掌桥专利:专业的专利平台
掌桥专利
首页

可切换电抗单元、可变电抗、HF发生器和具有可切换电抗单元的阻抗匹配布置

文献发布时间:2023-06-23 06:30:03


可切换电抗单元、可变电抗、HF发生器和具有可切换电抗单元的阻抗匹配布置

技术领域

本发明涉及一种可切换电抗单元(switchable reactance unit),所述可切换电抗单元具有高频连接部(HF连接部)和电路布置,该高频连接部用于将所述可切换电抗单元连接到传输线路上,该传输线路用于在范围1-200MHz中的频率的情况下传输信号,所述电路布置具有多个并联置入的切换元件,所述切换元件分别具有操控连接部。可切换电抗单元指的是电路单元,借助该电路单元可以接入或者断开电抗,例如电容和/或电感。其通常具有所述电抗和切换元件,例如晶体管、PIN二极管或者相似的电子构件。

本发明还包括一种可变电抗,所述可变电抗具有至少一个、尤其是多个这样的可切换电抗单元。

本发明还包括一种阻抗匹配布置,所述阻抗匹配布置具有一个、尤其是多个这样的可切换电抗单元和/或一个、尤其是多个这样的可变电抗。

本发明还包括一种高频功率发生器(HF功率发生器),所述高频功率发生器具有至少一个、尤其是多个这样的可切换电抗单元和/或至少一个、尤其是多个这样的可变电抗。

本发明还包括一种等离子体供给系统,所述等离子体供给系统具有这样的阻抗匹配布置和/或HF功率发生器,所述阻抗匹配布置和/或所述HF功率发生器分别具有至少一个、尤其是多个这样的可切换电抗单元和/或至少一个、尤其是多个这样的可变电抗。此外,这样的阻抗匹配布置可以具有控制装置并且可以尤其具有与该控制装置连接的测量装置。

本发明还包括一种在前述等离子体供给系统中运行前述阻抗匹配布置和/或前述HF功率发生器的方法。

背景技术

阻抗匹配布置通常在HF激励的等离子体过程中使用。HF激励的等离子体过程例如用于在生产建筑玻璃、半导体、光伏元件、平面屏蔽、显示器等时对衬底进行涂覆(溅射)和/或蚀刻。在这样的工艺中的阻抗通常非常快速地发生变化,因此,通常应非常快速地(在几毫秒或者更短时间内)匹配阻抗匹配。这样的工艺的功率为几百W(例如300W及以上),但也不乏几千瓦或者几十kW。在这样的功率的情况下,阻抗匹配布置内的电压通常为几百V(例如300V及以上),也不乏1000V及以上。这样的电路中的电流可以是几安培、通常是几十A,有时也可以是100A及以上。在这样的电压和电流的情况下实现阻抗匹配布置,就已经一直是一种巨大的挑战。这种阻抗匹配电路中的电抗的快速可改变性是附加的、非常高的挑战。

这样的阻抗匹配布置例如在DE 10 2015 220 847 A1中示出并且在那里被称为阻抗匹配网络。在那里示出的电抗18、20、22能够以可变的方式调设,以便能够调设阻抗匹配。可变的调设的一种可能性在于,借助电子操控的半导体开关接入和断开不同值的电抗。

在这种阻抗匹配布置中存在以下要求:将已连接的阻抗匹配布置中的电抗、尤其是电容动态地接入到HF路径。借助能够电子接入和断开的电抗,阻抗匹配可以比借助传统的具有能够机械改变的电抗的阻抗匹配布置更快速地进行,所述能够机械改变的电抗例如是旋转电容器。因此,非常期望开发这样的阻抗匹配布置,所述阻抗匹配布置具有在阻抗匹配布置中的一个或者多个可切换电抗单元。然而,所述阻抗匹配布置具有严重缺点。由于通常在运行时必须匹配阻抗,因此,可切换电抗单元中的切换元件必须可以接通和关断非常高的电流。为此,通常使用非常昂贵的切换元件。因此,通常还可以接受传统的能够机械改变的电抗的缺点。通常虽然已知将高电流划分到多个并联连接的构件上。但是,在切换元件的情况下,这样的并联电路总是特别关键的,因为接通电阻和接通动态和关断动态的允差可以相当剧烈地变化,并且因此不能够保证电流随时足够均匀地分布到所有并联连接的切换元件上。尤其是在前述高电流的情况下,这可以导致快速磨损并且还可以导致切换元件的突然损坏。这是最不期望的。

