掌桥专利:专业的专利平台
掌桥专利
首页

一种新型聚氨酯及其应用

文献发布时间:2023-06-19 13:48:08


一种新型聚氨酯及其应用

技术领域

本发明属于钙钛矿光电器件技术领域,具体涉及一种新型聚氨酯及其应用。

背景技术

不可再生能源正在不断消耗,人类社会面临日益严峻的能源危机以及由此产生的环境压力,发展绿色可再生能源技术迫在眉睫。太阳能作为一种绿色的可再生能源,取之不尽用之不竭。传统的基于硅等无机半导体材料太阳能电池虽然已经商品化,但因其生产工艺复杂,成本过高,加之无机材料不可降解以及不易柔性加工等缺陷,其应用受到了限制。

近年来,卤化铅钙钛矿太阳能电池(PSCs)具有溶液可加工性、低缺陷密度、低成本和高产量等优点,已成为极具发展前景的第三代光伏技术。经过前所未有的发展,小面积PSCs的功率转换效率已经超过25%,同时大型钙钛矿模块也在快速上升。

钙钛矿太阳能电池作为一种新兴的高效率、低成本的光伏技术,在商业化的道路上依旧面临着障碍。近年来,决定钙钛矿光伏技术商业化的主要因素已经从太阳能电池性能转向稳定性、再现性、器件升级和在器件使用寿命内防止模块铅泄漏。在集成光伏中使用钙钛矿太阳能电池时,铅泄漏的潜在风险可被视为一种环境和公共健康风险。所以改善钙钛矿太阳能电池稳定性与铅泄露问题是推进钙钛矿商业化的重要助力。

发明内容

本发明的目的在于提供一种新型聚氨酯,该聚氨酯合成工艺简洁,成本较低,应用于钙钛矿太阳能电池时既可以减低钙钛矿的表面缺陷,又可以提高空穴迁移率,从而提高钙钛矿器件的效率。

本发明的目的还在于提供上述新型聚氨酯在钙钛矿光电器件方面的应用,该新型聚氨酯用于钙钛矿太阳能电池领域,可以使得钙钛矿太阳能电池具有更高的湿稳定性以及水稳定性,并且在一定程度上可以抑制铅泄露。

本发明的上述第一个目的可以通过以下技术方案来实现:一种新型聚氨酯,它的结构如下式(I)所示:

其中:

优选地,本发明所述新型聚氨酯为固化不溶性新型聚氨酯。

优选地,本发明所述新型聚氨酯主要通过螺二芴-羟基活性官能团化学物(Spiro-OH)与异氰酸酯反应制成,其中螺二芴-羟基活性官能团化学物(Spiro-OH)的结构式如下式(II)所示:

所述异氰酸酯为1,4-苯二异氰酸酯、1,5-萘二异氰酸酯、4,4′-亚甲基双(异氰酸苯酯);4,4′-二异氰酸基-3,3′-二甲基联苯、1,3-苯二异氰酸酯或六亚甲基二异氰酸酯。

其中:4,4′-亚甲基双(异氰酸苯酯);4,4′-二异氰酸基-3,3′-二甲基联苯、1,3-苯二异氰酸酯和六亚甲基二异氰酸酯的结构式分别如下:

因此,具体的,该新型聚氨酯的结构可以为:

或:

或:

或:

或:

或:

优选的,该螺二芴-羟基活性官能团化学物(Spiro-OH)是一种带有螺二芴与二苯胺结构的含有四羟基小分子的羟基活性官能团化合物。

优选的,本发明所述螺二芴-羟基活性官能团化学物(Spiro-OH)通过以下方法制备获得:

(1)选取二醇类和三溴化磷原料,将二醇类加入反应容器中,盐浴冷却,加入三溴化磷,而后加热至140~180℃,搅拌反应2~4h,反应结束后,用柱层析法得到产品a;

(2)选取产品a和3,4-二氢-2H-吡喃(DHP),将产品a和3,4-二氢-2H-吡喃加入反应容器中,再加入二氯甲烷搅拌溶解,接着加入对甲苯磺酸,室温搅拌5~12h,反应结束后,用柱层析法得到产品b;

