掌桥专利:专业的专利平台
掌桥专利
首页

一种石墨烯的制备方法及其应用

文献发布时间:2023-06-19 13:45:04



技术领域

本发明涉及石墨烯制备技术领域,具体涉及一种研磨剥离制备石墨烯的方法。

背景技术

由于石墨烯具有独特的二维结构以及优异的力学、电学和热学性能,其在众多领域有着良好的应用前景,例如应用于在力学增强复合材料、气体阻隔涂层、透明导电薄膜、热量管理材料和储能器件等领域。

在天然石墨矿中,石墨晶体的层内共价键作用力强,而层间范德华作用力弱,因此可通过自上而下的方式剥离分层,提取出原子级厚度的石墨烯。近年来,从廉价且丰富的石墨矿中提取石墨烯的方法不断涌现,上述方法主要分为化学剥离和机械剥离两种。

化学剥离是利用强氧化剂与石墨发生化学反应,从而在石墨层内引入官能团,以增大层间距离,并削弱层间范德华作用力,进而实现石墨烯的剥离。例如,硫酸/高锰酸钾氧化体系在石墨的层内引入羧基和羟基,可将层间距离从0.335nm增大到0.7nm。但是,化学反应不可避免地引入杂原子和增加石墨烯的晶格缺陷。通常化学剥离石墨烯的C/O原子比小于10,并且拉曼无序峰和有序峰的强度比大于1。尽管引入的缺陷和杂原子可以通过后续化学还原方法部分消除,但是其各项物理性能指标与无缺陷的纯净石墨烯相去甚远。因此,科研界和企业界一致认为化学方法剥离的石墨烯是石墨烯的衍生物,在严格意义上不能称之为石墨烯。此外,从工程化的角度看,尽管化学剥离可以大规模剥离石墨,但是涉及到氧化、提纯、还原、离心等多个工序,各个工序不可避免地会产生大量废水,易于造成环境污染。

机械剥离是指在不发生任何化学反应的情况下,借助机械装备提供的剪切力,直接破坏石墨层间的范德华作用力,实现石墨分层,既保持了石墨烯的面内原子晶格有序,又不引入杂原子,从而最大程度保留石墨烯固有的各项物理性能指标。根据机械装备及其提供剪切力的方式,机械剥离策略可分为超声波破碎仪剥离、高速剪切机剥离、胶体磨剥离、球磨机剥离等。与化学剥离策略相比,机械剥离策略制备的石墨烯缺陷少和C/O原子比高;例如,球磨剥离石墨烯的拉曼无序峰和有序峰的强度比小于0.25,C/O原子比大于20。然而,从工程化的角度看,机械剥离的方法一直面临着剥离效率低的问题,这严重制约了石墨烯的工业化应用。通过系统调研发现,各种机械剥离石墨烯的生产效率低于2g/(h·L),无法满足大规模工业化生产的需求。剥离效率低主要是由于与石墨接触的机械装备组件的剪切工作面积有限;例如,超声波破碎仪剥离、高速剪切机剥离、球磨机剥离分别严重依赖于超声探头的直径、搅拌头的大小、研磨球的装填量。因此,开发高效的机械剥离石墨从而得到石墨烯的技术,以满足石墨烯的工业化生产需求,对于加速推动石墨烯的商业化应用至关重要。

发明内容

基于机械剥离法制备石墨烯的低效率的问题,本发明的第一个目的在于提供一种高效的石墨烯的机械剥离方法。

本发明的第二个目的在于提供一种由本发明制备得到的石墨烯的应用。

为实现上述目的,本发明采用以下技术手段:

一种石墨烯的制备方法,包括如下步骤:

S1将隐晶质石墨纳米颗粒与N-甲基吡咯烷酮混合得到隐晶质石墨悬浮液后向隐晶质石墨悬浮液中加入微米级陶瓷球;

S2搅拌所述隐晶质石墨悬浮液2-4h,使隐晶质石墨悬浮液转化为隐晶质石墨膏体;

S3搅拌所述微米级陶瓷球2-4h,使所述微米级陶瓷球驱动隐晶质石墨膏体中的隐晶质石墨纳米颗粒之间相互剪切摩擦,从而使石墨烯从隐晶质石墨纳米颗粒表面剥离而得到石墨烯膏体;

所述隐晶质石墨纳米颗粒的堆密度为0.09-0.11g/cm

优选的,所述的石墨烯的制备方法,还包括在真空下,将所述微米级陶瓷球,从石墨烯膏体中分离的步骤。

优选的,所述微米级陶瓷球包括氧化锆微米球;

