掌桥专利:专业的专利平台
掌桥专利
首页

用于处理工件的氢反应性核素的生成

文献发布时间:2023-06-19 09:30:39


用于处理工件的氢反应性核素的生成

优先权声明

本申请要求于2018年6月11日提交的名称为“Generation of Hydrogen ReactiveSpecies for Processing of Workpieces(用于处理工件的氢反应性核素的生成)”的美国临时申请系列号62/683,246的优先权的权益,其为了所有目的通过引用并入本文。

技术领域

本公开大体上涉及使用例如等离子体处理装置生成用于处理工件的氢反应性核素。

背景技术

在半导体加工中,随着半导体设备中临界尺寸的减小,设备尺寸和材料厚度持续减小。在高级设备节点中,材料表面特性和界面完整性对设备性能变得越来越重要。

发明内容

本公开的实施方式的方面和优点将部分在以下描述中陈述,或可从描述中得知,或可通过实施方式的实践而得知。

本公开的一个示例方面涉及用于处理工件的方法。方法可包括通过使用等离子体源在惰性气体中诱导等离子体,在等离子体腔室中由惰性气体生成一种或多种核素。方法可包括将氢气与一种或多种核素混合,以生成一种或多种氢自由基。方法可包括将处理腔室中的工件暴露于一种或多种氢自由基。

参考以下描述和所附权利要求,各种实施方式的这些和其他特征、方面和优点将变得更好理解。并入本说明书中并且构成本说明书的一部分的附图阐释了本公开的实施方式,并且与描述一起用来解释相关的原理。

附图简述

指导本领域技术人员的实施方式的详细讨论阐释在参考了所附附图的说明书中,其中:

图1描绘了根据本公开的示例实施方式的示例等离子体处理装置;

图2描绘了根据本公开的示例实施方式的示例方法的流程图;

图3描绘了根据本公开的示例实施方式,将氢气与一种或多种由惰性气体生成的核素混合的示例;

图4描绘了根据本公开的示例实施方式,将氢气与一种或多种由惰性气体生成的核素混合的示例;

图5描绘了根据本公开的示例实施方式的示例等离子体处理装置;以及

图6描绘了根据本公开的示例实施方式的示例等离子体处理装置。

具体实施方式

现将详细参考在附图中阐释了其一个或多个示例的实施方式。通过实施方式的解释,而非限制本公开来提供每个示例。实际上,对本领域技术人员显而易见的是,在不偏离本公开的范围或精神的情况下,可对实施方式进行各种修改和变化。例如,阐释或描述为一个实施方式的一部分的特征可与另一个实施方式一起使用,以产生仍进一步的实施方式。因此,期望本公开的方面覆盖这种修改和变化。

本公开的示例方面涉及生成用于工件,比如半导体工件的处理的氢自由基。氢自由基在半导体加工中具有各种应用。例如,在低温,氢自由基可有效去除光抗蚀剂或其他聚合物材料,同时减少底层材料损伤和/或氧化。在高温,氢自由基可选择性刻蚀损伤的硅材料(例如,用于三维FINFET结构中的硅鳍微调)。

可例如通过将氢气穿过热丝(例如,钨热丝)生成氢自由基。可例如使用电容和/或感应等离子体源生成氢自由基。例如,可在远程等离子体腔室中使用感应耦合的等离子体源由工艺气体生成氢自由基。可例如,使用接地的分离栅实施离子过滤,以减少等离子体中生成的离子并且允许中性氢自由基穿过栅。栅可具有利于控制自由基分布的孔的分布。可,例如,使用施加至电源的脉冲的RF功率和/或经等离子体后修饰(例如,其他气体的混合)而控制氢自由基的能量。

根据示例实施方式,可使用等离子体腔室中的等离子体源,将惰性气体(例如,氦、氩、氙、氖等)激活,以由惰性气体产生激发的核素。氢气可与激发的核素混合(例如,在等离子体腔室的外部,比如等离子体腔室的下游),以生成一种或多种氢自由基。氢自由基可暴露于工件(例如,在处理腔室中),以实施各种半导体制造工艺。

