掌桥专利:专业的专利平台
掌桥专利
首页

交联壳聚糖/蜗牛原液/PVA复合膜及其制备方法

文献发布时间:2023-06-19 13:48:08


交联壳聚糖/蜗牛原液/PVA复合膜及其制备方法

技术领域

本发明属于食品工程及生物医药领域,具体涉及一种新型的交联壳聚糖/蜗牛原液/PVA复合膜及其制备方法和应用。

背景技术

壳聚糖(CS)是自然界唯一的天然碱性多糖,其储存量仅次于纤维素。壳聚糖来源于天然聚合物几丁质,其分子结构中含有较多的羟基和氨基,具有卓越的抗菌性、优异的强吸附性、强吸湿保水性、可纺可成膜性。此外,壳聚糖还具有优异的生物降解性、生物相容性、生物安全性、非免疫原性和生物粘附性等特点,因此其在食品包装工程、生物材料开发、造纸、化妆品、农业、环境和医学领域等许多工业领域中具有广泛的应用价值,以至于人们对壳聚糖的关注度越来越高,研究也越来越深入。

在可降解抗菌食品包装及生物高分子材料开发中,壳聚糖是一种安全无毒、可降解、生物相容性良好、具有广谱抑菌性等特点的天然高分子聚合物。壳聚糖具有良好成膜性,但是,纯的壳聚糖膜质脆、机械性能和抗水性较差,且在酸性介质中易溶胀,因此限制了它的应用。

聚乙烯醇(PVA)已被广泛用于制备与天然可再生聚合物共混的复合材料。PVA是一种水溶性的半结晶合成聚合物,具有良好的生物降解性,优异的耐化学性和良好的机械性能。这是由于其分子上含有大量羟基基团和氢键的形成所致。PVA薄膜可具有优异的弹性强度和柔韧性,它与壳聚糖共混,有望提高壳聚糖的抗水性,这是因为聚乙烯醇分子链上含有大量的羟基,可与壳聚糖之间形成氢键。同时PVA柔韧性好,可以改善壳聚糖质脆的缺点,提高壳聚糖基膜的机械性能。此外将壳聚糖与PVA共混也可以改善PVA基膜的耐水性差、吸湿性大以及容易滋生细菌等问题。

同时通过交联反应也是提高生物基质膜的力学性能,防水性能,阻隔性能,耐酸性和热稳定性主要手段。香兰素含有醛基,是一种选择性的天然交联剂,它是一种极具有吸引力的生物基单体,具有广泛的实际应用前景。

发明内容

针对上述现有技术中的问题,本发明提供一种交联壳聚糖/蜗牛原液/PVA复合膜及其制备方法和应用。该复合膜以香兰素为交联剂,以蜗牛原液作为新型增塑剂,以壳聚糖和聚乙烯醇作为成膜基质。该复合膜具有高抗氧化活性,优良的水蒸气及氧气的阻隔性能和力学性能,可应用于食品包装领域中。此外该复合膜还具有可调控的溶胀性能,可作为药物载体应用于生物医药领域中。

本发明的目的通过以下技术方案实现:

一种交联壳聚糖/蜗牛原液/PVA复合膜,包括以下重量份原料:

壳聚糖:1~3份;

PVA:0.3~2.0份;

蜗牛原液:0.2~1.0份;

香兰素:0.01~0.03份。

本发明还提供上述交联壳聚糖/蜗牛原液/PVA复合膜的制备方法,包括以下步骤:

(1)混合壳聚糖的醋酸溶液和蜗牛原液,向获得的均质混合溶液中加入PVA的水溶液,混匀后得到基质液,再向所述基质液中加入香兰素的醇溶液,混匀获得混合膜液;

