掌桥专利:专业的专利平台
掌桥专利
首页

冰刀及其制备方法、冰刀鞋

文献发布时间:2023-06-19 12:11:54


冰刀及其制备方法、冰刀鞋

技术领域

本发明涉及冰刀材料技术领域,具体而言,涉及一种冰刀及其制备方法、冰刀鞋。

背景技术

冰刀是冰上运动,例如速度滑冰、花样滑冰、冰球等运动的重要器械。刀刃材料一般为优质钢材。随着冰上运动的不断发展,钢制冰刀逐渐暴露出刀刃易钝、寿命短、滑动磨擦力大、耐磨性差等众多问题,严重影响大众的使用体验以及高端竞速类比赛中运动员冰上技巧和速度的提高,甚至对运动员自身身体造成损伤。目前为提高冰刀的性能,也有研究在其表面涂镀硬质涂层,但是硬质涂层与冰刀基体之间的结合力较弱,易磨损、脱落,严重影响硬质涂层的减摩降磨效果。

发明内容

基于此,本发明提供了一种冰刀及其制备方法、冰刀鞋。该冰刀具有优异的耐磨、减磨效果。

本发明一方面,提供一种冰刀,其基体刀片及镀于所述基体刀片的刀刃两面的涂层,所述涂层包括位于内部的金属涂层和位于外部的硬质涂层;

所述金属涂层的材质为Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、W、Mo中的任意一种,或其任意组成的合金;

所述硬质涂层的硬度为HV1500~HV6000;

所述金属涂层的晶格常数位于所述刀刃材质的晶格常数与所述硬质涂层的晶格常数之间。

在一些实施方式中,所述硬质涂层的材质为DLC、DLC:Si、Si

在一些实施方式中,所述硬质涂层的材质为DLC、DLC:Si或Si

在一些实施方式中,所述DLC:Si涂层中硅元素含量为1%~20%。

在一些实施方式中,所述硬质涂层的厚度为0.5μm~100μm。

在一些实施方式中,所述金属涂层的厚度为0.1μm~50μm。

本发明一方面,还提供一种上述冰刀的制备方法,所述制备方法包括依次将所述金属涂层及所述硬质涂层镀于所述基体刀片的刀刃两面。

在一些实施方式中,在镀所述金属涂层前还包括对所述基体刀片进行除锈后置于有机溶剂中清洗,并用非氧气体吹干的步骤。

在一些实施方式中,所述镀金属涂层的方法和镀硬质涂层的方法独立地选自物理气相沉积法、化学气相沉积法、离子注入法、反应溅射法、离子束辅助沉积法或脉冲激光沉积法。

本发明另一方面,进一步提供一种冰刀鞋,其包括上述所述的冰刀。

有益效果:

本发明通过选用具有极高硬度的硬质涂层提高了冰刀的耐磨性,并降低了摩擦系数达到优异的减磨效果,而且硬质涂层与冰刀基体刀片之间引入金属涂层能够显著增强硬质涂层与冰刀基体之间的结合力,从而避免了硬质涂层易脱落的问题,有效的保持了硬质涂层的减磨耐磨性。

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明一个实施例中冰刀耐磨性测试结果图;

图2为本发明一个实施例中冰刀在滑行前后抓冰力变化示意图;

图3a为本发明一个实施例中冰刀侧面硬质涂层结合力打磨测试结果图(刀刃方向);

图3b为本发明一个实施例中冰刀侧面硬质涂层结合力打磨测试结果图(冰刀侧面);

图4为本发明一个对比例中冰刀镀膜结合力测试结果图;

图5为本发明一个对比例中冰刀耐磨性测试结果图。

具体实施方式

现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。

因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。

除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本发明的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。

符号说明:

“:”表示掺杂,例如DLC:Si表示掺杂有Si的DLC。

本发明一方面,提供一种冰刀,其包括基体刀片及镀于基体刀片的刀刃两面的涂层,其中涂层包括位于内部的金属涂层和位于外部的硬质涂层;

所述金属涂层的材质为Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、W、Mo中的任意一种,或其任意组成的合金

所述硬质涂层的硬度为HV1500~HV6000;

所述金属涂层的晶格常数位于所述刀刃材质的晶格常数与所述硬质涂层的晶格常数之间。

在一些实施方式中,冰刀基体刀片的材质可以为本领域常用的材质,包括但不限于合金、不锈钢、工具钢、弹簧钢或粉末金属冶金钢。

在一些实施方式中,硬质涂层的材质可以为氮化物、碳化物、氧化物、硼化物等普通硬质涂层,也可以为金刚石、类金刚石、立方氮化硼等超硬涂层材料,还可以为金属氮碳化合物或金属氮碳化合物。包括但不限于类金刚石(DLC)、类金刚石掺硅(DLC:Si)、氮化硅(Si