在一些实施方式中,方法可包括在通过分离栅与处理腔室分开的等离子体腔室中生成一种或多种激发的惰性气体分子(例如,激发的He分子)。可例如通过使用等离子体源(例如,感应等离子体源、电容等离子体源等)在工艺气体中诱导等离子体而生成激发的惰性气体分子。工艺气体可为惰性气体。例如,工艺气体可为氦、氩、氙或其他惰性气体。在一些实施方式中,工艺气体可由惰性气体组成。

方法可包括过滤离子,同时允许中性核素通过,以生成具有中性自由基的过滤的混合物,用于暴露于工件。例如,分离栅可用于过滤在等离子体腔室中生成的离子,并且允许中性核素穿过分离栅中的孔至处理腔室,用于暴露于工件。

在一些实施方式中,可在分离栅处或在分离栅下方(例如,下游)通过将氢气(H

将氢气与来自惰性气体的激发的核素混合可使得生成一种或多种氢自由基,比如中性氢自由基。在处理腔室中,氢自由基可暴露于工件。

在一些实施方式中,工件可被支撑在基座或工件支撑件上。基座或工件支撑件可包括用于在处理期间控制工件温度的温度调节系统(例如,一种或多种电加热器)。在一些实施方式中,工艺可用在约20℃至约500℃的范围内的温度的工件进行。

在处理腔室中,氢自由基可暴露于工件,用于实施各种不同的半导体制造工艺。例如,氢自由基可用于去除工件上的光抗蚀剂层。作为另一示例,氢自由基可用于去除工件上的残留物(例如,残留的有机物),以清洁工件。作为另一示例,氢自由基可用于帮助工件表面的硅原子迁移和平滑(smoothing)(例如,在高温比如大于约400℃的温度)。作为另一示例,氢自由基可用于至少局部去除工件上损伤的硅层。作为仍另一示例,氢自由基可用于去除工件上的低氧化物层。在不偏离本公开的范围的情况下,氢自由基可用于实施其他半导体工艺应用。

在一些实施方式中,含金属的气体可与一种或多种氢自由基混合,以利于工件上薄金属膜的沉积。在一些实施方式中,金属可为钛。在一些实施方式中,金属可为钽。在一些实施方式中,金属可为铝。

为了阐释和讨论的目的,参考“晶片”或半导体晶片讨论了本公开的方面。使用本文提供的公开,本领域普通技术人员将理解,本公开的示例方面可与任何半导体基材或其他合适的基材结合使用。提及等离子体腔室的“下游”指暴露于等离子体腔室中生成的核素的等离子体处理装置中的位置,比如暴露于等离子体腔室中生成的核素的等离子体腔室的外部的位置。另外,术语“约”与数值的联合使用旨在指在叙述的数值的百分之十(10%)以内。“基座”指可用于支撑工件的任何结构。

图1描绘了根据本公开的示例实施方式的可用于进行工艺的示例等离子体处理装置100。如阐释的,等离子体处理装置100包括处理腔室110和与处理腔室110分开的等离子体腔室120。处理腔室110包括可操作地支撑待处理的工件114,比如半导体晶片的基材支架或基座112。在该示例阐释中,通过感应耦合的等离子体源135在等离子体腔室120(即,等离子体生成区)中生成等离子体,并且将期望的核素通过分离栅组件200从等离子体腔室120引导至工件114的表面。

为了阐释和讨论的目的,参考感应耦合的等离子体源讨论了本公开的方面。使用本文提供的公开,本领域普通技术人员将理解,在不偏离本公开的范围的情况下,可使用任何等离子体源(例如,感应耦合的等离子体源、电容耦合的等离子体源等)。

