掌桥专利:专业的专利平台
掌桥专利
首页

一种纳米碳化锰材料的制备方法

文献发布时间:2023-06-19 10:06:57


一种纳米碳化锰材料的制备方法

技术领域

本发明涉及一种纳米碳化锰材料的制备方法,属于纳米材料领域。

背景技术

碳化锰具有高稳定性、结构柔韧性和生态友好性,且来源广泛和成本低;在储能、传感器和太阳能转换等应用上表现出优良的性能。现合成碳化锰的方法有直接碳化、磁控溅射、浸渍法等;然而,这些常规方法无法有效的控制合成得到的纳米碳化锰材料的颗粒及形貌。由于纳米材料的组分及形貌往往受限于其制备方法,从而制备方法也会影响该材料能否应用于某些特定应用领域。随着科学技术的发展,原子层沉积(Atomic LayerDeposition,ALD)由于其优良的特性,已经逐渐成为制备纳米结构材料的前沿技术。

ALD技术是一种基于有序、表面自饱和反应的化学气相沉积薄膜的方法,通过将气相前驱体脉冲交替地通入反应室,并在沉积基体上发生表面化学反应形成薄膜的一种方法。ALD技术可以通过控制脉冲交替次数实现对材料成分、薄膜厚度以及原子活性位点分布控制精确。由于ALD生长优异性能的薄膜是建立在独特的表面自限制化学反应基础上的,因此,一般要求要求ALD薄膜对应的前驱体具有热稳定性好、反应活性高、挥发性良好以及不能对薄膜或衬底具有腐蚀或溶解作用。此外,影响ALD技术能否获得相应产物的关键因素还包括相关工艺条件以及与前驱体匹配的另一种化学试剂,如碳源、还原剂、氧化剂等,这些条件会直接影响ALD相关材料的形成与否与性能好坏。

然而,到目前为止仍然没有涉及ALD制备纳米碳化锰材料的报道。因此,为了促进基于碳化锰的纳米结构材料在储能、传感器和太阳能转换领域的应用,迫切需要具有可行性的碳化锰ALD合成工艺,以追求获得性能更优的碳化锰纳米材料。

发明内容

本发明的目的在于提供一种原子层沉积技术生长碳化锰纳米材料的方法,本发明选择了特定的锰源和碳源相结合,利用ALD技术制备得到电阻率低且保型性良好的纳米碳化锰材料。

本发明首先提供一种原子层沉积技术生长纳米碳化锰材料的方法,所述方法包括:

(1)将衬底置于反应腔中,在真空条件下,以脉冲形式向反应腔中通入气相锰源进行沉积,沉积温度为150~400℃,单个脉冲的持续时间为0.5~20s,得到沉积有锰源的衬底,其中,所述锰源为具有式1或式2所示结构的化合物:

其中,R

(2)向体系中充入惰性气体进行吹扫;吹扫后,将气相碳源以脉冲形式通入反应腔,单个脉冲的持续时间为0.1~20s,与步骤(1)得到的沉积在衬底上的锰源进行反应,得到含单原子层碳化锰的衬底;

(3)向体系中充入惰性气体进行吹扫,完成一个ALD生长循环;

重复(1)-(3)若干次数,即可得到生长有纳米碳化锰材料的衬底。

在本发明的一种实施方式中,所述步骤(1)中气相锰源在载气存在条件下以脉冲形式通入,所述载气优选为高纯氮气或高纯氩气,其中,所述载气的流量为1~200sccm,优选为5~120sccm,更优选为10~40sccm,具体的,可以是10、20、30或40sccm。

在本发明的一种实施方式中,气相锰源单个脉冲的持续时间优选为1~15s,更优选为5~10s;最优选的,可以是5、7、9或10s。

在本发明的一种实施方式中,气相锰源通过加热的方式使得锰源气化,加热温度为65~170℃,更优选为70~150℃,最优选为80~100℃,具体的,在本发明的实施例中,可以是80、85、90或100℃。

