掌桥专利:专业的专利平台
掌桥专利
首页

用于通过增量制造来制造机械构件的方法

文献发布时间:2023-06-19 18:37:28


用于通过增量制造来制造机械构件的方法

技术领域

本发明公开涉及机械构件的制造,尤其是面临高温运行条件的机械构件,诸如内燃发动机和涡轮机械(例如但不限于燃气涡轮机)的构件。更具体地,本文公开的主题的示例性实施例涉及使用基于高温超合金的材料制造涡轮机械构件,诸如但不限于涡轮旋转和静止叶片或轮叶,涡轮喷嘴,涡轮推进器。

背景技术

使用氧化物弥散强化(ODS)超合金作为合适的材料来制造面临高温疲劳循环的机械构件是已知的(D.M.Elzey等人的“Oxide Dispersion Strengthened Superalloys: theRole of Grain Structure and Dispersion During High Temperature Low CycleFatigue”,在1988年的Superalloys中出版,美国冶金学会,1988,第595-604页)。这些材料常通过机械合金化生产(H.K.D.H.Bhadeshia “Recrystallisation of PracticalMechanically Alloyed Iron-Base and Nickel- Base Superalloys”,在MaterialsScience and Engineering A223 (1997) 64-77中出版;C.Suryanarayana等人的“TheScience and Technology of Mechanical Alloying”, Materials Science andEngineering A304-306 (2001) 151-158中;B.S. Murty等人的“Novel MaterialsSynthesis by Mechanical Alloying/Milling”, International Materials Reviews,1998, 第43卷, N. 3第101-141页中出版)。

通过机械合金化获得的合金常以挤压坯料的形式可获得。由通过机械合金化产生的ODS超合金的坯料制成的粉末被用于通过烧结工艺制造构件。烧结工艺需要模具,模具具有对应于要生产的最终制品的形状的负相(negative)的形状。烧结是一种昂贵且非柔性的制造工艺。

EP 2586887公开了用于通过增量制造(additive manufacturing)来制造涡轮叶片的工艺,例如,使用激光金属成形、电子束熔炼和其他增量制造工艺。在此现有技术文档中提出了呈粉末形态的诸如镍基超合金的高温超合金。在此处公开的一些实施例中,高温超合金粉末包含弥散的氧化物。就涉及的氧化物而言,上述出版物并没有提供如何在超合金粉末材料中引入氧化物的任何教导,也没有给出任何重量组成或其他细节。

增量制造工艺是一种便宜、柔性且高效的制造方法,由此可以轻易地以低成本生产具有复杂形状的机械构件。对于生产涡轮机械构件而言,使用增量制造工艺将是非常期望的,就涉及重载运行状态下的机械阻力而言,其必须满足严格的要求,比方说例如在疲劳状态下的抗高温蠕变能力。

发明内容

在一个实施例中,公开了一种用于制造由基于金属的材料制成的机械构件的方法,该方法包括以下步骤:

-提供包括至少一种包含金属的粉末材料和至少一种呈粉末形态的增强弥散剂的粉末混合物,其中呈粉末形态的增强弥散剂具有小于包含金属的粉末材料的平均颗粒尺寸的平均颗粒尺寸;

-使用所述粉末混合物通过增量制造工艺形成所述构件。

在本说明书和所附权利要求书的背景下,术语“金属”也包括耐火元素或耐火金属。“包含金属的粉末材料”因而也包括包含耐火金属或元素的粉末材料。合适的耐火元素或材料包括但不限于,Mo, W, Ta, Nb以及它们的组合。基于金属的材料包括由金属组成的材料,包括耐火金属,以及金属间化合物,诸如铝化物或硅化物,如以下参照本文公开的主题的示例性实施例将更详细地描述的那样。

在本说明书和所附权利要求书的背景下,“增强弥散剂”是一种化合物,其在粉末混合物中且随后在最终制成的构件中弥散时,增加了构件尤其对于高温蠕变的强度。

根据一些实施例,包含金属的粉末材料可以是金属粉末。例如该金属粉末可以是基于超合金的金属粉末,例如高温超合金粉末。根据其他实施例,包含金属的粉末材料是金属间粉末材料,即,呈粉末形态的金属间化合物,例如铝化物。在一些实施例中,包含金属的粉末材料可以是硅化物。也可以设想呈粉末形态的两种或更多包含金属的化合物的组合。

