掌桥专利:专业的专利平台
掌桥专利
首页

功率半导体装置

文献发布时间:2023-06-19 10:22:47


功率半导体装置

技术领域

本发明涉及一种功率半导体装置,尤其涉及一种控制车载用驱动用的马达的功率半导体装置。

背景技术

近年来在安装功率半导体装置的电力变换装置中需要安装短路保护功能、高散热化。专利文献1公开了即使在短路电流上升、下降时的di/dt较大的情况下,也通过主电路端子和控制端子的磁耦合来确保保护动作的手段。此外,专利文献2公开了通过由外部金属覆盖功率半导体元件来提高散热性的构造。

然而,需要进一步提高在功率半导体装置的短路保护发生时的可靠性。

现有技术文献

专利文献

专利文献1:日本专利特开2014-229642号公报

专利文献2:日本专利特开2016-36194号公报

发明内容

发明要解决的问题

本发明的课题是不损害功率半导体装置的散热性地抑制过电流发生时的过电压,并提高可靠性。

解决问题的技术手段

本发明的功率半导体装置具备:功率半导体元件,其具有低电位侧电极、高电位侧电极和感测电极;高电位侧导体,其与所述高电位侧电极电连接;低电位侧导体,其与所述低电位侧电极电连接;感测布线,其与所述感测电极电连接;以及第一金属部,其隔着所述感测布线与所述低电位侧导体或所述低电位侧导体相对,关于所述第一金属部,在从所述感测布线和所述第一金属部的排列方向观察的情况下,所述感测布线具有与所述高电位侧导体或所述低电位侧导体相对的相对部,所述第一金属部在与所述相对部重叠的部分形成凹部,所述凹部的深度以该凹部的底部和所述感测布线的距离大于该感测布线和所述高电位侧导体或所述低电位侧导体的距离的方式形成。

由此,通过在成为抑制磁耦合的原因的外部金属即散热基底上设置凹部,从而在功率半导体内部使主电路和控制端子磁耦合,在短路保护发生时使控制端子的电压缓慢切断,由此抑制成为半导体元件劣化的原因的过电压。

发明的效果

根据本发明,能够不损害功率半导体模块的散热性地抑制过电流发生时的过电压。

附图说明

图1为本实施方式的功率半导体装置100的外观正视图。

图2为本实施方式的功率半导体装置100的从图1的反方向观察的外观正视图。

图3为图1所示的功率半导体装置100去除模制材料405后的内部构造图。

图4为图3所示的功率半导体装置100去除低电位侧导体201U以及201L后的内部构造图。

图5为从箭头方向观察图1所示的A-A’截面的功率半导体装置100的截面图。

图6为表示与本实施方式的功率半导体装置100相对应的驱动电路的构成的电路图。

图7为在发生了逆变器电路的短路保护的情况下的逆变器电路下臂侧的动作波形。

图8为表示其他实施方式的功率半导体装置200的外观正视图。

图9为从箭头方向观察图8所示的功率半导体装置200的通过单点划线的截面的截面图。

具体实施方式

以下,参考附图说明本发明的功率半导体装置的实施方式。另外,在各图中对于同一要素标记同一符号,省略重复的说明。本发明不限于以下实施方式,在本发明的技术性概念中也包含各种变形例、应用例。

图1为本实施方式的功率半导体装置100的外观正视图。图2为本实施方式的功率半导体装置100的从图1的反方向观察的外观正视图。图3为图1所示的功率半导体装置100去除模制材料405后的内部构造图。图4为图3所示的功率半导体装置100去除低电位侧导体201U以及201L后的内部构造图。图5为从箭头方向观察图1所示的A-A’截面的功率半导体装置100的截面图。图6为表示与本实施方式的功率半导体装置100相对应的驱动电路的构成的电路图。

可以使用例如MOSFET或者IGBT作为图4所示的功率半导体元件204。另外,功率半导体元件204由构成逆变器电路的上臂的上臂侧的功率半导体元件204U和构成逆变器电路的下臂的下臂侧的功率半导体元件204L构成。

如图4以及图6所示,交流输出端子103与连接到下臂侧的功率半导体元件204L的发射极侧的高电位侧导体205L相连接。中间电极207连接图3以及图6所示的低电位侧导体201U和高电位侧导体205L。中间电极206连接图3以及图6所示的低电位侧导体201L和高电位侧导体205L。高电位侧导体205U构成图6的逆变器电路的上臂侧的高电位侧的导体。

图4所示的功率半导体元件204U以及204L分别具备正极感测电极301、负极感测电极302、低电位侧电极303以及高电位侧电极304(功率半导体元件204L的背面侧)。这些电极在IGBT的情况下,正极感测电极301对应于栅极,负极感测电极302对应于开尔文发射极,低电位侧电极303对应于发射极,高电位侧电极304对应于集电极。此外,在MOSFET的情况下,正极感测电极301对应于栅极,负极感测电极302对应于开尔文源极,低电位侧电极303对应于源极,高电位侧电极304对应于漏极。

正极感测布线203L被安装至绝缘层401。正极感测布线203L经由焊料与正极感测端子104L连接。正极感测电极301经由引线键合305与正极感测布线203L电连接。

负极感测布线202L被安装至绝缘层401。负极感测布线202L经由焊料与负极感测端子105L连接。负极感测电极302经由引线键合306与负极感测布线202L电连接。

