掌桥专利:专业的专利平台
掌桥专利
首页

一种检测直拉单晶硅中实际掺杂剂含量的方法

文献发布时间:2024-04-18 20:01:30


一种检测直拉单晶硅中实际掺杂剂含量的方法

技术领域

本发明属于半导体技术领域,尤其是涉及一种检测直拉单晶硅中实际掺杂剂含量的方法。

背景技术

随着电子产业与光伏领域的高速发展,单晶硅材料的需求量与日俱增。然而无论是电子工业还是光伏产业,其所需的直拉单晶硅的电阻率都需要控制在一定范围内,即所需的掺杂剂含量需要保证在所需浓度范围内,这就需要在拉晶前进行合理配料,同时还要准确检测单晶硅片中的掺杂剂含量。

在现有技术中,通常利用四探针仪器测得硅片电阻率,再根据电阻率与掺杂剂浓度的关系反推出掺杂剂含量。然而这种方法仅能测出净掺杂剂含量,对于补偿型单晶硅而言,无法测出其受主型掺杂剂和施主型掺杂剂的准确含量。

如公开号为CN101894776A的中国专利文献公开了一种通过测量电阻变化检测氮掺杂浓度的方法,主要是以一定数量的晶片作为试验用的对照晶片,以其模拟进行MOS器件制造中的掺杂制程。然后以四探针测量法测量氮掺杂层的电阻变化Rs值,根据氮掺杂剂量和Rs值相互的对应关系作出曲线图。即可以根据此曲线图,从实际MOS器件制程中所测得的Rs值反推出氮掺杂剂量。

此外还有利用低温傅里叶红外测试(FTIR)、二次离子质谱测试(SIMS)、电感耦合等离子体质谱(ICPMS)等技术进行准确测定。然而这些方法都需要复杂的制样,操作耗时耗力,且造价昂贵。

公开号为CN101446563A的中国专利文献公开了一种鉴别和测量半导体材料中掺杂元素的方法,该方法包括:(1)通过一套X-射线衍射装置,向硅晶样品表面发射X-射线,含有掺杂剂的硅晶样品表面在X-射线的轰击下包含掺杂剂元素在内的金属元素发生衍射光谱;(2)通过检测器接收衍射光谱;(3)通过特征光谱谱线位置来判定元素的种类。该方法的优点是:含有的掺杂元素直拉单晶硅材料时不需要特别制样,直拉单晶硅材料是不接触的,不会对直拉单晶硅材料造成沾污,同时,也可以测量硅晶材料中掺杂剂的含量。

但是,该方法的缺点是需要额外准备x射线衍射的装置,成本高昂。此外这种方法只能应对样品较少的情况,当需要测试整根晶棒任意位置的掺杂剂含量时,需要很长的测试时间。

发明内容

本发明提供了一种检测直拉单晶硅中实际掺杂剂含量的方法,仅需在在长晶完成后对晶棒进行电阻率测试和数据拟合,无需繁琐复杂的化学制样与表征分析,方法简便快捷,可操作性强且成本低廉。

一种检测直拉单晶硅中实际掺杂剂含量的方法,包括以下步骤:

(1)测量单晶硅棒去除头尾后的总长度L(cm);

(2)测定单晶硅棒沿轴向各个位置x处的实际电阻率ρ

(3)假定单晶硅棒中可能存在的掺杂剂种类有n种,并依据每种掺杂剂在硅中的分凝系数及设定的掺杂剂总量值(单位:atom/cm

(4)根据步骤(2)中各个位置x处掺杂剂的施主或受主类型,以及计算得到的各种掺杂剂在该处的浓度,进一步计算得到晶棒各个位置x处的有效N型掺杂剂含量C

C

(5)根据步骤(4)中得到的C

(6)改变步骤(3)中各种设定的掺杂剂总量值,使模拟得到的ρ(x)~x曲线与实际测到的ρ

(7)记录步骤(6)中的各种掺杂剂总量数值,即为直拉单晶硅棒中各种掺杂剂的实际掺杂总量;

(8)以步骤(7)中所得的各种掺杂剂的实际掺杂总量为准,直拉单晶硅棒上沿轴向任意位置x处的各种掺杂剂实际含量由步骤(3)中的分凝公式计算得到。

本发明通过假定初始掺杂剂种类和总含量,根据分凝公式可以提前模拟出晶棒不同位置处的电阻率。再依据实际测得的晶棒电阻率分布,在模拟过程中不断修正掺杂剂的初始掺杂总量,使模拟得的电阻率分布曲线与实测所得电阻率分布曲线尽可能重合,最终得到的掺杂剂初始掺杂总量即为实际的总掺杂量。将得到的各种掺杂剂的总掺杂量代入各自的分凝公式中,即可得到直拉单晶硅沿轴向不同位置处的掺杂剂的实际含量。