呈粉末形态的增强弥散剂可以是或者包括呈粉末形态的至少一种陶瓷材料。在一些实施例中,陶瓷材料可以是氧化物。可以使用两种或更多增强弥散剂。在一些实施例中,优选的是不包含氧的陶瓷材料。例如,如果包含金属的粉末材料是钼基或铌基的,不包含氧原子的陶瓷材料就是优选的,因为对于高温氧化获得了更高的抵抗力。

用于增量制造的粉末混合物中呈粉末形态的增强弥散剂将在最终固化的构件中产生弥散,这增加了构件的抗蠕变能力。

通过提供呈粉末形态的包含金属的材料和呈粉末形态的增强弥散剂的混合物,可以仔细地控制两种混合物成分的颗粒尺寸分布(粒度测定),使得可将最优的平均粒度测定用于两种混合物成分。具体地,包含金属的粉末材料可以具有选择成在增量制造期间用于实现最优熔化和固化的平均颗粒尺寸。呈粉末形态的增强弥散剂,例如呈粉末形态的陶瓷材料,可以具有选择成以便改善在最终机械构件中实现的抗蠕变能力的平均颗粒尺寸,而不负面地影响其脆性。

在受控制的气氛下(例如使用惰性气体),或者在真空条件下的增量制造防止增强弥散剂的化学改变。此外,代表增量制造的特征的逐层工艺防止增强弥散剂,例如氧化物或其他陶瓷材料,通过在熔化金属的顶部漂浮而分离,使得在最终制品中可以实现增强弥散剂的大致均匀的分布。

技术方案1. 一种用于制造由基于金属的材料制成的构件的方法,所述方法包括:

通过经由等离子雾化来雾化主超合金的锭的熔化部分而形成包含金属的粉末材料,所述锭通过真空感应熔化而形成;

通过增量制造工艺使用包括所述包含金属的粉末材料和至少一种增强弥散剂的粉末混合物来形成所述构件,其中所述增强弥散剂具有等于或小于大约5微米并且小于所述包含金属的粉末材料的平均颗粒尺寸的平均颗粒尺寸;

其中,所述粉末混合物包括按重量算在0.1%到2%之间的所述至少一种增强弥散剂,所述至少一种增强弥散剂呈粉末形态且包括氧化物材料和陶瓷非氧化物材料。

技术方案2. 如技术方案1所述的方法,其特征在于,所述增量制造工艺选自包括以下工艺的组:电子束熔炼(EBM),选择性激光熔化(SLM),选择性激光烧结(SLS),激光金属成形(LMF),直接金属激光烧结(DMLS)和直接金属激光熔化(DMLM)。

技术方案3. 如技术方案1所述的方法,其特征在于,呈粉末形态的至少一种增强弥散剂具有等于或小于大约0.1微米的平均颗粒尺寸。

技术方案4. 如技术方案1所述的方法,其特征在于,呈粉末形态的所述增强弥散剂具有等于或大于大约5 nm的平均颗粒尺寸。

技术方案5. 如技术方案1所述的方法,其特征在于,呈粉末形态的至少一种增强弥散剂具有纳米量级的平均颗粒尺寸。

技术方案6. 如技术方案1所述的方法,其特征在于,所述包含金属的粉末材料具有在大约10微米和大约100微米之间的平均颗粒尺寸。

技术方案7. 如技术方案1所述的方法,其特征在于,呈粉末形态的所述增强弥散剂是雾化粉末。

技术方案8. 如技术方案1所述的方法,其特征在于,所述氧化物材料选自由以下材料组成的组:Y

技术方案9. 如技术方案1所述的方法,其特征在于,所述高温超合金选自由以下材料组成的组:镍基超合金,钴基超合金,铁基超合金,钼基超合金,钨基超合金,钽基超合金,铌基超合金及其组合。

技术方案10. 如技术方案1所述的方法,其特征在于,所述方法进一步包括通过至少以下步骤形成所述粉末混合物:

产生具有第一平均颗粒尺寸的包含金属的粉末材料;

产生具有第二平均颗粒尺寸的呈粉末形态的至少一种增强弥散剂,其中,所述第二平均颗粒尺寸小于第一平均颗粒尺寸;以及

将所述包含金属的粉末材料与所述呈粉末形态的增强弥散剂混合在一起以获得所述粉末混合物。

技术方案11. 如技术方案1所述的方法,其特征在于,进一步包括在形成的构件上执行的至少一个热处理步骤。

技术方案12. 如技术方案11所述的方法,其特征在于,所述至少一个热处理步骤在真空下执行。

技术方案13. 如技术方案1所述的方法,其特征在于,所述构件是涡轮机械构件。

以下公开的特征和实施例在所附权利要求书中进一步陈述,其形成了本说明书的一个整体部分。以上简要描述陈述了本发明的不同实施例的特征,以便可以更好地理解以下的详细描述,并且以便可以更好地领会对于本领域的当前贡献。当然,有将在后文描述的本发明的其他特征,并且它们将在所附的权利要求书中陈述。在这方面,在详细解释本发明的若干实施例之前,应该理解的是本发明的不同实施例在它们的应用方面不限于构造的细节,以及在以下描述中陈述或附图中图示的构件的布置。本发明能够有其他实施例并且能够以不同的方式实践和实施。同样,应该理解的是本文采用的措辞和术语是出于描述的目的且不应被认为是限制性的。