在本发明的一种实施方式中,步骤(1)沉积温度优选为220~350℃,最优选为250~300℃,具体的,在本发明的实施例中,可以是250、260、280或300℃。

在本发明的一种实施方式中,步骤(2)中所述惰性气体为高纯氮气或高纯氩气,纯度≥99.999%(下同)。

在本发明的一种实施方式中,步骤(2)中,吹扫时间为1~100s。

在本发明的一种实施方式中,步骤(2)中,吹扫时间优选为10~80s,更优选为15~65s。

在本发明的一种实施方式中,所述步骤(2)中碳源有甲醛、乙醛、丙醛、丁醛中的一种或几种,所述气相碳源即将碳源加热气化即可。

在本发明的一种实施方式中,步骤(2)中,单个脉冲的持续时间优选为0.1~15s,更优选为1~6s,具体的,可以是1s、3s、4s或6s。

在本发明的一种实施方式中,步骤(2)中,碳源在载气存在条件下以脉冲形式通入,所述载气优选为高纯氮气或高纯氩气,其中,所述载气的流量为10~200sccm,优选为20sccm、120sccm、150sccm或200sccm。

在本发明的一种实施方式中,所述步骤(3)中吹扫时间为1~100s,更优选为5~80s,最优选为15~35s,所述吹扫所用的惰性气体为高纯氮气或高纯氩气。

在本发明的一种实施方式中,重复步骤(1)~(3)的操作1~2000次,优选为100~2000次,更优选为200~1000次,最优选为250~500次,可以通过重复不同次数制备得到不同厚度的纳米碳化锰材料。

在本发明的一种实施方式中,所述衬底包括硅、氧化硅、氮化硅、TaN中的一种或几种。

本发明的第二个目的是上述方法在粉末冶金、电子工业或太阳能电池领域的应用。

与现有技术相比,本发明提供的原子层沉积技术生长含有纳米碳化锰材料的方法具有以下优点:

(1)所制备的纳米碳化锰材料的电阻率低,可以低至200μΩ·cm,非常接近纯金属锰的电阻率185μΩ·cm;

(2)本发明方法对多种衬底如硅、氧化硅、氮化硅、TaN等均表现出优良的兼容性,同样的方法能够在不同的衬底下生长性能良好的纳米碳化锰材料;

(3)使用ALD生长得到的纳米碳化锰材料具有保型性良好的优势,且本发明能够对材料的厚度、材料成分精确控制,可以根据实际情况调整材料厚度(沉积量)和材料成分,以适应不同的应用场景。

附图说明

图1为本实施例1的碳化锰薄膜的SEM图。

具体实施方式

本发明提供一种原子层沉积技术生长含纳米碳化锰材料的方法,包括以下步骤:(1)将衬底置于反应腔中,在真空条件下,以脉冲形式向反应腔中通入气相锰源进行沉积,沉积温度为150~400℃,单个脉冲的持续时间为0.5~20s,得到沉积有锰源的衬底,所述锰源具有式1、2所示结构的化合物;(2)向体系中充入惰性气体进行吹扫,吹扫后,将气相碳源以脉冲形式通入反应腔,与沉积在衬底上的锰源进行单原子反应,得到含单原子层纳米碳化锰材料的衬底;(3)向体系中充入惰性气体进行吹扫,完成一个ALD生长循环。重复步骤(1)~(3)的操作1~2000次,即可得到生长有纳米碳化锰材料的衬底。

在本发明中,所述衬底在使用前要进行预处理,优选使用工业界标准清洗,如,使用SPM(H

为了进一步说明本发明,以下结合实施例对本发明提供的一种纳米碳化锰材料的制备方法进行详细描述。

实施例1

以[二(N,N’-二仲丁基乙基脒)锰(Ⅱ)](式1,R,R

(1)以SiO

(2)完成一个脉冲后使用高纯氮气进行吹扫处理,吹扫时间为60s;然后以高纯氮气为载气,载气流量为20sccm,以脉冲形式通入甲醛,脉冲时间为1s;

