空间大小缓存热点数据。

本发明属于边缘计算场景下的混合型数据缓存方法,通过基站和终端设备的协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据,达到在终端设备频繁移动时提高缓存数据的命中率、降低数据访问时延并均衡系统负载的目的。

通过基站和终端设备协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据到缓存节点,从而提高缓存数据的命中率、降低数据访问时延并均衡系统负载。

由终端设备采用分散自适应的方式在终端设备移动过程中互换行为偏好标签,隐藏了终端设备移动轨迹的隐私。

根据行为标签动态变化情况,按照数据类别动态分配终端设备的缓存空间长度,并按照热点数据的类别缓存数据,以提高D2D通信方式下的缓存数据命中率。

根据基站通信区域内的数据访问特征,对下一时刻数据的访问情况进行预测,然后根据预测情况按照数据类别分配边缘服务器的缓存空间,并分类缓存热点数据,以提高边缘服务器的缓存命中率。

实施例2

本实施例的混合型边缘数据缓存方法,与实施例1不同的是,进一步的:终端设备自适应交换标签过程中:终端设备采用分散自适应的方式根据历史数据的访问特征和数据的类别得到自身的行为偏好;并将行为偏好标签化;在终端设备移动时,采用最近最久未使用算法与其他终端设备交换行为偏好标签。

实施例3

本实施例所述的混合型边缘数据缓存方法,与实施例1或实施例2不同的是:终端设备缓存数据的过程:首先,基站根据其通信范围内终端设备行为偏好标签交换的情况得到候选缓存终端设备集合;然后,以候选设备集合为论域,以标签交换频率、通信回程链路、终端设备负载、存储空间、剩余带宽等条件为指标,采用模糊细分法和帕累托分布的2-8原理获取到最佳缓存终端设备集合;同时,选择基站通信区域内的热点数据作为缓存数据,并根据缓存终端设备的标签交换情况按照数据类别动态的分配缓存空间,分类别缓存热点数据。

终端设备缓存数据过程中,采用模糊聚类分析法和帕累托28原理选择基站通信区域内活动能力强、回程链路短且服务能力强的终端设备作为数据缓存设备,并将通信区域内的热点数据作为缓存数据,以降低终端设备的数据访问延迟、均衡系统的负载。

实施例4

参见图1-图6,本发明为应对边缘计算场景下在终端设备在频繁移动时导致的边缘缓存数据命中率低、访问时延长的问题,设计了一种新的边缘计算场景下的混合型数据缓存方法,目标是通过基站和终端设备协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据,以提高缓存数据的命中率、降低数据访问时延并均衡系统负载。其主要技术思路包括三部分,分别为:终端设备自适应交换标签过程、终端设备缓存数据过程和边缘服务器缓存数据过程。

其中,终端设备自适应交换标签过程是指终端设备采用自适应方式动态的获取自身的行为偏好,并在移动过程中与其他终端设备交换行为偏好标签。终端设备缓存数据过程是指基站采用集中式方式选择其通信区域内活跃性强、通信链路短且服务能力强的终端设备集合作为数据缓存设备,并将基站通信区域内的热点数据作为缓存数据。边缘服务器缓存数据过程则是指边缘服务器所在的基站采用集中式方式动态的收集通信区域内终端设备的行为偏好,通过预测算法预测下一周期的数据请求情况,并根据预测情况缓存通信区域内的访问数据。

终端设备自适应交换标签的技术思路:首先,终端设备采用分散自适应的方式根据历史数据的访问特征和访问数据的类别得到自身的行为偏好;并将行为偏好标签化;在终端设备移动时,采用最近最久未使用算法与其他终端设备交换行为偏好标签。

终端设备缓存数据的思路:首先,发明根据行为偏好标签交换的情况得到候选缓存终端设备集合;然后,以候选设备集合为论域,以标签交换频率、通信回程链路、终端设备负载、存储空间、剩余带宽等条件为指标,采用模糊细分法和帕累托分布的28原理获取到缓存终端设备集合;同时,选择基站通信区域内的热点数据作为缓存数据,并根据缓存终端设备的标签交换情况按照数据类别动态分配缓存空间,分类别缓存热点数据。