发明内容

因此,本发明的任务在于,以高程度的可靠性和故障安全性提供明显较成本有利的可切换电抗单元并且尤其还提供配备有该可切换电抗单元的阻抗匹配布置和/或配备有该可切换电抗单元的HF功率发生器。

根据本发明,该任务通过可切换电抗单元来解决,该可切换电抗单元具有HF连接部和电路布置,该HF连接部用于将可切换电抗单元连接到传输线路上,该传输线路用于在范围1-200MHz中的频率的情况下传输信号,该电路布置具有多个并联置入的切换元件,所述切换元件分别具有操控连接部,其中,每个切换元件通过分配给该切换元件的、与该切换元件串联连接的至少一个单个电抗连接到HF连接部上,其中,所述切换元件通过所述切换元件的操控连接部能够这样操控或者这样操控,使得所述切换元件同时进行切换。

在一种构型中,可变电抗具有至少一个、尤其是多个可切换电抗单元,尤其具有多个并联连接的可切换电抗单元,其中,所述多个可切换电抗单元尤其设计用于切换不同电抗、尤其是如下电抗:所述电抗的值分别相差2倍。

在一种构型中,阻抗匹配布置具有至少一个、尤其是多个根据本发明的可切换电抗单元和/或至少一个、尤其是多个可变电抗。

在一种构型中,HF功率发生器具有:

a)功率转换器,所述功率转换器适合用于将具有小于1kHz的频率的功率转变为在1MHz至200MHz的频率范围中的高频功率,

b)至少一个、尤其是多个根据本发明的可切换电抗单元和/或一个、尤其是多个可变电抗。

“同时进行切换”指的是,切换元件在这方面以在技术上常见且可能的方式同时被切换。不完全相同的切换元件通常具有不同的切换延迟。因此,实际的切换时间可以略有偏差。在本发明的意义上,典型小于或者等于100ns、尤其小于或者等于10ns的切换差别被视为同时。通过将能够通过可切换电抗单元切换的总电抗划分为多个分别分配给切换元件的单个电抗,每个切换元件原则上仅负荷有分配给该切换元件的单个电抗的电流。这防止,在接通过程和关断过程期间由于切换元件的不同切换延迟,各个切换元件过载,如在未划分的总电抗的情况下可能出现的情况那样。

由于通过可切换电抗单元的电流通过单个电抗以定义的方式划分,该布置同样防止各个切换元件的由于不同的导通电阻而造成的过载,如在切换元件的直接并联电路的情况下在仅一个电抗上可能的那样。电路的构造,例如输入线路或者构件参数的变化,对电流的影响被最小化。

高频(HF)在此指的是1MHz或者更大的频率。高频尤其指的是在1至1200MHz的范围中的频率。

在一种优选构型中,可切换电抗单元、可变电抗、阻抗匹配布置和/或HF功率发生器设计用于在9MHz至30MHz的范围中的频率、尤其是13.56MHz或27.12MHz分别+/-10%的频率。

电抗可以是电感或者电容或者二者的组合。

可切换电抗单元可以具有大于两个的、尤其是大于三个的、尤其是大于四个的并联置入的切换元件,所述切换元件分别具有所分配的单个电抗。如此,可以防止由于不对称的电流划分造成的损坏。

至少一个单个电抗可以构造为电容,尤其是多个单个电抗可以构造为电容,特别优选地,所有单个电抗可以构造为电容。因此可能的是,替代切换大的总电容地,将该总电容划分为多个小的单个电容,所述单个电容分别与所分配的切换元件串联连接。各个电容在其总和方面产生初始的待切换的电容。

所述电容可以具有相同的电容值。由此保证,相同的电流基本上流过所有切换元件。

并联置入的切换元件可以分别具有源极连接部,该源极连接部可以与共同的连接部端点连接。因此可以保证,并联置入的切换元件都位于相同的电位上。

尤其是,共同的连接部端点可以与地连接。替代地,共同的连接部端点可以与高频电位连接。

至少一个单个电抗可以构造为电感,尤其是多个单个电抗可以构造为电感,特别优选地,所有单个电抗可以构造为电容。

替代将总电容划分为较小的单个电容地,可以使用经匹配的总电容,多个电感星形地连接到经匹配的总电容上。然后,电感可以分别与切换元件串联连接。然后,根据上述定义,所述电感是单个电抗。由经匹配的总电容和并联连接的电感构成的串联电路可以如此调设,使得该串联电路在该运行频率的情况下与初始期望的总电容具有相同的阻抗。