(3)选取产品b和苯胺,将产品b、苯胺、碳酸钾以及N,N-二甲基甲酰胺(DMF)加入反应容器中,加热搅拌反应24~36h,反应结束后,用柱层析法得到产品c;

(4)选取产品c和2,2′,7,7′-四溴-9,9′-螺二芴,将产品c和2,2′,7,7′-四溴-9,9′-螺二芴加入反应容器中,再加入叔丁醇钠、Pd

(5)将产品d溶解于四氢呋喃(THF)中,而后加入甲醇与对甲苯磺酸,室温搅拌反应8~18h,反应结束后,用碳酸钠水溶液调节pH至中性,再加入乙酸乙酯,去离子水萃取,无水硫酸钠干燥,用柱层析法得到产品螺二芴-羟基活性官能团化学物(Spiro-OH)。

在该上述螺二芴-羟基活性官能团化学物(Spiro-OH)中:

优选的,步骤(1)中所述二醇类为二甘醇、1,3-丙二醇或二丙二醇,其与原料三溴化磷的摩尔比为7~10∶1;步骤(1)中柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为1.5~3∶1。

更佳的,步骤(1)中所述二醇类为二甘醇,其与三溴化磷的摩尔比为8.7∶1,加热至160℃,搅拌反应2h,柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为2∶1。

其中1,3-丙二醇和二丙二醇的结构式如下:

优选的,步骤(2)中产品a与对甲苯磺酸的摩尔比80~120∶1。

优选的,步骤(2)中柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为1∶10~20。

更佳的,步骤(2)中产品a与对甲苯磺酸的摩尔比为100∶1;步骤(2)中柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为1∶12。

优选的,步骤(3)中产品b与苯胺的摩尔比是1∶1~3。

优选的,步骤(3)中柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为1∶4~6。

更佳的,步骤(3)中产品b与苯胺的摩尔比是1∶1;步骤(3)中柱层析法时采用的流动相为乙酸乙酯和石油醚,二者的体积比为1∶4。

优选的,步骤(4)中所述2,2′,7,7′-四溴-9,9′-螺二芴:产品c:叔丁醇钠、Pd

更佳的,步骤(4)中所述2,2′,7,7′-四溴-9,9′-螺二芴:产品c:叔丁醇钠、Pd

优选的,步骤(5)中产品d与对甲苯磺酸的摩尔比为1∶4~6,所述四氢呋喃与甲醇的体积比为1∶3~5,步骤(5)中柱层析法时采用的流动相为乙酸乙酯和甲醇,二者的体积比为1∶15~20。

更佳的,步骤(5)中产品d与对甲苯磺酸的摩尔比为1∶4,所述四氢呋喃与甲醇的体积比为1∶4,步骤(5)中柱层析法时采用的流动相为乙酸乙酯和甲醇,二者的体积比为1∶20。

优选的,该新型聚氨酯的制备方法,将螺二芴-羟基活性官能团化学物(Spiro-OH)与异氰酸酯混合在溶剂(比如氯苯,甲苯)中,然后在70~95℃(更佳为85℃)℃下搅拌预聚反应6~12h(更佳为8h),合成新型聚氨酯Spiro-PU。

本发明的上述第二个目的可以通过以下技术方案来实现:上述新型聚氨酯在钙钛矿光电器件中的应用,所述钙钛矿光电器件包括钙钛矿太阳能电池,所述钙钛矿太阳能电池包括透明基底层、电子传输层、钙钛矿活性层、界面层、空穴传输层和金属电极层,所述界面层为新型聚氨酯(Spiro-PU)。

优选的,本发明所述透明基底层为透明导电玻璃FTO。

优选的,本发明所述电子传输层的材料为SnO

优选的,本发明所述钙钛矿活性层的材料为碘化铅甲胺,其化学结构通式为CH

优选的,本发明所述界面层的材料为新型聚氨酯(Spiro-PU),厚度约为100nm。

优选的,本发明所述空穴传输层的材料为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴(Spiro-OMeTAD),厚度为150-200nm。

优选的,本发明所述金属电极层的材料为银,厚度为60~100nm。

本发明经过试验发现,将得到的Spiro-OH与异氰酸酯交联反应,生成新型聚氨酯(Spiro-PU),而后旋涂于钙钛矿上界面,可得到交联固化的界面涂层,该新型聚氨酯(Spiro-PU)界面具有更高的密闭性,可以使得钙钛矿有更加优异的湿稳定性与水稳定性。