(2)将所述混合膜液平铺于模具上,干燥后揭膜即得。形成的复合膜标记为CSPV复合膜。

优选地,步骤(1)所述壳聚糖醋酸溶液的获得方法为:将壳聚糖溶于醋酸溶液中,搅拌即得。优选地,所述搅拌的转速为400~600rpm,时间为6~10h。

优选地,将步骤(1)所述PVA水溶液的获得方法为:将聚乙烯醇溶于去离子水中,搅拌溶解即得。优选地,溶解的温度为80~100℃,搅拌时间为1~2h。

优选地,步骤(1)所述香兰素的醇溶液的溶剂为甲醇、乙醇中的一种或两种。

优选地,步骤(1)所述壳聚糖的醋酸溶液与蜗牛原液的体积比为5:1~5:5。

优选地,步骤(1)中混合壳聚糖的醋酸溶液与蜗牛原液的步骤在搅拌条件下进行,搅拌的速度为400~600rpm,搅拌的时间为2~3h。

优选地,步骤(1)所述均质混合溶液的获得方法为:离心去除不溶物,离心的速度为10000~12000rpm,时间为10~20min。

优选的,所述均质混合溶液与所述PVA的水溶液的体积比为3:2。

优选地,步骤(1)所述香兰素的醇溶液与所述基质液的体积比为1:50~3:50。

优选地,步骤(2)所述干燥时间为8~12h,干燥温度为40~60℃。

本发明添加蜗牛原液(snailmucus,SM)大大提高了壳聚糖膜的性能。特别是,它的作用类似于增塑剂,可将壳聚糖基膜的延展性提高十倍,并极大地提高了其防水性和生物粘附性。此外,它还增强的薄膜的细胞相容性,从而产生了具有针对特定要求的特性材料。

本发明的CSPV复合膜中,PVA柔韧性好,可以改善壳聚糖基膜质脆的缺点,提高壳聚糖基膜的机械性能。香兰素作为天然抗氧化剂与交联剂,可使复合膜具有一定的抗氧化活性,同时也可以改善复合膜的力学性能。蜗牛原液可赋予膜一定的柔韧性和粘附性,提高复合膜的延展性。

与现有技术相比,本发明具有以下特点和优势:

1.首次采用蜗牛原液作为增塑剂,改善复合膜的理化性能、力学性能和生物学性能,从而产生特定性能的聚合物材料,可应用于食品与医药领域中。

2.该复合膜对水蒸气及氧气具有较好的阻隔性能,可以用于食品包装,延长货架期。

3.该复合膜具有较高的抗氧化性能,用于食品包装,可防止食品氧化及延长货架期。

4.不同比例制备的复合膜溶胀性能不同,可通过调节比例来调节药物在复合膜中的释放速率,因而满足不同的要求。

附图说明

图1是CS、CS/PVA、CPV、CSP及不同比例CSPV复合膜的扫描电镜图。

图2是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的抗氧化性能对比图。

图3是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的溶胀度对比图。

图4是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的水蒸气透过率对比图。

图5是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的氧气透过率对比图。

图6是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的拉伸强度对比图。

图7是CS、CS/PVA、CSP、CPV及不同比例CSPV复合膜的断裂伸长率对比图。

具体实施方式

实施例1

将2g壳聚糖(CS)溶于体积分数为1%的醋酸溶液中,在磁力搅拌器上400rpm的速度室温搅拌10h形成均质溶液,以制备质量分数为2%的壳聚糖溶液;

将壳聚糖溶液与蜗牛原液(SM)以一定体积比(5:1、5:2、5:3、5:4、5:5)进行混合,400rpm磁力搅拌2h,随后在12000rpm,4℃下离心20min,以去除不溶性物质得到壳聚糖/蜗牛原液(CS/SM)均质混合溶液;

将2g聚乙烯醇(PVA)溶于100mL去离子水中,在80℃下水浴加热搅拌2h至其完全溶解以制备质量分数为2%的PVA溶液;

将30mL不同体积比的CS/SM溶液分别与20mL的PVA溶液以3:2的体积比进行混合,再按照香兰素溶液和混合液的体积比为1:50的比例加入香兰素甲醇溶液(含有0.01g香兰素),得到香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇共混液,分别记为CSPV1、CSPV2、CSPV3、CSPV4、CSPV5。将30mL壳聚糖溶液与20mL聚乙烯醇溶液共混,记为CS/PVA,同时将只加入蜗牛原液,不加香兰素和只加入香兰素不加蜗牛原液的壳聚糖/聚乙烯醇共混液作为对照,分别记为CSP和CPV。然后将混合液在500rpm,30℃下磁力搅拌3h;最后将共混膜液均匀地平铺在干燥、洁净的模具中,在50℃的干燥箱中干燥12h成膜,揭膜即可得到复合膜。