切换元件可以构造为晶体管、尤其构造为场效应晶体管、优选构造为MOSFET、LDMOS,或者可以包括PIN二极管。尤其是,切换元件可以具有体二极管。借助所述结构元件,尤其是具有体二极管的MOSFET,可以特别成本有利地实现切换元件。价格优势可以如此大,使得该价格优势超过用于切换元件和电抗的多次使用的成本。

切换元件可以各具有一个栅极连接部,所述切换元件可以通过栅极连接部接通。栅极连接部可以直接地或者间接地相互连接,以便通常接通所述切换元件。

所述切换元件可以分别具有漏极连接部,并且单个电抗可以分别连接到漏极上。

切换元件的漏极连接部可以通过漏极偏置电感连接到漏极偏置连接部上。漏极偏置电压可以连接到该漏极偏置连接部上。该漏极偏置电压可以大于在符号方面相反的HF半波的峰值电压,该峰值电压施加在打开状态中的切换元件上,以便例如防止体二极管的连续接入(Durchschalten)。在此,多个切换元件、尤其是所有切换元件的漏极连接部可以分别通过漏极连接电阻相互连接。漏极偏置电压可以是能够通过另外的切换元件接入和断开的。

为了不必为每个并联置入的切换元件使用具有HF阻流圈(Drossel)的偏置供给装置,漏极连接部可以通过电阻连接。因此足够的是,漏极偏置电压通过电感、尤其是通过HF阻流圈仅施加到漏极中的一个漏极上并且将该漏极偏置电压通过漏极连接电阻分到别的切换元件上。

漏极连接电阻的、尤其是每个漏极连接电阻的电阻值可以大于在闭合状态中切换元件中的一个切换元件的阻抗。通过这种方式,通过电阻的HF横向电流在切换过程期间可以被限制,并且可以防止漏极连接电阻的损坏。

漏极连接电阻的、尤其是每个漏极连接电阻的电阻值可以分别如此确定大小,使得τ=R*C不大于预给定的值,以便在关断切换元件并且将漏极偏置电压施加到漏极偏置连接部上时,各个电容可以足够快速地充电到漏极偏置电压。

替代漏极连接电阻地,也可以使用电感。

电路布置可以具有多个、尤其是两个、尤其是三个、尤其是四个并联置入的切换元件,所述切换元件分别具有优选相同的所分配的单个电抗。如此,不对称的电流划分不能够损坏各个切换元件。

可以设置有多个电路布置,所述电路布置可以分别具有多个、尤其是分别具有不同数量的并联置入的切换元件和/或所分配的单个电抗的不同数值大小。因此,借助阻抗匹配布置可以特别灵活地对不同的所需要的阻抗匹配做出反应。

多个可切换电抗单元可以设计用于切换电抗,所述电抗分别相差2倍。如此,可以以非常节省成本的方式构造2

可切换电抗单元可以以与每个切换元件串联的方式具有另外的切换元件。因此,可以切换较高的电压,并且可切换电抗单元还可以更可靠地运行。

另外的切换元件分别可以具有操控连接部,并且切换元件和另外的切换元件可以通过所述切换元件和所述另外的切换元件的操控连接部是能够这样操控的或者这样操控,使得所述切换元件和所述另外的切换元件同时进行切换。因此,可以切换较高的电压,并且可切换电抗单元还可以更可靠地运行。

每个切换元件串联电路具有各一个切换元件和另外的切换元件,所述每个切换元件串联电路可以由两个结构相同的切换元件构造。

各一个切换元件和另外的切换元件可以在所述切换元件和所述另外的切换元件的源极连接部连接。

各一个切换元件和另外的切换元件可以在所述切换元件和所述另外的切换元件的漏极连接部连接。

各一个切换元件和另外的切换元件可以分别在源极连接部和漏极连接部上相互连接。

此外,如下等离子体供给系统也落入本发明的范畴中:该等离子体供给系统具有HF功率发生器、负载和根据本发明的阻抗匹配布置,所述负载呈以高频运行的、用于对衬底进行涂覆或者蚀刻的等离子体过程的形式。