因而,本领域技术人员将会理解的是本公开所基于的概念可容易地用作用来设计用于实施本发明的若干目的的其他结构、方法和/或系统的基础。因此,重要的是,权利要求书被认为包括这样的等同构造,只要它们不背离本发明的精神和范围。

附图说明

当结合所附图形考虑时,本发明的公开实施例的更完整的理解以及其许多伴随的有利之处将在它们通过引用以下详细描述而变得被更好地理解时而轻易获得。

图1图示了使用电子束熔炼技术的增量制造装置的示意图,用于制造机械构件;

图2图示了用于增量制造的直接金属激光熔化装置的示意图;

图3图示了根据本发明公开的方法的流程图。

具体实施方式

贯穿本说明书对于“一个实施例”、“实施例”或“一些实施例”的引用,指的是与实施例相关而描述的特定特征、结构或特性包括在本发明公开的至少一个实施例中。因此,贯穿本说明书在不同地方出现短语“在一个实施例中”或“在实施例中”或“在一些实施例中”并不一定指相同的实施例。另外,特定的特征、结构或特性可以以任何合适的方式在一个或更多实施例中组合。

与数量关联使用的限定词“大约”包括所指的值并且具有由上下文指示的意义(例如,包括与特定数量的测量相关的公差范围)。

在以下描述中,将参考涡轮机械构件的制造。但是应该理解的是本文公开的方法也可以应用于其他机械构件的制造,尤其是面临高温运行条件和疲劳循环的机械构件,例如,往复式内燃发动机的构件。

图1是示例性增量制造机械或装置的示意图,其可用来根据本发明公开的方法制造涡轮机械构件,诸如涡轮叶片B,涡轮喷嘴,涡轮护罩或其他涡轮构件。

如对于本领域技术人员已知的那样,增量制造是这样一种工艺,其中具有复杂形状的物品从粉末材料开始逐层制造,粉末材料使用能量源局部熔化。在图1的实施例中,该能量源是电子束枪。在其他实施例中,能量源可为激光。

图1的增量制造机械由100整体标示。增量制造机械的结构和运行本身是已知的,并且在本文将不详细描述。简言之,图1的增量制造机械100包括能量源,其在本文公开的示例性实施例中包括电子束枪101,电子束枪101包括电子发射体103,电子发射体103产生电子束EB。电子束EB指向目标表面TS,目标表面TS布置在电子束枪101下。沿着电子束路径可以布置聚焦线圈105和偏转线圈107。聚焦线圈105将电子束聚焦在目标表面TS上,而偏转线圈107控制电子束EB沿着图案的移动,粉末材料必须根据该图案被熔解并固化。计算装置109控制偏转线圈107和电子束EB的移动。电子束EB的移动由计算装置109基于来自代表要制造的三维产品的文件的数据控制。

在能量源101下可布置封闭结构111。封闭结构111可与温度控制装置结合,例如包括以113示意性示出的加热器,例如电子加热器。可移动台115可布置在封闭结构111中。可控制可移动台115来根据双箭头f115竖直地移动。可移动台115的竖直移动可由计算装置109控制。粉末材料容器117可布置在目标表面TS上方,并且被控制根据双箭头117水平地移动,例如在计算装置109的控制下。

由增量制造机械100执行的增量制造工艺可概述如下。来自粉末材料容器117的第一层粉末材料通过沿着可移动台115根据箭头f117使该粉末材料容器117移动一次或更多次而分布在该可移动台115上,可移动台115放置在目标表面TS的高度。一旦已经分布了第一层粉末材料,就将电子束枪101激活并且电子束EB由偏转线圈107控制,像这样因而在对应于要制造的产品的横截面的该层的受限的部分中局部地熔化粉末材料。在熔化后,允许熔化的粉末材料冷却并固化。要制造的产品的横截面的边界外的粉末材料保持粉末形态。