在一些实施方式中,硬质涂层的材质为DLC、DLC:Si或Si

在一些实施方式中,所述DLC:Si涂层中硅元素含量为1%~20%,例如可以为2%、8%、15%、18%。通过控制硅元素含量能够使得硬质涂层在降低内应力,提高硬质涂层与冰刀基体刀片之间结合力的同时又不会造成涂层硬度的下降。

在一些实施方式中,所述硬质涂层厚度为0.5μm~100μm,例如可以为2μm、7μm、12μm、15μm、20μm、30μm、50μm、70μm、90μm等。通过控制硬质涂层的厚度使得其具有优异的耐磨性及低的摩擦阻力,且有利于冰刀刀刃区域形成尖韧,从而增强冰刀的抓冰力。

在一些实施方式中,金属涂层的厚度为0.1μm~50μm,例如还可以为0.4μm、0.5μm、2μm、8μm、15μm、30μm、40μm等。

本发明一方面,还提供一种上述冰刀的制备方法,其包括依次将所述金属涂层及所述硬质涂层镀于所述基体刀片的刀刃两面。

在一些实施方式中,在镀所述金属涂层前还包括对所述基体刀片进行除锈后置于有机溶剂中清洗,并用非氧气体吹干的步骤。

在一些实施方式中,除锈的方法可以为抛光,所述抛光可以为化学抛光或机械抛光。优选为机械抛光。通过抛光可以打磨除去基体刀片表面的锈蚀以增大其表面的平整度,从而有利于硬质涂层与基体刀片的结合。

在一些实施方式中,有机溶剂可以为丙酮、四氯化碳、异丙酮及无水乙醇中的一种或几种。优选为丙酮。基体刀片经过有机溶剂清洗后能够除去其表面可能存在的油渍、灰尘或氧化物等。

在一些实施方式中,非氧气体可以为氮气及氦气中的至少一种。优选的,非氧气体为氮气,更优选的,所述氮气优选为纯度为99.9%的氮气。

在一些实施方式中,镀金属涂层和硬质涂层的方法不作限制,使用本领域常用的方法即可,包括但不限于物理气相沉积法(PVD)、化学气相沉积法(CVD)、离子注入法、反应溅射法、离子束辅助沉积法(IBSD)、脉冲激光沉积法(PLD)等。其中物理气相沉积法可以为离子镀技术,化学气相沉积法可以为微波等离子体化学气相沉积法(MP-CVD)、中温化学气相沉积(MT-CVD)或等离子体增强化学气相沉积法(PE-CVD)。

在一些实施方式中,所述冰刀可以为速滑冰刀、花样冰刀或冰球冰刀。

本发明另一方面,进一步提供一种冰刀鞋,其包括上述所述的冰刀。

下结合具体实施例和对比例对本发明的冰刀及其制备方法、冰刀鞋作进一步详细的说明。

实施例1

1)基体刀片预处理

将基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为1.5μm的金属钛涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用离子束辅助沉积方法镀厚度为5μm的DLC:Si(硅元素含量为8%)涂层。具体步骤如下:

将步骤2)中镀有金属钛涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有金属钛涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况。如图1所示,冰刀表面并未出现明显的磨损,说明冰刀具有良好的耐磨性。

如图2所示,从左至右依次是a:冰刀在滑行前的刀刃形状、b:滑行后刀刃形状、c:镀有涂层的冰刀滑行前刀刃形状、d:镀有涂层的冰刀滑行后刀刃形状。未涂覆涂层的冰刀耐磨性较差,在滑行后会形成圆弧,降低冰刀的抓冰力。而涂覆有涂层的冰刀具有优异的耐磨性,在滑行过程中难以发生磨损,而未涂覆涂层的部分正常磨损,这就使得冰刀的尖韧更加尖锐,从而增大了抓冰力更有利于向前滑行或弯道滑行。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.04。说明冰刀具有良好的减摩效果。

c)硬度测试

通过纳米压痕仪测得的DLC:Si涂层的硬度为HV6000。

d)结合力测试

如图3a和图3b所示,将镀好涂层的冰刀刀刃水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

实施例2

1)基体刀片预处理

基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为200nm的金属镍涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用等离子体增强化学气相沉积法镀厚度为1μm的Si