此外,如下等离子体供给系统也落入本发明的范畴中:该等离子体供给系统具有前述根据本发明的HF功率发生器和负载,所述负载呈以高频运行的、用于对衬底进行涂覆或者蚀刻的等离子体过程的形式。这样的等离子体供给系统可以以具有和不具有附加的阻抗匹配布置的方式运行。如果该等离子体供给系统以具有附加的阻抗匹配布置的方式运行,则这可以是具有和不具有根据本发明的可变电抗的阻抗匹配布置和具有和不具有根据本发明的可切换电抗单元的阻抗匹配布置。

本发明还包括一种在前述等离子体供给系统中运行前述阻抗匹配布置和/或前述HF功率发生器的方法,该方法具有下述方法步骤中的一个或者多个方法步骤:

a)尤其通过一个栅极连接部与一个源极连接部之间的或者多个栅极连接部与多个源极连接部之间的足够大的正电压,接入一个切换元件或者多个切换元件,

b)尤其通过一个栅极连接部与一个源极连接部之间的或者多个栅极连接部与多个源极连接部之间的足够小的或者负的电压,关断一个切换元件或者多个切换元件,

c)将高电压接入到一个切换元件的漏极连接部上或者多个切换元件的漏极连接部上,其中,高电压在量值方面大于漏极连接部与源极连接部之间的在量值方面最大的HF电压,

d)将高电压从一个切换元件的漏极连接部上或者多个切换元件的漏极连接部上断开。

优选地,可以同时进行上述方法步骤b)和c)。

优选地,可以同时进行上述方法步骤a)和d)。

本发明的其他优点从说明书和附图中得出。同样地,根据本发明,上文提到的和更进一步阐释的特征能够本身单独地或以多个形成任意组合地予以应用。所示出并且所描述的实施方式不应理解为详尽的列举,而是具有用于本发明的叙述的示例性特征。

附图说明

图1示出具有阻抗匹配电路的等离子体供给系统;

图2示出可切换电抗单元。

图3示出具有在与切换元件的串联电路中的多个另外的切换元件的可切换电抗单元。

图4a-c示出三种不同构型中的切换元件串联电路。

具体实施方式

图1示出等离子体供给系统1,该等离子体供给系统具有高频功率发生器40,该高频功率发生器40通过阻抗匹配布置11连接到负载28、尤其是等离子体负载上。高频功率发生器40在此可以具有功率转换器,该功率转换器适合用于将具有小于1kHz的频率的功率转变为在1MHz至200MHz的频率范围中的高频功率。阻抗匹配布置11是阻抗匹配装置9的组成部分。在示出的实施例中,阻抗匹配布置11包括可变电抗18、20、22,所述可变电抗分别通过操控电路12、14、16操控,以改变所述可变电抗的电抗值。操控电路12、14、16通过控制装置32控制。通过测量装置25连接到控制装置32上,该测量装置可以具有例如用于检测电流和电压、正向功率和反射功率和/或阻抗量值和相位角的测量元件24、26。基于通过测量装置25求取的参量,可以求取例如在负载28上反射的功率或者求取反射因子。当存在不匹配、即当负载28的阻抗不与功率发生器40的输出端阻抗相匹配时,出现反射功率。替代地或者附加地,相应的测量装置也可以布置在输入端上或者布置在阻抗匹配装置9内部。阻抗匹配布置9适合用于将在负载28的输入端上的负载阻抗27转变为在阻抗匹配布置11的输入端上的、即发生器侧的经转换的负载阻抗29。

阻抗匹配布置11和/或阻抗匹配装置9也能个集成在HF功率发生器40中(未示出)。

HF功率发生器40也可以具有一个或者多个可变电抗18、20、22。

HF功率发生器40也可以具有一个或者多个可切换电抗单元100(图2)。

操控电路12、14、16可以如在申请号为DE20 2020 102 084.6的实用新型文件DE20 2020 102 084 U1中所描述的那样设计并且尤其也可以如其所描述的那样运行。参考其公开内容,并且使其成为本发明的主题。在那里所描述的阻抗匹配电路在此相应于在这里所描述的阻抗匹配布置11。在那里所描述的HF连接部RFin相应于在这里所描述的HF连接部112。在那里所描述的GND/RFout可以相应于在这里所描述的共同的连接部112(图2)或者119(图3)。