(3)完成一个脉冲后采用高纯氮气进行吹扫,吹扫时间为30s;

将上述(1)-(3)步骤重复循环400次得到有一定厚度的纳米碳化锰薄膜,所得薄膜厚度为35.5nm,采用四探针法测试电阻率为200.0μΩ·cm。

实施例2

以[二(N,N’-二仲丁基乙基脒)锰(Ⅱ)](式1,R,R

(1)以硅为衬底,将锰源加热至80℃使之气化,以高纯氮气为载气,通入气相锰源,载气流量为20sccm,真空条件下,脉冲时间为10s,沉积温度为280℃;

(2)完成一个脉冲后使用高纯氮气进行吹扫处理,吹扫时间为50s;将碳源乙醛加热使之气化,以高纯氮气为载气,载气流量为200sccm,以脉冲形式通入乙醛,脉冲时间为3s;

(3)完成一个脉冲后采用高纯氮气进行吹扫,吹扫时间为12s。

将上述(1)-(3)步骤重复循环350次得到有一定厚度的纳米碳化锰薄膜,所得薄膜厚度为37.8nm,采用四探针法测试电阻率为201.6μΩ·cm。

实施例3

以[二(N-异丙基-N’-仲丁基乙基脒)锰(Ⅱ)](式1,R,R

(1)以氮化硅为衬底,将锰源加热至90℃,使之气化,以高纯氮气为载气,通入气相锰源,载气流量为30sccm,真空条件下,脉冲时间为7s,沉积温度为260℃;

(2)完成一个脉冲后使用高纯氮气进行吹扫,吹扫时间为32s;将碳源丙醛加热至33℃,使之气化,以高纯氮气为载气,载气流量为120sccm,以脉冲形式通入丙醛,脉冲时间为4s;

(3)完成一个脉冲后采用高纯氮气进行吹扫,吹扫时间为26s。

将上述(1)-(3)步骤重复循环300次得到有一定厚度的纳米碳化锰薄膜材料,所得薄膜厚度为32.9nm,采用四探针法测试电阻率为211.9μΩ·cm。

实施例4

以具有式2结构的锰化合物为锰源,以丁醛为碳源的ALD纳米碳化锰材料的制备,包括以下过程:

(1)以TaN为衬底,将锰源(式2)加热至100℃使之气化,以高纯氮气为载气,通入气相锰源,载气流量为40sccm,真空条件下,脉冲时间为5s,沉积温度为250℃;

(2)完成一个脉冲后使用高纯氮气进行吹扫,吹扫时间为22s;将碳源丁醛加热至39℃,使之气化,以高纯氮气为载气,载气流量为150sccm,以脉冲形式通入丁醛,脉冲时间为6s;

(3)完成一个脉冲后采用高纯氮气进行吹扫,吹扫时间为30s。

将上述(1)-(3)步骤重复循环250次得到有一定厚度的纳米碳化锰薄膜材料,所得薄膜厚度为29.6nm,采用四探针法测试电阻率为213.4μΩ·cm。

对比例1

以二茂锰为锰源,以甲醛为碳源,包括以下过程:

以SiO

步骤(2)~(3)和实施例1一致;

将上述(1)-(3)步骤重复循环400次,经过测定未能得到目标碳化锰材料。

对比例2

以[二(N,N’-二仲丁基乙基脒)锰(Ⅱ)](式1,R,R

(1)同实施例1;

(2)完成一个脉冲后使用高纯氮气进行吹扫处理,吹扫时间为60s,以高纯氮气为载气,载气流量为20sccm,以脉冲形式通入气化后的SiMe

(3)同实施例1;

将上述(1)-(3)步骤重复循环400次,经过测定,未能得到目标碳化锰材料。

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

相关技术
  • 一种交联纳米碳片负载硒化镍/硒化锰纳米复合材料及其制备方法以及钠离子电池负极
  • 一种纳米碳化锰材料的制备方法
技术分类

06120112425968