图1为CS、CS/PVA、CPV、CSP及不同比例CSPV复合膜表面的扫描电镜图,由图可知,纯CS膜表面稍有颗粒聚集,而CS/PVA复合膜表面光滑平整,无颗粒聚集,说明壳聚糖与PVA分子之间具有良好的相容性;加入香兰素后,CPV复合膜表面出现聚集性物质,这是因为香兰素未与壳聚糖反应,在干燥过程中聚集在膜表面。添加蜗牛原液后,CSP复合膜表面出现不规则纹路,这可能是由于蜗牛原液中某些成分与壳聚糖,PVA分子之间产生了相互作用,形成交联网;同时加入香兰素和蜗牛原液时,其表面形貌随着复合膜中壳聚糖与蜗牛原液比例的不同而表现出一定的差异。当CS/SM的比例为5:1和5:2时(CSPV1和CSPV2),复合膜的表面无明显纹理,但其表面光滑,平整,无颗粒聚集,说明了蜗牛原液和壳聚糖及PVA分子之间具有良好的相容性。而当CS/SM的比例达到5:3时(CSPV3),复合膜的表面出现纹理,且与未加入香兰素复合膜表面纹理不同,这可能是由于香兰素与壳聚糖或者蜗牛原液中的某些成分之间发生了相互作用,形成了不同于CSP复合膜的交联网。当CS/SM比例到达5:4时(CSPV4),复合膜的表面开始出现一些颗粒物的聚集,且随着其比例的增加,颗粒物聚集更显著(CSPV5),这可能是由于壳聚糖含量的减少,使得过量的香兰素未参与壳聚糖的交联反应,进而在干燥过程中残留在复合膜表面上。

实施例2

本实施例说明CSPV复合膜的抗氧化活性。

制备CSPV复合膜:将1g壳聚糖溶于体积分数为1%的醋酸溶液中,在磁力搅拌器上600rpm的速度室温搅拌6h形成均质的壳聚糖溶液;

将壳聚糖溶液与蜗牛原液以一定体积比(5:1、5:2、5:3、5:4、5:5)进行混合,600rpm磁力搅拌3h,随后在10000rpm,4℃下离心10min,以去除不溶性物质得到壳聚糖/蜗牛原液(CS/SM)均质混合溶液;

将1g聚乙烯醇溶于100mL去离子水中,在100℃下水浴加热搅拌1h至其完全溶解以制备PVA溶液;

将30mL不同体积比的CS/SM溶液分别与PVA溶液以3:2的体积比进行混合,再按照香兰素溶液和混合液的体积比为2:50的比例加入香兰素乙醇溶液(含有0.02g香兰素),得到香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇共混液,分别记为CSPV1、CSPV2、CSPV3、CSPV4、CSPV5。将壳聚糖溶液与聚乙烯醇溶液共混,记为CS/PVA,同时将只加入蜗牛原液,不加香兰素和只加入香兰素不加蜗牛原液的壳聚糖/聚乙烯醇共混液作为对照,分别记为CSP和CPV。然后将混合液在500rpm,30℃下磁力搅拌3h;最后将共混膜液均匀地平铺在干燥、洁净的模具中,在40℃的干燥箱中干燥10h成膜,揭膜即可得到复合膜。

将制备的复合膜剪碎,分别称取500mg于100mL锥形瓶中,再加入20mL甲醇,用封口膜将瓶口密封,防止甲醇挥发,再放入摇床中,温度设定为30℃,转速为150rpm,振摇24h以制备复合膜提取液。称取39.4mgDPPH溶于500mL甲醇中以制备0.2mmol/L的DPPH溶液,充分振摇均匀,避光保存备用。在10mL玻璃管中加入3mLDPPH溶液和1mL甲醇,混匀。反应稳定后,以甲醇为参比溶液,在517nm处测定吸光值(A