一旦已经如上所述处理了第一层,就将可移动台115降低并且将后续的粉末材料的层分布在第一、固化的层的顶上。转而选择性地熔化第二层粉末材料并且随后允许其冷却并固化。执行熔化和固化使得每个层部分都将粘附到之前形成的层部分上。通过在另一粉末材料层之后添加一个粉末材料层,并且选择性地熔化并固化对应于产品的后续横截面的层部分,逐步重复该工艺,直至形成整个产品。

一旦已经完成该产品,就可以去除并回收没有被熔化并固化的粉末材料。

上述工艺可以通过加热器113在受控的温度条件下实施。封闭结构111内的温度被控制成使得整个工艺在高温下执行并且在制造周期完成时实质上在产品中没有残余应力。在已经完成了构造工艺之后,可以允许产品沿冷却曲线从处理温度冷却至环境温度,这防止了在最终产品中的残余应力。

优选地封闭结构111的内部保持在高真空条件下,使得防止由粉末材料和熔化材料产生的氧气吸收。

图2图示了DMLM(直接金属激光熔化)装置201的示意图。该装置包括激光源203,例如二氧化碳激光器。由激光源203产生的激光束LB被光学器件204聚焦并且可以由镜子205偏转。镜子205由未示出的可编程控制单元控制以遵循对应于要制造的制品例如涡轮叶片的每个层的横截面的图案。在制造期间第一竖直可移动台207支撑工件或制品B。第二竖直可移动台209形成粉末材料容器的底部。水平可移动的刮片211从粉末材料容器将粉末材料分布在正在制造的工件B的顶部上。台207和台209可容纳在抽真空的容器中,或者在填充了惰性气体如氩气的容器中。

由装置201执行的增量制造工艺本身是已知的,并且可概述如下。台207在上部位置中移动并且第一层粉末材料通过刮片211被均匀地分布在台207上。启动激光源203并且控制激光束LB以便局部且选择性地熔化台207上的该层粉末材料。然后将台207降低(箭头f207)对应于后续层的厚度的冲程。允许第一层熔化的材料固化。抬高(箭头f209)台209以使得对于刮片211可提供更多的粉末材料。刮片211执行另一个往复运动(箭头f211)来将下一个粉末材料层分布在台207上的之前一层的顶上,并且激光束LB被启动并且由镜子205移动来选择性地熔化第二层粉末材料。

重复该工艺直至获得最终制品。

在图2的示意图中使用了偏转镜子205。在其他示例性实施例中可使用纤维激光器,其中通过纤维传递激光能量,其终端根据平行于台207的数字控制的轴例如X轴和Y轴移动。

根据本文公开的实施例,在增量制造工艺中使用的粉末材料是由至少两种粉末材料组成的粉末混合物,即包含金属的粉末和呈粉末形态的增强弥散剂。如以上所提及的那样,包含金属的粉末可为适于由此形成的机械构件的高温运行条件的金属间化合物或金属粉末,例如超合金。弥散剂可为陶瓷材料,诸如但不限于氧化物粉末。

根据一些示例性实施例,包含金属的粉末是超合金粉末,优选地是高温超合金粉末。超合金粉末可为镍基超合金、钴基超合金、铁基超合金、钼基超合金、钨基超合金、钽基超合金、铌基超合金的其中一种。在其他实施例中,包含金属的粉末材料可选自Nb

包含金属的粉末材料可由主超合金的锭或条开始获得,该锭或条随后被熔化并雾化。根据一些示例性实施例,主超合金锭可通过真空感应熔化制造。

根据一些实施例,雾化可通过真空惰性气体雾化实现,其确保了产生具有低氧含量以及颗粒的球形形状的超合金粉末。主超合金锭被熔化并且通过喷嘴供入雾化室,其中惰性气体的增压射流与熔化的金属流相反而被引导,熔化的金属流因而被分成多个小的金属颗粒。

所获得的粉末的颗粒尺寸可以通过调节雾化室中的气体/金属流比例而控制。

根据其他实施例,起始锭的雾化可通过选自由真空感应气体雾化(VIGA),等离子旋转电极工艺(PREP),等离子雾化(PA),转盘雾化(RDA)组成的组的工艺获得。

在有利的实施例中,所需的粒度分布,即,最终雾化的包含金属的粉末材料的颗粒尺寸可例如通过旋流分级器实现。在一些实施例中,粒度分布选择成使得包含金属的粉末材料的平均颗粒尺寸包括在大约10微米和大约100微米之间。在一些示例性实施例中,平均颗粒尺寸包括在大约10微米和大约60微米之间。