同样地,正极感测布线203U被安装至绝缘层401。正极感测布线203U经由焊料与正极感测端子104U连接。

负极感测布线202U被安装至绝缘层401。负极感测布线202U经由焊料与负极感测端子105U连接。

如图5所示,低电位侧电极303经由焊料402与间隔件403电连接。间隔件403经由焊料402与低电位侧导体201L电连接。低电位侧导体201L经由焊料与图4所示的低电位侧端子102电连接。

如图5所示,高电位侧电极304与安装于绝缘层401的高电位侧导体205L电连接。高电位侧导体205L经由焊料与高电位侧端子101电连接。

焊接用导体图案404被安装至绝缘层401。第一金属部106经由焊料402与焊接用导体图案404连接。第一金属部106使用例如铝、铜。

第一金属部106在隔着负极感测布线202L与低电位侧导体201L相对的部分形成凹部406。此外,正极感测布线203L被配置在比凹部406靠近功率半导体元件204L的一侧。

凹部406的深度形成为使得凹部406的底部和负极感测布线202L的距离大于负极感测布线202L和低电位侧导体201的距离。由此,在低电位侧导体201L和感测布线202L处促进磁耦合。

在焊接用导体图案404到达负极感测布线202L的下部的情况下,负极感测布线202L和低电位侧导体201的磁耦合减弱。在从负极感测布线202L和凹部406的排列方向观察的情况下,优选凹部406以作为导体的焊接用导体图案404和焊料402不重叠的方式构成。由此,负极感测布线202L和低电位侧导体201L可以强磁耦合。

如图6所示,正极感测布线203L与栅极电阻502L连接。另外,栅极电阻502以及负极感测布线202L连接到信号源501L。

高电位侧端子101连接至平滑用电容器504以及直流电压源505的正极侧。低电位侧端子102连接至平滑用电容器504以及直流电压源505的负极侧。负载连接至交流输出端子103。

图7为在发生了逆变器电路的短路保护的情况下的逆变器电路下臂侧的动作波形。另外,图7示出了使用MOSFET作为功率半导体元件204L的情况。在IGBT的情况下、在上臂的情况下也具有相同的波形。

在t1处,发生了由误动作、故障所导致的上下臂短路时,电流从图6所示的平滑用电容器504流出,源电流Is急剧上升。这称作短路电流。

在t2处,短路电流一被检测到,从图6的信号源501L输出的信号就被切断(OFF)。

从信号源501L输出的信号被切断(OFF)后的t2-t3为止的源电流Is的下降时的di/dt使得在负极感测布线202L中感应出电压。通过该感应出的电压,栅源电压Vgs的下降变缓,抑制了短路电流的急剧减少。通过短路电流缓慢减少,抑制了漏源之间产生的浪涌电压Vds,能够抑制由浪涌电压引起的半导体元件的劣化。

图8为表示其他实施方式的功率半导体装置200的外观正视图。图9为从箭头方向观察图8所示的功率半导体装置200的通过单点划线的截面的截面图。在图8以及图9所示的实施方式中,与图1至图7中所示的构成附加了相同附图编号的构成与图1至图7所示的功能相同。

第一金属部106与图5所示的构造相同,在隔着负极感测布线202L、负极感测布线202U与低电位侧导体201相对的部分形成有凹部406。

进一步地,在本实施例中,第二金属部分107被配置在隔着功率半导体元件204U、204L与第一金属部分106相对的位置上。第二金属部107经由焊料402与焊接用导体图案404连接。作为示例,第二金属部107使用铝、铜。

第二金属部107在隔着低电位侧导体201L、201U与负极感测布线202L、202U相对的部分形成凹部407。此时,需要将正极感测布线203L、203U配置在比凹部407靠内侧。

凹部407的深度形成为该凹部407的底部和低电位侧导体201L或201U的距离大于负极感测布线202L或202U和低电位侧导体201L或201U的距离。负极感测布线202和低电位侧导体201通过凹部407磁耦合。

如图6所示,正极感测布线203U、203L与栅极电阻502U电连接,并且栅极电阻502U以及负极感测布线202U、203L连接至信号源501U。通过凹部406以及凹部407,在低电位侧导体201和感测布线202中构成磁耦合构造。

根据本实施方式,除了与图1至图7所示的实施方式同样的效果之外,还能够进一步提高散热性和抑制过电流产生时的过电压。

此外,图1至图9所示的第一金属部106的凹部406的宽度或第二金属部107的凹部407的宽度以大于感测布线202的宽度的方式形成。由此,能够进一步提高过电流产生时的过电压抑制效果。

符号说明

100…功率半导体装置、101…高电位侧端子、102…低电位侧端子、103…交流输出端子、104L…正极感测端子、104U…正极感测端子、105L…负极感测端子、105U…负极感测端子、106…第一金属部、107…第二金属部、200…功率半导体装置、201L…低电位侧导体、201U…低电位侧导体、202L…负极感测布线、202U…负极感测布线、203L…正极感测布线、203U…正极感测布线、204L…下臂侧的功率半导体元件、204U…上臂侧的功率半导体元件、205L…高电位侧导体、205U…高电位侧导体、206…中间电极、207…中间电极、301…正极感测电极、302…负极感测电极、303…低电位侧电极、304…高电位侧电极、305…引线键合、306…引线键合、401…绝缘层、402…焊料、403…间隔件、404…焊接用导体图案、405…模制材料、406…凹部、407…凹部、501L…信号源、502L…栅极电阻、504…平滑用电容器、505…直流电压源。

相关技术
  • 用于具有壳体的功率半导体装置的连接装置及功率半导体装置
  • 功率半导体装置、功率半导体装置的制造方法以及马达驱动装置
技术分类

06120112525206