本发明经过试验发现,将得到的Spiro-OH与异氰酸酯交联反应,生成新型聚氨酯(Spiro-PU),而后旋涂于钙钛矿上界面,可得到交联固化的界面涂层,该新型聚氨酯(Spiro-PU)界面具有更高的密闭性,并且反应生成的酰胺基可以有效络合铅离子,有效预防铅泄露。

优选的,钙钛矿光电器件包括钙钛矿发光二极管、钙钛矿X射线探测器、钙钛矿激光器及钙钛矿太阳能电池等钙钛矿光电领域。对于应用于钙钛矿太阳能电池,可以使得钙钛矿具有更高的湿稳定性以及水稳定性,并且在一定程度上可以抑制铅泄露。

因此,本发明所述应用是指所述新型聚氨酯(Spiro-PU)在提高钙钛矿太阳能电池水稳定和湿稳定性方面的应用,以及所述应用是指所述新型聚氨酯(Spiro-PU)在减少钙钛矿太阳能使用过程中造成的铅泄露方面的应用。

因此,本发明中的新型聚氨酯为高密度交联不溶性薄膜。该薄膜适用于钙钛矿发光二极管、钙钛矿X射线探测器、钙钛矿激光器及钙钛矿太阳能电池等钙钛矿光电领域。其中,在钙钛矿太阳能电池领域,Spiro-PU中的羰基通过与Pb

与现有技术相比,本发明具有以下有益效果:

(1)本发明中的界面材料合成步骤简洁,成本低廉,原料来源广泛,可在多种溶剂中进行预聚,同时该界面材料在固化之后具有较高的玻璃化转变温度和较高的空穴迁移率,并且可以钝化缺陷,提高钙钛矿效率,可以获得更高的开路电压(VOC)和填充因子(FF),使得CH

(2)由于本发明中的界面材料具有较好的密闭性,并且交联不溶性,以及疏水性,可以大幅度提高钙钛矿太阳能电池的湿稳定性与水稳定性;

(3)将本发明得到的Spiro-OH与异氰酸酯交联反应,生成新型聚氨酯(Spiro-PU),该新型聚氨酯(Spiro-PU)界面具有更高的密闭性,并且反应生成的酰胺基可以有效络合铅离子,有效预防铅泄露;

(4)本发明交联反应得到的新型聚氨酯(Spiro-PU)具有高度可调控性,主要是因为螺二芴-羟基活性官能团化学物(Spiro-OH)中的二醇类原料可以根据需要选择比如二甘醇、1,3-丙二醇或二丙二醇等,异氰酸酯可以选择为1,4-苯二异氰酸酯、1,5-萘二异氰酸酯、4,4′-亚甲基双(异氰酸苯酯);4,4′-二异氰酸基-3,3′-二甲基联苯、1,3-苯二异氰酸酯或六亚甲基二异氰酸酯等,进而可以得到不同分子量大小,不同类型的新型聚氨酯(Spiro-PU)。

附图说明

图1是实施例1中产品a1的合成路线;

图2是实施例1中产品a1的核磁共振氢谱(

图3是实施例1中产品b1的合成路线;

图4是实施例1中产品b1的核磁共振氢谱(

图5是实施例1中产品c1的合成路线;

图6是实施例1中产品c1的核磁共振氢谱(

图7是实施例1中产品d1的合成路线;

图8是实施例1中产品d1的核磁共振氢谱(

图9是实施例1中Spiro-OH的合成路线;

图10是实施例1中的产品Spiro-OH核磁共振氢谱(

图11是实施例1中Spiro-OH的高分辨质谱;

图12是实施例1中界面材料新型聚氨酯Spiro-PU(P-PU和N-PU)的合成路线;

图13是实施例2中界面材料新型聚氨酯Spiro-PU(P-PU和N-PU)的红外表征;

图14是实施例3中基于两种不同PU界面材料的器件的J-V特性曲线;

图15是实施例3中界面材料聚氨酯PU(P-PU和N-PU)的湿稳定性、XRD表征;

图16是实施例3中界面材料聚氨酯PU(P-PU和N-PU)的水稳定性照片;