如以上所提及的,粉末混合物还包括至少一种弥散剂,例如呈粉末形态的陶瓷材料。在一些实施例中,可以使用呈粉末形态的单一陶瓷材料。在其他实施例中,可以使用具有不同化学成分的呈粉末形态的两种或更多不同陶瓷材料的混合物。在一些实施例中,陶瓷粉末材料是氧化物粉末。

根据本文公开的方法的示例性实施例,呈粉末形态的至少一种增强弥散剂可以是金属氧化物。在一些实施例中,增强氧化物选自由以下组成的组:Y

呈粉末形态的增强弥散剂可具有小于包含金属的粉末材料的平均颗粒尺寸的平均颗粒尺寸。在一些实施例中,呈粉末形态的增强弥散剂具有等于或小于大约5微米的平均颗粒尺寸。在当前优选的实施例中,呈粉末形态的增强弥散剂可以具有大约1微米或更小的平均颗粒尺寸,优选地为大约0.5微米或者更小。在一些实施例中,呈粉末形态的增强弥散剂具有纳米量级的平均颗粒尺寸,例如等于或小于大约60nm的平均颗粒尺寸,或者另外等于或小于大约50nm。在优选实施例中平均颗粒尺寸不小于大约5nm。

通过已知方法可获得纳米量级尺寸增强弥散剂。合适的方法例如在A. Lorke等(编辑)的:Nanoparticles from the Gas Phase, NanoScience and Technology,Springer-Verlag Berlin Heidelberg 2012, 第二章中;Christina Raab等的:Production of Nanopartiles and Nanomaterials,NanoTrust Dossiers中,n. 6,2011年2月;Takuya Tsuzuki的:Commercial Scale Produton of Inorganic Nanoparticles,Int. J. Nanotechnol.中,第6卷,nos 5/6 2009;Francois Bozon-Verduraz等的:Nanoparticles of Metal and metal Oxides: Some Peculiar Synthesis Methods,Sizeand Shape Control, Application to Catalysts Preparation,Brazilian Journal ofPhysics,第39卷,n. 1A,2009年4月中被公开。

将较粗大的呈粉末形态的包含金属的材料和较细的呈粉末形态的增强弥散剂进行组合,可以实现通过增量制造生产的最终构件的增强的机械特性。小的弥散剂粉末颗粒提升了弥散剂在金属基质中的良好分布,减少或者防止最终材料的脆性增加的风险。

最终混合物中呈粉末形态的增强弥散剂的数量可以例如按重量计在大约0.01%和48%之间变化。在一些实施例中,增强弥散剂粉末以按重量计在大约0.1%和大约30%之间变化的数量而存在,例如按重量计在大约0.1%和大约2%之间。

以下表格1提供了合适的粉末混合物的示例性成分的列表。混合物的超合金金属成分是镍基超合金。成分以按重量计%给出。

表格 1

以下表格2列出了成分的附加示例性实施例,其可与本文公开的方法一起使用。这些成分包括钼基合金、镍基合金、钨基合金、钽基合金和铌基合金。

表格2

通过如迄今公开的增量制造所制造的涡轮机械构件可以面临一个或更多附加的工艺步骤。根据一些实施例,可以执行最终的热等静压(HIP)步骤来去除或者减少熔化并固化的材料类内的孔隙率。热等静压步骤或处理可例如在惰性气体的气氛中在大约80和大约200 MPa的压力下实施。

根据一些实施例涡轮机械构件面临在真空下的后续热处理,其目的在于实现期望的材料特性,例如在于使微观结构均匀化,以及后续材料的老化,以获得对于析出硬化超合金的析出硬化强化(即伽马相前体)。可以应用局部化的(在特定构件区域中)均匀化和热处理以局部地增大颗粒尺寸来最大化特定区域中(典型地是燃气涡轮机轮叶的翼型件区域)粗颗粒尺寸性能。

图2图示了如以上所公开的方法的示例性实施例的概略性流程表。

虽然本文描述的主题的公开实施例已经在附图中示出并且在上文联系若干示例性实施例通过特殊特征和细节而完整地进行了描述,但本领域技术人员应该理解的是,不实质性背离本文所述的新颖的教导、原理和概念以及所附权利要求书中所述的主题的优点的许多变型、变化和省略都是可能的。因此,所公开的创新的正确范围应仅由所附权利要求书的最宽解释所确定,以便包括所有此类变型、变化和省略。另外,任何工艺或方法步骤的顺序或次序都可以根据备选实施例变化或者重新排序。

技术分类

06120115637408