图2示出可切换电抗单元100。该可切换电抗单元具有用于将可切换电抗单元100连接到传输线路114上的HF连接部112,该传输线路用于传输在频率范围1至200MHz中的信号。另外,可切换电抗单元100包括具有多个并联置入的切换元件T1、T2、T3的电路布置116,所述切换元件分别具有操控连接部G。另外,切换元件T1、T2、T3具有漏极连接部D和源极连接部S。切换元件T1、T2、T3的源极连接部S与共同的连接部117连接,该共同的连接部在示出的实施例中与地连接。每个切换元件T1、T2、T3通过分配给该切换元件的、串联连接的单个电抗C11、C12、C13连接到HF连接部112上。在示出的实施例中,单个电抗C11、C12、C13构造为电容。

在先前提到的可变电抗18、20、22中的每个可变电抗中,可以布置有、尤其是并联连接地布置有多个可切换电抗单元100。

多个尤其并联连接的可切换电抗单元100可以分别设计用于切换电抗,所述电抗分别相差2倍。如此,可以以非常节省成本的方式构造2

在此,仅切换低电容值(例如小于等于8pF的电容值)的可切换电抗单元可以具有少量的并联连接的切换元件(T1、T2、T3),例如两个或者仅一个。

在此,切换与此相比较高的电容值(例如大于8pF的电容值)的可切换电抗单元可以具有更多的并联连接的切换元件(T1、T2、T3),例如三个或者更多。

在该实施例中,切换元件T1、T2、T3构型为具有体二极管的MOSFET。体二极管由结构类型决定地集成在大多数目前可用的MOSFET中,该体二极管的阴极连接在漏极连接部D上,该体二极管的阳极连接在源极连接部S上。

切换元件T1、T2、T3可以基本上相同地构型。所述切换元件的操控连接部G可以相互连接并且可以是能够通过连接部111共同操控的。因此可以保证,切换元件T1、T2、T3基本上同时进行切换。

单个电抗C11、C12、C13可以优选相同地构造,使得通过切换元件T1、T2、T3的高频电流同样基本上是相同的。因此,通过开关元件T1至T3的电流的变化与单个电抗C11至C13的允差有关。

切换元件T1、T2、T3的漏极连接部D可以通过漏极连接电阻R1、R2相互连接。此外,所述漏极连接部可以通过漏极偏置电感L1连接到漏极偏置连接部118上。在截止情况下,漏极偏置电压通过漏极连接电阻R1、R2分布到各个切换元件T1至T3上。截止情况是如下情况下:切换元件T1、T2、T3处于打开状态、即不导电的状态中。在示出的实施例中,漏极连接电阻R1、R2串联连接,并且以链的形式连接切换元件T1、T2、T3的漏极连接部。这可以有利于实现电路板,因为漏极连接电阻R1、R2可以清楚且节省空间地布置以及可以连接。替代地,漏极连接电阻R1、R2可以星形地从具有与漏极偏置电感L1的直接连接的漏极连接部D切换到另外的漏极连接部D上。在较大数量的并联连接的切换元件T1、T2、T3的情况下,这可以积极地影响充电时间τ=R*C。在大于两个的漏极连接电阻R1、R2的情况下,该连接也可以由串联电路和星形电路的组合实现,以便充分利用两种优点。

漏极偏置电压可以是能够通过另外的切换元件接入和断开的。相应的切换元件在DE 20 2020 102 084 U1中在图2中借助T3公开。漏极偏置电压在那里被描述为高电压HV。该高电压可以是直流电压。该高电压在量值方面应大于在漏极连接部D中的一个漏极连接部上出现的最大负HF电压。该高电压可以通过另外的切换元件接入,也就是说当操控电路12将切换元件T1、T2、T3关断、即切换为不导电时,该另外的切换元件在运行时被接通、即切换为导电。

漏极偏置电阻(未示出)可以与漏极偏置电感L1串联地连接。该漏极偏置电阻可以设计用于衰减通过置入式电容、寄生电容、置入式电感和寄生电感的组合引起的振荡。两个这样的漏极偏置电阻例如在DE 20 2020 102084U1的公开内容中在图2中借助R1和R2公开。