等离子体腔室120包括介电侧壁122和顶棚124。介电侧壁122、顶棚124和分离栅200限定了等离子体腔室内部125。介电侧壁122可由介电材料,比如石英和/或氧化铝形成。感应耦合的等离子体源135可包括邻近介电侧壁122围绕等离子体腔室120设置的感应线圈130。感应线圈130通过合适的匹配网格132耦合至RF功率发生器134。工艺气体(例如,惰性气体)可从气体供应150和环形气体分配通道151或其他合适的气体引入机构提供至腔室内部。当用来自RF功率发生器134的RF功率为感应线圈130供能时,可在等离子体腔室120中生成等离子体。在特别的实施方式中,等离子体处理装置100可包括任选的接地的法拉第屏障(Faraday shield)128,以减少感应线圈130与等离子体的电容耦合。

如图1中显示,分离栅200将等离子体腔室120与处理腔室110分开。分离栅200可用于从在等离子体腔室120中通过等离子体生成的混合物进行离子过滤,以生成过滤的混合物。在处理腔室中,过滤的混合物可暴露于工件114。

在一些实施方式中,分离栅200可为多板分离栅。例如,分离栅200可包括以彼此平行关系间隔开的第一栅板210和第二栅板220。第一栅板210和第二栅板可分开一定的距离。

第一栅板210可具有具备多个孔的第一栅图案。第二栅板220可具有具备多个孔的第二栅图案。第一栅图案可与第二栅图案相同或不同。带电的颗粒可在它们通过分离栅中的每个栅板210、220的孔的路径中的壁上复合。中性核素(例如,自由基)可相对自由地流过第一栅板210和第二栅板220中的孔。每个栅板210和220的孔的尺寸和厚度可影响带电的颗粒和中性颗粒二者的透过性。

在一些实施方式中,第一栅板210可由金属(例如,铝)或其他导电材料制成和/或第二栅板220可由导电材料或介电材料(例如,石英、陶瓷等)制成。在一些实施方式中,第一栅板210和/或第二栅板220可由其他材料,比如硅或碳化硅制成。如果栅板由金属或其他导电材料制成,则栅板可为接地的。

图2描绘了根据本公开的示例方面的示例方法(300)的流程图。方法(300)可使用等离子体处理装置100实施。然而,如以下将详细讨论的,在不偏离本公开的范围的情况下,根据本公开的示例方面的方法可使用其他方式实施。为了阐释和讨论的目的,图2描绘了以特定的顺序进行的步骤。使用本文提供的公开,本领域普通技术人员将理解,在不偏离本公开的范围的情况下,可以以各种方式省略、扩展、同时进行、重新布置和/或修改本文所述的任何方法的各个步骤。另外,在不偏离本公开的范围的情况下,可进行各种另外的步骤(未阐释)。

在(302)处,方法可包括将工件加热。例如,可在处理腔室110中将工件114加热至工艺温度。例如,可使用一种或多种与基座112相关的加热系统将工件114加热。在一些实施方式中,工件可被加热至约20℃至约500℃的范围内的工艺温度,比如约400℃或它们之间任何其他温度或温度的范围。

在(304)处,方法可包括允许工艺气体(例如,惰性气体)进入至等离子体腔室中。例如,可允许工艺气体经环形气体分配通道151或其他合适的气体引入机构从气体源150进入至等离子体腔室内部125中。工艺气体可为惰性气体,比如没有反应性气体的惰性气体。例如,工艺气体可由惰性气体组成。工艺气体可为,例如,氦、氩、氙、氖或其他惰性气体。

在(306)处,方法可包括为感应耦合的等离子体源供能,以在等离子体腔室中生成等离子体。例如,可用来自RF功率发生器134的RF能为感应线圈130供能,以在等离子体腔室内部125生成等离子体。在一些实施方式中,可用脉冲的功率为感应耦合的电源供能,以获得具有期望的等离子体能量的核素。在(308)处,等离子体可用于由工艺气体生成一种或多种核素(例如,激发的惰性气体分子)。

