掌桥专利:专业的专利平台
掌桥专利
首页

用于在侧链路通信中进行重传的方法和装置

文献发布时间:2023-06-19 19:30:30


用于在侧链路通信中进行重传的方法和装置

技术领域

本公开涉及一种侧链路(sidelink)通信技术,更具体地,涉及一种用于在侧链路通信中重传数据的技术。

背景技术

第五代(fifth-generation,5G)通信系统使用高于第四代(fourth-generation,4G)通信系统(例如,长期演进(Long Term Evolution,LTE)通信系统或高级LTE(LTE-Advanced,LTE-A)通信系统)的频带的频带以及4G通信系统的频带,已经被考虑用于处理无线数据。5G通信系统可以支持增强型移动宽带(Enhanced Mobile Broadband,eMBB)通信、超可靠低时延通信(Ultra-Reliable and Low-Latency communications,URLLC)、海量机器类通信(massive Machine Type Communications,mMTC)等。

4G通信系统和5G通信系统可以支持车辆到万物(Vehicle-to-Everything,V2X)通信。诸如4G通信系统、5G通信系统等的蜂窝(cellular)通信系统中支持的V2X通信可被称为“蜂窝-V2X(C-V2X)通信”,V2X通信(例如,C-V2X通信)可以包括车辆对车辆(Vehicle-to-Vehicle,V2V)通信、车辆对基础设施(Vehicle-to-Infrastructure,V2I)通信、车辆对行人(Vehicle-to-Pedestrian,V2P)通信、车辆对网络(Vehicle-to-Network,V2N)通信等。

在蜂窝通信系统中,V2X通信(例如,C-V2X通信)可以基于侧链路通信技术(例如,基于邻近的服务(Proximity-based Services,ProSe)通信技术、装置到装置(Device-to-Device,D2D)通信技术等)来执行。例如,可以为参与V2V通信的车辆建立侧链路信道(sidelink channel),并且可以使用侧链路信道执行车辆之间的通信。侧链路通信可以使用配置的授权(configured grant,CG)资源来执行。CG资源可以被周期性地配置,并且可以使用CG资源来发送周期性数据(例如,周期性侧链路数据)。

另一方面,数据重传过程可以在侧链路通信中执行。数据重传过程可以基于各种方案来执行。在这种情况下,在侧链路通信中需要不同重传方案的操作方法。

发明内容

【技术问题】

用于解决上述问题的本公开的目的是提供一种用于在侧链路通信中进行数据重传的方法和装置。

【技术方案】

根据用于实现该目的本公开的的第一示例性实施例,一种发送终端的操作方法可以包括:基于第一重传方案将第一数据发送到接收终端;将侧链路控制信息(sidelinkcontrol information,SCI)发送到接收终端,SCI包括指示重传方案的切换的第一指示符和指示是否重用为第一重传方案保留的资源的第二指示符;以及基于由SCI启动的第二重传方案将第二数据发送到接收终端,其中根据是否发送混合自动重传请求(HARQ)反馈来区分第一重传方案和第二重传方案。

当第二指示符指示重用保留的资源时,可以使用保留的资源执行根据第二重传方案的重传过程。

当第二指示符不指示重用保留的资源时,可以使用由SCI分配的资源来执行根据第二重传方案的重传过程。

第二指示符可以指示保留的资源的位置以及保留的资源的重用。

SCI可以包括第一阶段SCI和第二阶段SCI,当第一指示符包括在第一阶段SCI中时,第二指示符可以包括在第二阶段SCI中,并且当第一指示符包括在第二阶段SCI中时,第二指示符可以包括在第一阶段SCI中。