将步骤2)中镀有金属钛涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有金属钛涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况,发现并未出现明显的磨损,说明其具有较好的耐磨性。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.06。

c)硬度测试

通过纳米压痕仪测得的Si

d)结合力测试

将镀好涂层的冰刀刀刃水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

实施例3

本实施例的制备方法与实施例1的制备方法基本相同,不同之处在于:DLC:Si涂层中硅元素含量为15%。具体步骤如下:

1)基体刀片预处理

将基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为2μm的金属钛涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用离子束辅助沉积方法镀厚度为3μm的DLC:Si(硅元素含量为15%)涂层。具体步骤如下:

将步骤2)中镀有金属钛涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有金属钛涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况,发现并未出现明显的磨损,说明其具有较好的耐磨性。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.08。

c)硬度测试

通过纳米压痕仪测得的DLC:Si涂层的硬度为HV4800。

d)结合力测试

将镀好涂层的冰刀刀刃向上水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

实施例4

本实施例的制备方法与实施例1基本相同,不同之处在于:金属涂层为镍,硬质涂层为CrN。具体步骤如下:

1)基体刀片预处理

将基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为300nm的镍涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用离子束辅助沉积方法镀厚度为40μm的CrN涂层。具体步骤如下:

将步骤2)中镀有镍涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有镍涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况,发现并未出现明显的磨损,说明其具有较好的耐磨性。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.08。

c)硬度测试

通过纳米压痕仪测得的CrN涂层的硬度为HV1750。

d)结合力测试

将镀好涂层的冰刀刀刃向上水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

实施例5

本实施例的制备方法与实施例1基本相同,不同之处在于:金属涂层为锰,硬质涂层为TiN。具体步骤如下:

1)基体刀片预处理

将基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为800nm的锰涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用PVD方法镀厚度为6μm的TiN涂层。具体步骤如下:

将步骤2)中镀有锰涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有锰涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况,发现并未出现明显的磨损,说明其具有较好的耐磨性。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.07。

c)硬度测试

通过纳米压痕仪测得的TiN涂层的硬度为HV2000。

d)结合力测试

将镀好涂层的冰刀刀刃向上水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

实施例6

本实施例的制备方法与实施例1基本相同,不同之处在于:金属涂层为钛,硬质涂层为TiAlZrN。具体步骤如下:

1)基体刀片预处理

将基体刀片进行机械抛光将其表面的锈蚀打磨掉,且确保冰刀刀刃与侧面直角过渡,无圆弧产生。然后在丙酮中反复超声清洗5次,每次15min。最后用纯度为99.9%的氮气将基体刀片吹干。

2)镀金属涂层

利用磁控溅射方法镀厚度为150nm的钛涂层。具体步骤如下:

将上述基体刀片放入真空室固定,并将真空室抽至真空度为5×10

3)镀硬质涂层

利用CVD方法镀厚度为4μm的TiAlZrN涂层。具体步骤如下:

将步骤2)中镀有钛涂层的冰刀取出并置于丙酮中进行超声波清洗,反复清洗2次,每次清洗15min。然后将镀有钛涂层的冰刀置于真空室并固定,将真空室抽至真空度为5×10

性能测试:

a)耐磨性测试

通过摩擦磨损试验机对冰刀进行耐磨性测试,摩擦10min后通过光学显微镜观察冰刀表面的磨损情况,发现并未出现明显的磨损,说明其具有较好的耐磨性。

b)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.06。

c)硬度测试

通过纳米压痕仪测得的TiAlZrN涂层的硬度为HV4400。

d)结合力测试

将镀好涂层的冰刀刀刃向上水平放置,用磨刀石打磨冰刀10min,冰刀两侧的涂层没有发生剥离、脱落的现象。

对比例1

本对比例与实施例1的制备方法基本相同,不同之处在于:冰刀基体刀片刀刃两面未镀金属钛涂层。

a)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.1。

b)结合力测试

将镀好涂层的冰刀材料在摩擦磨损试验机下进行10min的摩擦损耗实验,如图4所示,在显微镜下观察其表面磨损情况发现冰刀材料表面的磨损情况较为严重,说明此时结合力不好。

对比例2

本对比例为未镀金属涂层和硬质涂层的冰刀。

a)减磨效果测试

通过摩擦磨损试验机测得冰刀与冰之间的摩擦系数为0.25。

b)耐磨性测试:

将冰刀置于摩擦磨损试验机下进行10min的摩擦损耗实验,如图5所示,在显微镜下观察其表面磨损情况发现冰刀表面的磨损情况较为严重。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

相关技术
  • 冰刀及其制备方法、冰刀鞋
  • 一种冰刀鞋用便于更换的冰刀
技术分类

06120113199489