在(310)处,方法可包括过滤混合物中由等离子体生成的一种或多种离子,以形成过滤的混合物。过滤的混合物可包括在工艺气体中通过等离子体生成的核素(例如,激发的惰性气体分子等)。在一些实施方式中,一种或多种离子可使用将等离子体腔室与放置工件的处理腔室分开的分离栅组件过滤。例如,分离栅200可用于过滤通过等离子体生成的离子。

分离栅200可具有多个孔。带电的颗粒(例如,离子)可在它们通过多个孔的路径中的壁上复合。中性颗粒(例如,自由基)可穿过孔。在一些实施方式中,分离栅200可被配置为以大于或等于约90%,比如大于或等于约95%的效率过滤离子。

在一些实施方式中,分离栅可为多板分离栅。多板分离栅可具有平行的多个分离栅板。可选择栅板中的孔的布置和排列,以提供期望的用于离子过滤的效率,比如大于或等于约95%。

在(312)处,方法可包括将氢(例如,H

图3描绘了根据本公开的示例实施方式的用于等离子体后的氢的注入的示例分离栅200。更具体地,分离栅200包括以平行关系设置的第一栅板210和第二栅板220。可提供第一栅板210和第二栅板220用于离子/UV过滤。

第一栅板210和第二栅板220可为彼此平行的关系。第一栅板210可具有具备多个孔的第一栅图案。第二栅板220可具有具备多个孔的第二栅图案。第一栅图案可与第二栅图案相同或不同。来自等离子体的核素(例如,激发的惰性气体分子)215可暴露于分离栅200。带电的颗粒(例如,离子)可在它们通过分离栅200中的每个栅板210、220的孔的路径中的壁上复合。中性核素(例如,激发的惰性气体分子)可相对自由地流过第一栅板210和第二栅板220中的孔。

在第二栅板220之后,气体注入源230可配置为将氢232混合至穿过分离栅200的核素中。包括由氢气的注入而产生的氢自由基的混合物225可穿过第三栅板235,用于在处理腔室中暴露于工件。

为了示例目的,参考具有三个栅板的分离栅来讨论本示例。在不偏离本公开的范围的情况下,使用本文提供的公开,本领域普通技术人员将理解,可使用更多或更少的栅板。氢可在分离栅中和/或处理腔室中分离栅后的任何点处与核素混合。例如,气体注入源230可放置在第一栅板210和第二栅板220之间。

如图4中显示了在一些实施方式中的栅组件200。例如,气体注入源230可在第一栅板210和第二栅板220下方的处理腔室中的位置处将氢气注入至穿过分离栅200的核素中。

在图2的(314)处,方法可包括将工件暴露于氢自由基。将工件暴露于氢自由基可用于进行各种半导体制造步骤。

例如,在处理腔室中氢自由基可暴露于工件,用于实施各种不同的半导体制造工艺。例如,氢自由基可用于去除工件上的光抗蚀剂层。作为另一示例,氢自由基可用于去除工件上的残留物(例如,残留的有机物),以清洁工件。作为另一示例,氢自由基可用于帮助工件表面的硅原子迁移和平滑(例如,在高温比如大于约400℃的温度)。作为另一示例,氢自由基可用于至少局部去除工件上损伤的硅层。作为仍另一示例,氢自由基可用于去除工件上的低氧化物层。在不偏离本公开的范围的情况下,氢自由基可用于实施其他半导体工艺应用。

在一些实施方式中,含金属的气体可与一种或多种氢自由基混合,以利于工件上薄金属膜的沉积。在一些实施方式中,金属可为钛。在一些实施方式中,金属可为钽。在一些实施方式中,金属可为铝。

图5描绘了根据本公开的示例实施方式的可用于实施工艺的示例等离子体处理装置400。等离子体处理装置400类似于图1的等离子体处理装置100。

更具体地,等离子体处理装置400包括处理腔室110和与处理腔室110分开的等离子体腔室120。处理腔室110包括可操作地支撑待处理的工件114,比如半导体晶片的基材支架或基座112。在该示例阐释中,通过感应耦合的等离子体源135在等离子体腔室120(即,等离子体生成区)中生成等离子体,并且将期望的核素通过分离栅组件200从等离子体腔室120引导至工件114的表面。