边缘服务器缓存数据的思路:首先,边缘服务器所在的基站周期性获取通信区域内终端设备的行为偏好,并采用预测算法分类别预测下一周期数据的访问情况;最后根据预测情况按数据类别分配缓存空间和缓存热点数据。

前述描述见图1-图2。下面进一步具体说明通过算法/程序实现的过程。

本发明混合型边缘数据缓存方法,算法涉及到的一些参数:

边缘服务器Es:数量为M,表示为Es={Es

设备Te:设Es

数据Data:场景内终端设备请求的数据,数量为L,表示为Data={f

数据类型Dt:表示数据所属种类,数量为K,表示为Dt={K

终端设备行为偏好标签缓冲区长度Length:常数,表示设备可以存放行为偏好标签的数量。

设备Te

单位时间内Te

Te

Te

Te

Te

如图3-图6所示,本发明具体实现过程包括如下步骤:

参见图3,为终端设备自适应交换标签的步骤:

1、Te

(1)Te

(2)由于行为偏好的变化与最近访问历史密切相关,发明取最近k1次的访问记录,统计每类数据在k1出现的频率;

(3)取频率最高的前k2(1≤k2<K and k2<length)种类作为Te

Bpl

2、Te

(1)在初始阶段,Te

(2)Te

(3)当Te

参见图4-图5,为终端设备缓存热点数据的步骤(其中图4为选择最佳缓存终端设备集合流程图;图5所示为热点数据缓存到最佳终端设备集合流程图):

3、Te

其中,K

4、根据平均标签比率,获得候选缓存终端设备集合Cps

其中,平均标签比率通过下式(3)获得:

表示Es

其中,Y(Y≥2)是一个可动态调整的阈值,可根据实际情况进行调整。

5、获得Cps

k3=Cps

6、在Sdr

{Te

7、构建最佳缓存虚拟终端设备Te

{Cr

=min{q

=max{Rw

显而易见,Te

8、将Cps

表1:初始矩阵

9、采用数量积法对R

其中,r

根据公式(8),则R

10、根据模糊λ-截集理论,对Cps

λ=distinct{r

其中,λ取值为R

根据模糊细分原理,依次从Dts

11、根据帕累托分布确定恰当λ阈值。

设当λ=λ′时,与Te

12、选择Es

(1)在Sdr

(2)Es

Crt

(3)根据式(10),按照请求次数降序排列每类数据,表示为:

Etd

Etd

13、根据设备偏好缓冲区内不同类型标签的比例和数据的类型,将热点数据缓存到Ctd

(1)根据式(2),Te

设Te

(2)根据式(12)分配的第k类数据的缓冲区长度

参见图6,为边缘服务器缓存数据的步骤:

14、Es

根据公式(10),得到每类数据的请求占比,表示为:

Prt

15、根据不同数据类型的历史请求占比采用平滑指数预测算法预测下一周期不同类型数据的请求占比。

设第k类数据的历史请求占比为:

其中,δ是一个权重值,可以根据历史记录进行动态调整。

16、根据(t+1)时刻预测的第k类数据请求占比,分配Es

设Es

17、按照热点数据的类别和分配的不同类别数据的缓冲区长度,在Es

根据式(11)和(15),依次从Etd

18、方法结束。

本发明边缘计算场景下的混合式数据缓存方法,解决了终端设备在频繁移动时缓存数据命中率低、访问时延较长、且负载容易失衡的问题。通过基站和终端设备的协作,将MEC服务器和具有活跃度高、服务能力强等特征的终端设备作为数据缓存节点,并根据数据访问特征分类缓存热点数据,提高缓存数据的命中率、降低数据访问时延、均衡系统负载。

以上所述仅为本发明的较佳实施方式,并不构成对本发明的限定。本领域技术人员在现有技术的指引下,无需进行创造性劳动即可对本发明的实施情况进行其他修改,凡在本发明的精神和原则之内所作的任何修改或者采用本领域惯用技术手段进行的简单置换或等同替换,均应包含在本发明的保护范围之内。

相关技术
  • 一种数据缓存提交方法、系统及装置
  • 一种数据缓存方法及系统
  • 一种接口数据缓存设置方法及终端设备
  • 一种空间数据缓存方法、装置和存储介质
  • 一种边缘数据缓存方法
  • 一种边缘环境下数据缓存与任务调度的联合优化方法
技术分类

06120115934524