当切换元件再次被接通、即切换为导电时,漏极偏置电压(高电压)应与切换元件T1、T2、T3分离,即该另外的切换元件应关断、即切换为不导电,以便防止通过切换元件的DC电流。

图2的布置可以在电路板(PCB)上实现。

图3示出具有多个另外的切换元件T4、T5、T6的可切换电抗单元101,所述另外的切换元件分别在与切换元件T1、T2、T3的串联电路中。另外的切换元件T4、T5、T6在其栅极连接部G‘上被操控。对另外的切换元件T4、T5、T6和串联连接的切换元件T1、T2、T3的操控如此进行,使得所有切换元件T1-T6被同时接通和关断。在与切换元件T1、T2、T3的串联电路中的另外的切换元件T4、T5、T6引起所有切换元件T1-T6的较小的电压负荷。因此,可以使用具有较低的抗电强度值的较成本有利的切换元件。在此,通过漏极连接电阻R1、R2和附加的漏极连接电阻R3、R4传输漏极偏置电压,然而在切换元件的接通过程和关断过程期间不允许值得注意的横向HF电流。在该布置中,各一个切换元件T1、T2、T3和另外的切换元件T4、T5、T6在其源极连接部S上连接。所有源极连接部S可以在共同的连接部117上连接。这也可以用作用于操控电路12、14、16的参考电位,如例如在DE 20 2020 102 084 U1中在图2中所示。共同的连接部117可以借助电感的串联电路和电阻与地连接,用以抑制路径漂移和/或振荡(未示出)。与在切换元件T1、T2、T3的情况下所描述的漏极连接电阻R1、R2类似,漏极连接电阻R3、R4同样连接在另外的切换元件T4、T5、T6的漏极连接部D上。附加的漏极偏置电感L2可以将附加的漏极偏置连接部115与另外的切换元件T4、T5、T6的漏极连接部D连接。图2中的初始的单个电抗C11、C12、C13现在可以分别划分为两个尤其结构相同的单个电抗C21和C24、C22和C25以及C23和C26。这意味着,为了可以切换与图2中相同的电抗,C11的值等于C21与C24的值,C12的值等于C22与C25的值,以及C13的值等于C23与C26的值,C21和C24、C22和C25以及C23和C26分别串联连接。附加的单个电抗C24、C25、C26可以一起连接在共同的高频连接部119上,该共同的高频连接部可以与地连接或者与阻抗匹配布置11中的别的高频电位连接。漏极偏置电阻(未示出)可以与附加的漏极偏置电感L2串联地连接。

图3的布置可以在电路板(PCB)上实现。

图4a-c示出了在三种不同构型中的切换元件串联电路,所述切换元件串联电路也都可以在电路板(PCB)上实现。切换元件串联电路是可切换电抗单元100、101的一部分。图4c例如示出图3中的可切换电抗单元101的右侧部分区域。切换元件T3和T6在这里在其源极连接部上连接。

图4b示出相似的电路布置,该电路布置是切换元件T3和T6的串联电路并且在这里在其漏极连接部D上连接。该串联电路的缺点在于,上方的切换元件T3必须针对全HF电压接通和断开。

图4a示出相似的电路布置。切换元件T3和T6在这里借助T3的源极连接部S和T6的漏极连接部D连接。由于在此需要单个的接入每个漏极栅极电压,因此,该串联电路是略微更昂贵的。切换元件T3、T6的串联电路引起所有切换元件T3、T6的较小的电压负荷。因此,可以使用具有较低的抗电强度值的较成本有利的切换元件。

当使用串联电路时,根据图4c的电路布置是优选的电路布置。该电路布置也在DE20 2020 102 084 U1中在图2中作为优选的电路布置示出。

优选将MOSFET用于切换元件,该MOSFET具有大约1.5至2.5kV的最大漏极源极电压(VDS)、大约0.5欧姆的接通电阻R

相关技术
  • 包括具有可切换粗调谐网络和可变电抗器细调谐网络的混合调谐网络的固态阻抗匹配系统
  • 空芯型电抗器单元及具有空芯型电抗器单元的电源装置
技术分类

06120116008932