等离子体腔室120包括介电侧壁122和顶棚124。介电侧壁122、顶棚124和分离栅200限定了等离子体腔室内部125。介电侧壁122可由介电材料,比如石英和/或氧化铝形成。感应耦合的等离子体源135可包括邻近介电侧壁122围绕等离子体腔室120设置的感应线圈130。感应线圈130通过合适的匹配网格132耦合至RF功率发生器134。工艺气体(例如,惰性气体)可从气体供应150和环形气体分配通道151或其他合适的气体引入机构提供至腔室内部。当用来自RF功率发生器134的RF功率为感应线圈130供能时,可在等离子体腔室120中生成等离子体。在特别的实施方式中,等离子体处理装置100可包括任选的接地的法拉第屏障128,以减少感应线圈130与等离子体的电容耦合。

如图5中显示,分离栅200将等离子体腔室120与处理腔室110分开。分离栅200可用于从在等离子体腔室120中通过等离子体生成的混合物进行离子过滤,以生成过滤的混合物。在处理腔室中过滤的混合物可暴露于工件114。

在一些实施方式中,分离栅200可为多板分离栅。例如,分离栅200可包括以彼此平行关系间隔开的第一栅板210和第二栅板220。第一栅板210和第二栅板可分开一定的距离。

第一栅板210可具有具备多个孔的第一栅图案。第二栅板220可具有具备多个孔的第二栅图案。第一栅图案可与第二栅图案相同或不同。带电的颗粒可在它们通过分离栅中的每个栅板210、220的孔的路径中的壁上复合。中性核素(例如,自由基)可相对自由地流过第一栅板210和第二栅板220中的孔。每个栅板210和220的孔的尺寸和厚度可影响带电的颗粒和中性颗粒二者的透过性。

在一些实施方式中,第一栅板210可由金属(例如,铝)或其他导电材料制成和/或第二栅板220可由导电材料或介电材料(例如,石英、陶瓷等)制成。在一些实施方式中,第一栅板210和/或第二栅板220可由其他材料,比如硅或碳化硅制成。如果栅板由金属或其他导电材料制成,则栅板可为接地的。

如上所讨论,可将氢气注入至穿过分离栅200的核素中,以产生一种或多种氢自由基,用于暴露于工件114。氢自由基可用于实施各种半导体制造工艺。

图5的示例等离子体处理装置400可操作地在等离子体腔室120中生成第一等离子体402(例如,远程等离子体)和在处理腔室110中生成第二等离子体404(例如,直接等离子体)。如本文使用的,“远程等离子体”指远离工件,比如在通过分离栅与工件分开的等离子体腔室中生成的等离子体。如本文使用的,“直接等离子体”指直接暴露于工件的等离子体,比如在具有可操作地支撑工件的基座的处理腔室中生成的等离子体。

更具体地,图5的等离子体处理装置400包括在基座112中具有偏置电极410的偏置源。偏置电极410可经合适的匹配网格412耦合至RF功率发生器414。当偏置电极410用RF能供能时,可在处理腔室110中由混合物生成第二等离子体404,用于直接暴露于工件114。处理腔室110可包括用于从处理腔室110中排空气体的气体排空口416。

图6描绘了类似于图1和图5的处理腔室的处理腔室500。更具体地,等离子体处理装置500包括处理腔室110和与处理腔室110分开的等离子体腔室120。处理腔室110包括可操作地支撑待处理的工件114,比如半导体晶片的基材支架或基座112。在该示例阐释中,通过感应耦合的等离子体源135在等离子体腔室120(即,等离子体生成区)中生成等离子体,并且将期望的核素(例如,激发的惰性气体分子)通过分离栅组件200从等离子体腔室120引导至工件114的表面。