所述微米级陶瓷球的直径为200~500微米。

优选的,所述搅拌的线速度大于10m/s。

优选的,所述石墨烯的尺寸为50~350nm;

所述石墨烯的厚度小于3nm。

优选的,所述N-甲基吡咯烷酮与所述隐晶质石墨纳米颗粒的体积比为1:0.52~1:1.11。

优选的,所述N-甲基吡咯烷酮与所述微米级陶瓷球的体积比为1:0.65-1.7。

优选的,所述剥离效率大于7.5g/(h·L)。

一种所述石墨烯的应用,作为导电剂,应用于制备锂离子电池。

相比于现有技术,本发明带来以下技术效果:

1、本发明提供的石墨烯的制备方法采用微球辅助自研磨剥离石墨烯的方法属于纯物理剪切过程,不涉及化学反应,在石墨烯晶面内不引入缺陷和杂原子,工艺简单且易于工程化放大生产。

2、本发明提供的石墨烯的制备方法,石墨烯的剥离效率可达7.5g/(h·L),剥离产率可接近100%,制备出的石墨烯膏浓度可达到60mg/ml;同时,本方法制备出的石墨烯横向尺寸为50~350nm,厚度小于3nm。

3、本发明制备出石墨烯,作为一种良好的导电剂,可降低锂离子电池内阻,提高其比容量和循环稳定性,其性能显著优于目前商业化的碳基导电添加剂。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。

图1示出了本发明提供的石墨烯的制备方法的示意图;

图2示出了实施例1自剥离石墨烯过程中,剥离产率和自研磨时间的关系。

图3示出了实施例1制备得到的石墨烯的形貌和尺寸表征TEM图谱。

图4示出了实施例1制备得到的石墨烯的尺寸统计图。

图5示出了实施例1制备得到的石墨烯的AFM照片。

图6示出了实施例1制备得到的石墨烯经AFM测试得到的长度和高度的关系图。

图7示出了实施例1制备得到的石墨烯的厚度统计图。

图8示出了实施例1制备得到的石墨烯的横向尺寸统计图。

图9示出了实施例1中使用的隐晶质石墨的XPS图谱。

图10示出了实施例1制备得到的石墨烯的XPS图谱。

图11示出了实施例1制备得到的石墨烯膏体的光学照片。

图12示出了对比例1自剥离石墨烯过程中,剥离产率和自研磨时间的关系。

图13示出了对比例2自剥离石墨烯过程中,剥离产率和自研磨时间的关系。

图14示出了实施例1制备得到的石墨烯和商业化碳基导电剂的锂离子电池放电比容量比较图。图中循环圈数为500

图15示出了实施例1制备得到的石墨烯和商业化碳基导电剂的锂离子电池放电比容量比较图。图中循环圈数为30圈。

具体实施方式

下面结合说明书附图和具体实施例,对本发明进行进一步说明。

本发明提供的石墨烯的制备方法,实现了以隐晶质石墨纳米颗粒为原料的石墨烯的高效物理剥离,其本质是通过隐晶质石墨纳米颗粒之间的自研磨来从中剥离石墨烯的,即利用隐晶质石墨矿中石墨纳米颗粒尺寸小、比表面积大的特点,机械驱动石墨烯纳米颗粒之间相互剪切摩擦,以实现隐晶质石墨高效剥离。这种机械剥离思路以隐晶质石墨纳米颗粒的表面积作为剪切工作面积,大幅提高了机械剥离石墨的效率。隐晶质石墨矿中石墨纳米颗粒的厚度通常在50-100纳米,其比表面积理论上达到8.71-17.42m

具体的,陶瓷球的直径为200~500微米。陶瓷球径过大,会加剧石墨粒度的不均匀化,陶瓷球间距也会增大,不利于驱动石墨颗粒间的相互研磨。陶瓷球径过小,对于S2步骤,能量动力可能不足,导致成膏状的时间延长,造成最终剥离效率的降低。N-甲基吡咯烷酮与所述隐晶质石墨纳米颗粒的体积比为1:0.52~1:1.11。体积比过小,隐晶质石墨纳米颗粒浓度过高,石墨纳米颗粒的间距减小,颗粒之间相互剪切摩擦的空间过小,反而会降低剥离效率和最终产品质量。体积比过大,隐晶质石墨纳米颗粒浓度过低,石墨纳米颗粒间距过大,颗粒间相互剪切摩擦的距离增大,同样会降低剥离效率。合适的体积比才有利于最终的高效率。N-甲基吡咯烷酮与所述微米级陶瓷球的体积比为1:0.65-1.7。N-甲基吡咯烷酮一定,对应的隐晶质石墨纳米颗粒的浓度范围也一定,微米级陶瓷球过多属于多余能量损耗,而且容器体积一定,过多球负载容器压力过大。相反,微米级陶瓷球过少,球之间的距离太大,陶瓷球之间的纳米颗粒的间距会相应增大,会延长步骤S3的时间,降低剥离效率。搅拌的线速度大于10m/s。足够的线速度才能驱动石墨颗粒之间摩擦。线速度过小,步骤S2成膏体状时间会延长,步骤S3石墨颗粒之间相互剪切摩擦的动力减小,造成剥离效率的降低。