图17是实施例3中界面材料聚氨酯PU(P-PU和N-PU)的铅泄露表征;

图18是具体实施方式中界面材料新型聚氨酯Spiro-PU的制备过程图;

图19是实施例2中界面材料新型聚氨酯Spiro-PU的结构式;

图20是实施例2中界面材料新型聚氨酯Spiro-PU的结构式;

图21是实施例4中界面材料新型聚氨酯Spiro-PU的结构式;

图22是实施例5中界面材料新型聚氨酯Spiro-PU的结构式;

图23是实施例6中界面材料新型聚氨酯Spiro-PU的结构式;

图24是实施例7中界面材料新型聚氨酯Spiro-PU的结构式。

具体实施方式

下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。

本发明提供的新型聚氨酯,它的结构如下式(I)所示:

其中:

所述新型聚氨酯主要通过螺二芴-羟基活性官能团化学物(Spiro-OH)与异氰酸酯反应制成,其合成路线如图18所示,其中螺二芴-羟基活性官能团化学物(Spiro-OH)的结构式如下式(II)所示:

所述异氰酸酯为1,4-苯二异氰酸酯、1,5-萘二异氰酸酯、4,4′-亚甲基双(异氰酸苯酯);4,4′-二异氰酸基-3,3′-二甲基联苯、1,3-苯二异氰酸酯或六亚甲基二异氰酸酯。

下面以二甘醇和1,4-苯二异氰酸酯、1,5-萘二异氰酸酯为例,来说明螺二芴-羟基活性官能团化学物(Spiro-OH)的制备过程:

实施例1

螺二芴-羟基活性官能团化学物(Spiro-OH)的制备包括以下步骤:

1、产品a1的合成及表征:

(1)三溴化磷(3.15g,11.5mmol)在-5℃下缓慢滴入二甘醇(10.6g,100mmol)中,滴加时间超过0.5h,将反应混合物缓慢加热至室温,并加热至160℃,持续2小时;

(2)反应结束后,经柱层析(乙酸乙酯∶石油醚,体积比)=2∶1)纯化,得油状产物a1,产率为48%(8g,47.6mmol)。

产品a1的合成路线如图1所示,产品a1的核磁共振氢谱(

2、产品b1的合成及表征:

(1)选取产品a1(7.06g,42mmol)和3,4-二氢-2H-吡喃(DHP,3.87g,46mmol),将产品a1和3,4-二氢-2H-吡喃加入反应容器中,再加入二氯甲烷(70mL)搅拌溶解,接着加入对甲苯磺酸(72mg,0.42mmol),室温搅拌8h;

(2)反应结束后,反应混合物用去离子水清洗后,进行减压旋蒸,用柱层析法(乙酸乙酯:石油醚)=1:12,得到油状产品b1,53%的收率(4g、15.9mmol)。

产品b1的合成路线如图3所示,材料b1的核磁共振氢谱(

3、产品c1的合成及表征:

(1)将苯胺(1.48g,15.9mmol)溶于DMF(10mL)中,置于圆底瓶中,而后加入产品b1(4g,15.9mmol)和K

(2)反应结束后,减压旋蒸除去溶剂,用CHCl

(3)粗产物经硅胶柱纯化,以乙酸乙酯/石油醚(1∶4)为洗脱液,得到黄色液体c1,收率72%(3g,11.3mmol)。

产品c1的合成路线如图5所示,产品c1的核磁共振氢谱(

4、产品d1的合成及表征:

(1)在Schlenk反应管中加入将2,2′,7,7′-二溴-9,9-螺二芴(0.5g,0.8mmol),产品c1(1.27g,4.8mmol),叔丁醇钠(t-BuONa)(0.2g,2.08mmol),Pd2(dba)

(2)反应结束后,用二氯甲烷和水萃取,收集有机相,并用无水硫酸镁干燥、过滤并浓缩;

(3)粗产品经硅胶柱纯化(乙酸乙酯:石油醚=1:2),得到(Spiro-ET)为黄色油d1(600mg,收率55.4%)。

产品d1的合成路线如图7所示,产品d1的核磁共振氢谱(

5、产品Spiro-OH的合成及表征:

(1)取产品d1(500mg,0.36mmol),四氢呋喃3mL,12mL甲醇和对甲苯磺酸(252mg,1.46mmol)在室温下搅拌12h;

(2)反应后加入Na

产品Spiro-OH的合成路线如图9所示,产品Spiro-OH的核磁共振氢谱(

实施例2

聚氨酯Spiro-PU的制备及表征:

将Spiro-OH和1,4-苯二异氰酸酯(PPDI)/1,5-萘二异氰酸酯(NDI)混合在氯苯溶液中,然后在85℃下搅拌预聚反应8h。称由PPDI合成的聚氨酯为P-PU,称NDI的为N-PU,聚氨酯为P-PU或N-PU的合成路线如图12所示,结构式如图20或图19所示。

为了表征聚氨酯的形成,通过FTIR进行了说明,如图13所示。NCO端接的PU预聚物在2266cm

实施例3

利用化合物Spiro-PU制备钙钛矿太阳能电池

(1)制备电子传输层溶液将SnCl

(2)制备电子传输层将(1)中配制好的电子传输层溶液旋涂在洗干净的导电玻璃FTO上,旋涂工艺为1000r/min 3s而后3000r/min 30s,然后在150℃下退火60分钟;

(3)制备钙钛矿活性层前驱液碘化铅和碘甲胺的混合溶液,碘化铅和碘甲胺的物质量比例一般为1∶0.8~1.15,溶剂为N-N-二甲基甲酰胺和二甲基亚砜的混合溶液,体积比一般为7∶3或4∶1;

(4)制备钙钛矿活性层将(2)中涂有电子传输层的导电玻璃,旋涂钙钛矿前驱液,旋涂工艺为800r/min 3s然后4000r/min 30s,在旋涂过程中滴加400微升氯苯作为反溶剂,然后在100℃下退火10~15分钟;

(5)制备Spiro-PU界面层在(4)中得到的钙钛矿薄膜加热至85℃,而后上面旋涂Spiro-PU前驱液(实施例2中制备获得),旋涂工艺为1000r/min 3s然后3000r/min 30s;

(6)制备空穴传输层在(5)中旋涂好的PU薄膜上旋涂Spiro-OMeTAD溶液,旋涂工艺为100r/min 3s然后3000r/min 30s;

(7)蒸镀银电极在(6)中空穴传输层表面利用热蒸镀的方式蒸镀上一层银电极。

如图14所示,与未经修饰的钙钛矿相比,经过PU改善的钙钛矿效率得到了明显的提高,对于CH

如图15所示,为了说明本发明的对钙钛矿的耐湿性提升,将涂覆与未涂覆PU的钙钛矿薄膜放置于湿度为85%,通过表面宏观变化与XRD检测可以明显看出Spiro-PU极大提升了钙钛矿的湿稳定性。并且从XRD中可以看出,经过聚氨酯改进的钙钛矿只出现钙钛矿水合物的峰,不会出现碘化铅,这为钙钛矿的自修复提供了可能。

并且为了体现出经过Spiro-PU的致密性及其修饰的钙钛矿的水稳定性,如图16所示,将钙钛矿直接浸泡在水里,可以发现PU修饰的钙钛矿在水中长时间后依旧保持黑相,这是钙钛矿水稳定性的一大进步。与此同时,可以清晰地认识到钙钛矿中的铅污染是威胁人民生命安全与环境污染的重大问题,当钙钛矿长期浸泡在水中之后,可以十分惊奇地发现,PU包覆下的钙钛矿在分解成PbI

以上所述的只是基于CH

实施例4

与实施例1不同的是,异氰酸酯为4,4′-二异氰酸基-3,3′-二甲基联苯。其结构式如图21所示。

实施例5

与实施例1不同的是,异氰酸酯为4,4′-亚甲基双(异氰酸苯酯)。其结构式如图22所示。

实施例6

与实施例1不同的是,异氰酸酯为1,3-苯二异氰酸酯。其结构式如图23所示。

实施例7

与实施例1不同的是,异氰酸酯为六亚甲基二异氰酸酯。其结构式如图24所示。

以上实施实例对本发明不同的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。

相关技术
  • 一种用于防水卷材的新型聚氨酯涂料及其制备方法和应用
  • 一种新型聚氨酯及其应用
技术分类

06120113812316