掌桥专利:专业的专利平台
掌桥专利
首页

可拉伸传感器制备方法

文献发布时间:2023-06-19 12:00:51



技术领域

本发明及一种新型传感器。更具体地说,本发明涉及一种轻质高强柔性可拉伸传感器及其制备方法。

背景技术

传感器可以把光、热、声、力等信号转变为电信号来记录和控制信息变化。随着技术的发展和应用需求越来越高,传感器日趋微型化和智能化,特别是用于人体生化指标检测所需的传感器,要求更为苛刻。其中,可拉伸应变传感器可以通过感知应力应变的变化来实时监测人体运动,因此近年来发展十分迅速。(参考文献1:Pang C,Lee G Y,Kim T,etal.A flexible and highly sensitive strain-gauge sensor using reversibleinterlocking of nanofibres.Nature materials,2012,11:795.)目前,制备可拉伸应变传感器的方法主要是把弹性体、网状织物或预拉伸的高分子与导电成分复合,这些方法使可拉伸传感器获得了较大的进展。(参考文献2:Yamada T,Hayamizu Y,Yamamoto Y,etal.A stretchable carbon nanotube strain sensor for human-motion detection.Nature nanotechnology,2011,6:296.)但这些方法依然存在各种各样的问题,如可拉伸应变不高,导电性不强,环境稳定性不好、制备过程复杂等。因此寻求一种简便的方法制备导电性和拉伸应变均较好的环境稳定性材料显得十分必要。

发明内容

本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。

本发明还有一个目的是提供一种可拉伸传感器制备方法,其由纤维材料构成,导电性能和传感效率优越,拉伸应变大,能弯曲折叠打结,直径长度尺寸可控,可编织,能够实现了对人体运动实时监测。

为了实现根据本发明的这些目的和其它优点,提供了一种可拉伸传感器制备方法,包括以下步骤:

步骤一,将聚合物溶液进行静电纺丝,制备得到取向的聚合物纤维膜;

步骤二,将步骤一中得到的所述聚合物纤维膜剪成长条状的纤维束,固定后加入导电材料分散液,使所述导电材料分散液在所述纤维束上流延铺展,然后进行加捻得到加捻纤维束;

步骤三,将步骤二得到的所述加捻纤维束再次加入导电材料分散液,并进行过捻,得到复合导电螺旋纤维束,然后对所述复合导电螺旋纤维束进行环境稳定性实验;

第四步,将通过环境稳定性实验的所述复合导电螺旋纤维束进行 PDMS封装,用导电银膏固定即可得到可拉伸传感器;

所述聚合物为可纺丝的材料,如PVDF、PVDF-HFP、PVDF-TrFE、 PAN、PCL、PA66、纤维素中的任意一种;

所述导电材料为MXene、PPy、PANI、PEDOT:PSS、氧化石墨烯(GO)、碳纳米管(CNT)、银纳米线、银纳米花、金纳米颗粒、石墨炔、二硫化钼中的任意一种或两种。

优选的是,其中所述聚合物纤维膜的膜厚为10μm-200μm。

优选的是,其中所述纤维束的尺寸为长5cm-1m,宽1cm-10cm。

优选的是,其中所述加入导电材料分散液的方式为溶液涂布法或沉积法。

优选的是,根据所述导电材料含量不同的,其中所述加入导电材料分散液的次数可以为2次或2次以上。

优选的是,其中所述可拉伸传感器直径为50μm-1000μm,圈数为2-60个/mm。

优选的是,其中所述可拉伸传感器的导电范围为 10Ω/cm-2000Ω/cm。

优选的是,其中所述可拉伸传感器的拉伸性应变范围为 100%-2000%。

优选的是,其中所述可拉伸传感器为线性纤维状传感器或可编织可穿戴智能传感器。

优选的是,其中所述环境稳定性实验中的实验条件包括酸性、碱性、中性盐溶液、低温(-200℃-25℃)、高温(25℃-600℃)中的一种或多种,放置时间为1分钟-100天。

本发明至少包括以下有益效果:由于采用了聚合物和导电材料为基础构筑单元,利用静电纺丝法结合加捻法制备轻质高强柔性可拉伸传感器,导电性能和传感性能优越,具有较高的强度和高拉伸性,能弯曲折叠打结,直径长度尺寸可控,可编织,能够实现了对人体运动实时监测。

本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。

附图说明

图1本发明制备的复合导电螺旋纤维束示意图;

图2本发明制备的复合导电螺旋纤维束环境稳定性实物图:碱处理20h后,灯泡仍能正常点亮;

图3本发明制备的传感器实时监测人体运动示意图:口型变化引起的面部肌肉变化。

具体实施方式

下面结合附图和实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。

应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。

实施例1:

将PVDF溶液进行静电纺丝,得到取向的膜厚为10μm的纤维膜,剪成长条,长为5cm宽为1cm,固定,再其上涂布2次二硫化钼的乙醇分散液,在乙醇挥发过程中同时进行加捻,在加捻后的纤维上再涂覆一层MXene分散液,然后进一步过捻,得到 PVDF-HFP/MXene复合导电纤维束,纤维束的直径为50μm,其圈数为 6个/mm,导电性为100Ω/cm。把该纤维束置于酸/碱性溶液中, 20天后,仍能使LED灯亮且电导率几乎不变。复合导电纤维束的应变为1000%。把纤维束用PDMS封装,用导电银膏将其与导线相连,连接力和应变记录装置、电信号记录仪和电脑控制系统,即可得到导电性传感器实时监测人体运动,如发出不同的五线谱音阶时口型和脸部肌肉变化。

实施例2:

将PAN溶液进行静电纺丝,得到取向的膜厚为200μm的纤维膜,剪成长条,长为1m宽为10cm,固定,再其上沉积5次PEDOT: PSS分散液,然后进行加捻,在加捻后的纤维上再涂覆一层PEDOT: PSS分散液,然后进一步过捻,得到PAN/PEDOT:PSS复合导电纤维束,纤维束的直径为1000μm,其圈数为2个/mm,导电性为1500 Ω/cm。把该纤维束置于碱性溶液中,1分钟后,仍能使LED灯亮且电导率几乎不变。复合导电纤维束的应变为100%。把纤维束用PDMS封装,用导电银膏将其与导线相连,连接力和应变记录装置、电信号记录仪和电脑控制系统,即可得到导电性传感器实时监测人体运动,如编织到手套上检测手指的运动弯曲情况。

实施例3:

将PA66溶液进行静电纺丝,得到取向的膜厚为50μm的纤维膜,剪成长条,长为20cm宽为2cm,固定,再其上涂布2次GO的乙醇分散液,在乙醇挥发过程中同时进行加捻,在加捻后的纤维上再涂覆一层GO/乙醇分散液,然后进一步过捻,得到PVDF-HFP/MoS2复合导电纤维束,纤维束的直径为500μm,其圈数为60个/mm,导电性为1000Ω/cm。把该纤维束置于酸/碱性溶液中,20天后,仍能使LED 灯亮且电导率几乎不变。复合导电纤维束的应变为500%。把纤维束用PDMS封装,用导电银膏将其与导线相连,连接力和应变记录装置、电信号记录仪和电脑控制系统,即可得到导电性传感器实时监测人体运动,如面部表情变化引起的肌肉变化情况。

实施例4:

将PVDF-HFP溶液进行静电纺丝,得到取向的膜厚为10μm的纤维膜,剪成长条,长为10cm宽为3cm,固定,再其上涂布3次 CNT,同时进行加捻,然后进一步过捻,得到PVDF-HFP/CNT复合导电纤维束,纤维束的直径为500μm,其圈数为6个/mm,导电性为2000Ω/cm。把该纤维束置于酸/碱性溶液中100天、置于低温液氮和200摄氏度下10小时后,仍能使LED灯亮且电导率几乎不变。复合导电纤维束的应变为2000%。把纤维束用PDMS封装,用导电银膏将其与导线相连,连接力和应变记录装置、电信号记录仪和电脑控制系统,即可得到导电性传感器实时监测人体运动,如运动时脚踝的弯曲程度。

实施例5:

将PCL溶液进行静电纺丝,得到取向的膜厚为30μm的纤维膜,剪成长条,长为25cm宽为3cm,固定,再其上沉积5次PPy,同时进行加捻,在加捻后的纤维上再沉积一层PPy,然后进一步过捻,得到 PCL/PPy复合导电纤维束,纤维束的直径为500μm,其圈数为6个

/mm,导电性为100Ω/cm。把该纤维束置于盐溶液中,30天后,仍能使LED灯亮且电导率几乎不变。复合导电纤维束的应变为1000%。把纤维束用PDMS封装,用导电银膏将其与导线相连,连接力和应变记录装置、电信号记录仪和电脑控制系统,即可得到导电性传感器实时监测人体运动,如跑步时膝盖运动情况。

这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。

如上所述,根据本发明,由于采用了聚合物和导电材料为基础构筑单元,利用静电纺丝法结合加捻法制备轻质高强柔性可拉伸传感器,导电性能和传感性能优越,具有较高的强度和高拉伸性,能弯曲折叠打结,直径长度尺寸可控,可编织,能够实现了对人体运动实时监测。

尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

相关技术
  • 可拉伸多芯导电元件及其制备方法、可拉伸电缆与可拉伸电容传感器
  • 可拉伸的复合型力敏材料、其制备方法及可拉伸的压力传感器
技术分类

06120113131721