以下结合具体实施例对本发明进行进一步的说明。

本发明具体实施例中采用的三元正级材料购自湖南杉杉新能源科技股份有限公司。

实施例1

取堆密度为0.1g/cm

将商业化三元正极材料LiNi

在研磨过程中,发明人记录了研磨剥离过程中,研磨时间和石墨烯产率之间的关系,得到图2。从图2中可以看出,在0到2小时之间,剥离过程中,随着石墨含量的减少,石墨烯的剥离速度下降,这基本满足一级反应动力学的特征。而进一步研磨,石墨含量的变化不再影响石墨烯的剥离速度,而转化为零级反应。研磨8小时后,如图3和图4所示,隐晶质石墨即几乎全部被剥高成石墨烯。图5示出了实施例1制备得到的石墨烯的AFM照片,图6,图7和图8为由AFM照片统计出的石墨烯的长度、厚度与尺寸参数。从图中可知,实施例1制备得到的石墨烯膏体内容物中完全是石墨烯,而不是石墨。图9为隐晶质石墨的XPS谱图,图10为实施例1制备得到的石墨烯的XPS谱图。从图中可以看出,实施例1制备得到的石墨烯中几乎不存在多余的杂质。图11为实施例1制备得到的石墨烯分散膏体。

实施例2

取堆密度为0.09g/cm

将商业化三元正极材料LiNi

实施例3

取堆密度为0.11g/cm

将商业化三元正极材料LiNi

实施例4

取堆密度为0.13g/cm

将商业化三元正极材料LiNi

对比例1

取堆密度为0.8g/cm

将商业化三元正极材料LiNi

在研磨过程中,发明人记录了研磨剥离过程中,研磨时间和石墨烯产率之间的关系,得到图12。从图12中可以看出,在0到20小时之间,剥离过程中,随着石墨含量的减少,石墨烯的剥离速度下降,这基本满足一级反应动力学的特征。而进一步研磨,石墨含量的变化不再影响石墨烯的剥离速度,而转化为零级反应。研磨24小时后,石墨烯的转化率约为95%。由此可见,当取堆密度小于0.7g/cm

对比例2

取堆密度为0.14g/cm

将商业化三元正极材料LiNi

在研磨过程中,发明人记录了研磨剥离过程中,研磨时间和石墨烯产率之间的关系,得到图13。从图13中可以看出,在0到16小时之间剥离过程中,随着石墨含量的减少,石墨烯的剥离速度下降,这基本满足一级反应动力学的特征。而进一步研磨,石墨含量的变化不再影响石墨烯的剥离速度,而转化为零级反应。研磨20小时后,石墨烯的转化率约为92%。由此可见,当取堆密度大于1.3g/cm

实施例5

取堆密度为0.1g/cm

将商业化三元正极材料LiNi

实施例6

取堆积密度为0.1g/cm

将商业化三元正极材料LiNi

实施例7

取堆积密度为0.1g/cm

将商业化三元正极材料LiNi

对比例3

取堆积密度为0.1g/cm

对比例4

取堆积密度为0.1g/cm

由对比例3和对比例4可知,陶瓷球大小过大或过小,都不能制备得到尺寸较小的石墨烯。

对比例5

取堆积密度为0.1g/cm

对比例6

取堆积密度为0.1g/cm

由对比例5和对比例6可知,线速度过大或过小,都不能制备得到尺寸较小的石墨烯。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

相关技术
  • 一种柔性三维石墨烯气凝胶及其制备方法和应用、柔性三维石墨烯基压阻式传感器及其应用
  • 一种石墨烯/铜复合粉体及其制备方法、石墨烯/铜复合材料及其制备方法和应用
技术分类

06120113798647