等离子体腔室120包括介电侧壁122和顶棚124。介电侧壁122、顶棚124和分离栅200限定了等离子体腔室内部125。介电侧壁122可由介电材料,比如石英和/或氧化铝形成。感应耦合的等离子体源135可包括邻近介电侧壁122围绕等离子体腔室120设置的感应线圈130。感应线圈130通过合适的匹配网格132耦合至RF功率发生器134。工艺气体(例如,惰性气体)可从气体供应150和环形气体分配通道151或其他合适的气体引入机构提供至腔室内部。当用来自RF功率发生器134的RF功率为感应线圈130供能时,可在等离子体腔室120中生成等离子体。在特别的实施方式中,等离子体处理装置100可包括任选的接地的法拉第屏障128,以减少感应线圈130与等离子体的电容耦合。

如图6中显示,分离栅200将等离子体腔室120与处理腔室110分开。分离栅200可用于从在等离子体腔室120中通过等离子体生成的混合物进行离子过滤,以生成过滤的混合物。过滤的混合物可暴露于处理腔室中的工件114。

在一些实施方式中,分离栅200可为多板分离栅。例如,分离栅200可包括以彼此平行关系间隔开的第一栅板210和第二栅板220。第一栅板210和第二栅板可分开一定的距离。

第一栅板210可具有具备多个孔的第一栅图案。第二栅板220可具有具备多个孔的第二栅图案。第一栅图案可与第二栅图案相同或不同。带电的颗粒可在它们通过分离栅中的每个栅板210、220的孔的路径中的壁上复合。中性核素(例如,自由基)可相对自由地流过第一栅板210和第二栅板220中的孔。每个栅板210和220的孔的尺寸和厚度可影响带电的颗粒和中性颗粒二者的透过性。

在一些实施方式中,第一栅板210可由金属(例如,铝)或其他导电材料制成和/或第二栅板220可由导电材料或介电材料(例如,石英、陶瓷等)制成。在一些实施方式中,第一栅板210和/或第二栅板220可由其他材料,比如硅或碳化硅制成。如果栅板由金属或其他导电材料制成,则栅板可为接地的。

图6的示例等离子体处理装置500可操作地在等离子体腔室120中生成第一等离子体402(例如,远程等离子体)并且在处理腔室110中生成第二等离子体404(例如,直接等离子体)。如显示的,等离子体处理装置500可包括从与远程等离子体腔室120相关的竖直侧壁122延伸的有角度的介电侧壁522。有角度的介电侧壁522可形成处理腔室110的一部分。

第二感应等离子体源535可靠近介电侧壁522放置。第二感应等离子体源535可包括经合适的匹配网格512耦合至RF发生器514的感应线圈510。当用RF能供能时,感应线圈510可在处理腔室110中由混合物诱导直接等离子体404。法拉第屏障528可设置在感应线圈510和侧壁522之间。

基座可112在竖直方向V上移动。例如,基座112可包括可配置为调节基座114和分离栅组件200之间的距离的竖直提升器516。作为一个示例,基座112可放置在第一竖直位置中,用于使用远程等离子体402处理。基座112可在第二竖直位置中,用于使用直接等离子体404处理。第一竖直位置相对于第二竖直位置可更靠近分离栅组件200。

图6的等离子体处理装置500包括在基座112中具有偏置电极410的偏置源。偏置电极410可经合适的匹配网格412耦合至RF功率发生器414。处理腔室110可包括用于从处理腔室110中排空气体的气体排空口416。

尽管已经结合其特定的示例实施方式详细地描述了本主题,但是应当理解,本领域技术人员在获得前述的理解之后,可容易地为这些实施方式产生改变、变型和等效方案。因此,示例了而不是限制了本公开的范围,并且本公开不排除包括对本领域技术人员是显而易见的对本主题的这种修改、变型和/或添加。

相关技术
  • 用于处理工件的氢反应性核素的生成
  • 以使用烷基卤化物生成的反应性核素处理工件
技术分类

06120112196555