DPPH自由基清除率=(A

由图2可知,纯CS膜和CS/PVA复合膜几乎不具有抗氧化活性,而加入蜗牛原液后,壳聚糖/蜗牛原液/聚乙烯醇膜(CSP)具有微弱的抗氧化性能,其DPPH自由基清除率为6.23%,说明了加入蜗牛原液后,可以使复合膜具有微弱的抗氧化性能。而加入香兰素后,香兰素交联的壳聚糖/聚乙烯醇膜(CPV)和香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇膜(CSPV)的抗氧化性能显著提高,且随着蜗牛原液含量的增加,CSPV复合膜的抗氧化性能逐渐增加,其DPPH自由基清除率最高可达91.81%,说明了香兰素具有很好的抗氧化活性,且蜗牛原液中含有某些具有抗氧化活性的物质。

实施例3

本实施例说明复合膜的溶胀性能。

制备CSPV复合膜:将3g壳聚糖溶于体积分数为1%的醋酸溶液中,在磁力搅拌器上500rpm的速度室温搅拌8h形成均质的壳聚糖溶液;

将壳聚糖溶液与蜗牛原液以一定体积比(5:1、5:2、5:3、5:4、5:5)进行混合(蜗牛原液质量为0.3g~2g),600rpm磁力搅拌3h,随后在11000rpm,4℃下离心15min,以去除不溶性物质得到壳聚糖/蜗牛原液(CS/SM)均质混合溶液;

将0.6g聚乙烯醇溶于100mL去离子水中,在90℃下水浴加热搅拌1.5h至其完全溶解以制备PVA溶液;

将不同体积比的CS/SM溶液分别与PVA溶液以3:2的体积比进行混合,再按照香兰素溶液和混合液的体积比为3:50的比例加入香兰素乙醇溶液(含有0.03g香兰素),得到香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇共混液,分别记为CSPV1、CSPV2、CSPV3、CSPV4、CSPV5。将壳聚糖溶液与聚乙烯醇溶液共混,记为CS/PVA,同时将只加入蜗牛原液,不加香兰素和只加入香兰素不加蜗牛原液的壳聚糖/聚乙烯醇共混液作为对照,分别记为CSP和CPV。然后将混合液在500rpm,30℃下磁力搅拌3h;最后将共混膜液均匀地平铺在干燥、洁净的模具中,在60℃的干燥箱中干燥8h成膜,揭膜即可得到复合膜。

将制备的复合膜剪成1cm

溶胀度=(M

由图3可知,纯CS膜的溶胀度最大,达到1680.53%,CS/PVA复合膜溶胀度为710.61%,而加入蜗牛原液和香兰素都可以显著降低复合膜的溶胀度,对比纯CS膜,CSP复合膜的溶胀度降低了93.69%,CPV复合膜的溶胀度降低了97.70%,这改善了壳聚糖膜易溶胀的缺点,且香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇膜(CSPV)的溶胀度随着蜗牛原液比例的增加而增加,这一特性可以使它成为一种很好的缓控释药物载体,可以通过控制蜗牛原液的含量来达到控制药物释放的目的。

实施例4

本实施例说明复合膜的水蒸气阻隔性能。

向玻璃管(Φ=13.48mm)中加入5g干燥硅胶以提供0%的相对湿度,采用实施例1中制备的复合膜封口,然后将玻璃管放入含有饱和硫酸钾溶液的烧杯中,以提供97%的相对湿度,用封口膜将烧杯密封,然后至于25℃的水浴中,12h后测定玻璃管的增重,如下式计算得到WVP值:

WVP/(g/(m×h×Pa))=Δm×d/A×t×Δp。

式中:Δm为t时间内烧杯的质量变化,g;d为封口膜的厚度,m;A为烧杯杯口的面积,m

由图4可知复合膜的WVP均低于纯壳聚糖膜,CS/PVA复合膜的WVP值比纯CS的WVP值降低了9.82%。加入香兰素后,香兰素交联的CS/PVA复合膜(CPV)的WVP较纯壳聚糖膜降低了48.38%,而加入蜗牛原液后复合膜WVP显着降低,与纯CS膜相比,壳聚糖/蜗牛原液/聚乙烯醇复合膜(CSP)的WVP降低了73.90%,这可能是由于蜗牛原液中含有某些非极性结构,对水蒸气有很好的阻隔作用。同时添加香兰素及蜗牛原液后,香兰素交联的壳聚糖/蜗牛原液/聚乙烯醇复合膜(CSPV)的WVP随着壳聚糖与蜗牛原液比例的不同而表现出一定的差异,当壳聚糖与蜗牛原液的比例小于5:3时,复合膜的WVP随着壳聚糖与蜗牛原液比例的增加而逐渐降低。当壳聚糖与蜗牛原液的比例为5:3时,复合膜的水蒸气最低,为1.89×10

实施例5

本实施例说明复合膜的氧气阻隔性能。

氧气的阻隔能力可以通过油脂的过氧化值反映出来。将新鲜大豆油(30mL)倒入锥形瓶中,使用实施例1中制备的膜密封烧杯,并将烧杯在60℃水浴下保存10天。此外,准备了一个无障碍的试验,其中没有薄膜处于打开状态的油样品作为空白对照,通过硫代硫酸钠滴定法测定脂质过氧化的结果,所有测试均重复三次。

由图5可知,空白对照油样品的过氧化值为60.69mmol/kg,相比于复合膜而言,使用纯CS膜密封的油样品的过氧化值最大,达到47.51mmol/kg。使用CS/PVA复合膜密封的油样品过氧化值略有降低,为44.61mmol/kg,添加香兰素后,使用CPV复合膜密封的油样品比纯CS膜的过氧化值降低了18.46%,而添加蜗牛原液后,使用CSP复合膜密封的油样品的过氧化值显著降低,与纯CS膜相比,CSP复合膜的过氧化值降低了76.01%。同时添加香兰素和蜗牛原液后,CSPV复合膜的过氧化值随着壳聚糖与蜗牛原液比例的不同呈现出一定的差异,当壳聚糖与蜗牛原液的比例小于5:3时,复合膜的过氧化值随着壳聚糖与蜗牛原液比例的增加而逐渐降低。当聚糖与蜗牛原液的比例为5:3时,复合膜的过氧化值最低,为6.12mmol/kg,与纯CS膜相比降低了87.12%。当聚糖与蜗牛原液的比例大于5:3时,复合膜的过氧化值随着其比例的增加而逐渐增加,但总体还是显著低于纯CS膜。这种现象可能是因为香兰素的醛基和羟基与壳聚糖反应性基团形成了稳定的相互作用,例如形成共价键和分子间氢键。香兰素的醛基与壳聚糖的氨基发生反应生成亚氨基,香兰素的羟基与壳聚糖的羟甲基反应生成氢键,香兰素的添加可以促进壳聚糖链的排列及其在膜基质中的内聚,从而使膜结构更加紧凑。而随着蜗牛原液比例的增加,壳聚糖的含量相对减少,此时一些多余的香兰素不能与壳聚糖发生反应,会聚集在膜表面,这时香兰素分子中庞大芳环可能会阻碍薄膜的内部网络并降低对氧气的亲和力,造成OP略有增加。

实施例5

本实施例说明了复合膜的力学性能。

根据UNIISO527-1(ISO,2012),使用万能试验机获得薄膜拉伸试验的应力-应变曲线。从这些曲线评估膜的抗张强度(TS)和断裂伸长率(Eb)。将膜切成矩形样品(1x5cm

TS和Eb是反应膜力学性能的两个重要指标,TS越大说明膜不易拉断,Eb越大,说明膜的柔韧性和延展性越好。由图6和图7可知,相比于纯的CS膜,CS/PVA膜的拉伸强度提高了11.84%,断裂伸长率提高了11.12倍,CPV的拉伸强度提高了24.24%,断裂伸长率提高了5.98倍,说明了出添加聚乙烯醇和香兰素都可以使复合膜的拉伸强度增大,但添加香兰素会降低CS/PVA的断裂伸长率,使膜的脆性增加。复合膜的TS的这种改善可能是由于PVA分子中含有大量的–OH基团,可以与壳聚糖分子中的–OH和–NH

技术分类

06120113812246