本发明不仅可以方便快捷的检测出直拉单晶硅棒沿轴向各个位置处的各种掺杂剂的实际含量,还可以推测出多晶硅料中的硼、磷等掺杂剂的初始掺杂总量以及长晶过程中掺杂剂的挥发量,还可以为配料提供经验。

进一步地,所述的直拉单晶硅为普通旋转提拉法拉制的单晶硅,不包括复投料直拉单晶硅和连续直拉单晶硅。

进一步地,所述的各个位置x处指的是距离单晶硅棒头部x的位置。

进一步地,所述掺杂剂为Ⅲ族和Ⅴ族掺杂剂。所述掺杂剂的种类包含硼、铝、镓、铟、氮、磷、砷、锑,在硅中的分凝系数分别记为0.8,0.002,0.008,0.0004,0.0007,0.35,0.8,0.023。

优选地,步骤(3)中,所述掺杂剂无挥发或挥发量极少。

步骤(3)中,使用分凝公式模拟计算出n种掺杂剂沿轴向各个位置x处的浓度分布C

掺杂剂1:

掺杂剂2:

……

掺杂剂n:

式中,k

C

步骤(5)中,计算在晶棒各个位置x处的电阻率ρ(x),公式为:

当C

与现有技术相比,本发明具有以下有益效果:

1、本发明的方法仅需提前模拟出晶棒电阻率的分布情况,再对晶棒不同位置处进行电阻率测试,将两条曲线拟合即可得到实际存在的掺杂剂种类及各自的掺杂总量,据此便可计算得到晶棒任意位置处的掺杂剂实际含量。采用该法可对晶棒进行无损检测,方法简单快捷、成本低廉、可操作性强。

2、利用本发明方法得到的拟合曲线还可作为直拉单晶硅的配料公式,准确度高。

3、利用本发明方法拟合得到的掺杂剂实际掺杂总量可与掺杂剂初始投料量作对比,还可以得到不同掺杂剂的挥发量。

附图说明

图1为本发明一种检测直拉单晶硅中实际掺杂剂含量的方法流程图;

图2为本发明实施例1中直拉单晶硅棒的电阻率沿轴向分布的实际测试图以及五组拟合情况。

具体实施方式

下面结合实施例对本发明做进一步详细描述,需要指出的是,以下所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换或直接或间接运用在相关的技术领域,均应包括在本发明的专利保护范围内。

如图1所示,一种检测直拉单晶硅中实际掺杂剂含量的方法,包括以下步骤:

S01,测定待测直拉单晶硅棒去除头尾后的总长度L=400cm;

S02,待测直拉单晶硅棒去除头尾后,利用四探针测定距离头部为10cm,20cm,30cm,……,390cm的位置处的实际电阻率,记为ρ

表1:第一组拟合值(假定硼掺杂总量为30ppbw,磷掺杂总量为350ppbw)

表2:第二组拟合值(假定硼掺杂总量为43ppbw,磷掺杂总量为350ppbw)

表3:第三组拟合值(假定硼掺杂总量为40ppbw,磷掺杂总量为370ppbw)

表4:第四组拟合值(假定硼掺杂总量为40ppbw,磷掺杂总量为340ppbw)

表5:第五组拟合值(假定硼掺杂总量为40ppbw,磷掺杂总量为350ppbw)

S03,假定待测晶棒中存在的掺杂剂仅有硼和磷,其分凝系数分别为0.8和0.35,同时假设各自掺杂总量为:硼30ppbw,换算为原子浓度为3.9×10

掺杂剂硼:

掺杂剂磷:

得到的C

S04,根据步骤S03中所模拟得到的各个位置x处的硼和磷含量,可以进一步计算出位置x处的净施主掺杂剂含量C

得到的C

S05,根据步骤S04中所得C

S06,不断改变步骤S03中待定的硼、磷掺杂总量值,使模拟得到的ρ(x)~x分布曲线尽可能与所测得到的实际的ρ

S07,记录步骤S06中最终拟合得到的硼、磷掺杂总量值,即为直拉单晶硅棒中两种掺杂剂的实际掺杂总量C

掺杂剂硼:

掺杂剂磷:

特别地,步骤S06中共改变了五组硼、磷掺杂总量值,通过计算得到的模拟值C

从图2中可以看出,仅有第五组拟合的ρ(x)~x曲线与实际测试得到的ρ

掺杂剂硼:

掺杂剂磷:

以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。

技术分类

06120116561083