第一指示符可以由包括在第二阶段SCI中的HARQ反馈启用/禁用指示符表示。

第二指示符可以由包括在第一阶段SCI中的反向指示符表示。

当使用第二阶段SCI而不使用第一阶段SCI执行第一数据的重传操作时,启动第二重传方案的SCI的类型可以是第二阶段SCI。

当保留的资源不存在时,或者当使用第一阶段SCI和第二阶段SCI执行第一数据的重传操作时,启动第二重传方案的SCI的类型可以是第一阶段SCI。

当第一重传方案是HARQ重传方案时,第二重传方案可以是盲重传方案(blindretransmission scheme),当第一重传方案是盲重传方案时,第二重传方案可以是HARQ重传方案,当使用HARQ重传方案时,可以发送HARQ反馈,并且当使用盲重传方案时,可以不发送HARQ反馈。

根据用于实现该目的的本公开的第二示例性实施例,一种发送终端的操作方法可以包括:基于第一重传方案将第一数据发送到接收终端;将侧链路控制信息(SCI)发送到接收终端,SCI包括指示是否重用为第一重传方案保留的资源的指示符;以及基于由SCI启动的第二重传方案将第二数据发送到接收终端,其中根据是否发送混合自动重传请求(HARQ)反馈来区分第一重传方案和第二重传方案。

当指示符指示重用保留的资源时,可以使用保留的资源来执行根据第二重传方案的重传过程,并且当指示符不指示保留的资源重用时,可以使用由SCI分配的资源来执行根据第二重传方案的重传过程。

指示符可以指示保留的资源的位置以及保留的资源的重用。

SCI可以包括第一阶段SCI和第二阶段SCI,并且指示符可以由包括在第一阶段SCI中的反向指示符表示。

根据用于实现该目的的本公开的第三示例性实施例,一种接收终端的操作方法可以包括:基于第一重传方案从发送终端接收第一数据;从发送终端接收侧链路控制信息(SCI),SCI包括指示重传方案的切换的第一指示符和指示是否重用为第一重传方案保留的资源的第二指示符;以及基于由SCI启动的第二重传方案从发送终端接收第二数据,其中根据是否发送混合自动重传请求(HARQ)反馈来区分第一重传方案和第二重传方案。

当第二指示符指示重用保留的资源时,可以通过保留的资源接收第二数据,并且当第二指示符不指示重用保留的资源时,可以通过由SCI分配的资源接收第二数据。

SCI可以包括第一阶段SCI和第二阶段SCI,当第一指示符包括在第一阶段SCI中时,第二指示符可以包括在第二阶段SCI中,并且当第一指示符包括在第二阶段SCI中时,第二指示符可以包括在第一阶段SCI中。

第一指示符可以由包括在第二阶段SCI中的HARQ反馈启用/禁用指示符表示,并且第二指示符可以由包括在第一阶段SCI中的反向指示符表示。

当使用第二阶段SCI而不使用第一阶段SCI来执行第一数据的重传操作时,启动第二重传方案的SCI的类型可以是第二阶段SCI。

当保留的资源不存在时,或者当使用第一阶段SCI和第二阶段SCI执行第一数据的重传操作时,启动第二重传方案的SCI的类型可以是第一阶段SCI。

【有益效果】

根据本公开,发送终端可以基于第一重传方案将数据发送到接收终端,将第一重传方案切换到第二重传方案,并且基于第二重传方案将数据发送到接收终端。特别地,发送终端可以发送SCI,SCI指示重传方案的切换和/或保留的资源的重用或释放。在这种情况下,可以根据SCI的指示将第一重传方案切换到第二重传方案,并且在根据第二重传方案的重传过程中,可以使用为第一重传方案保留的资源或新资源。因此,在侧链路通信中,可以有效地切换重传方案,并且可以提高通信系统的性能。

附图说明

图1是示出V2X通信场景的概念图。

图2是示出蜂窝通信系统的示例性实施例的概念图。

图3是示出构成蜂窝通信系统的通信节点的示例性实施例的概念图。

图4是示出执行侧链路通信的UE的用户平面协议栈的示例性实施例的框图。

图5是示出执行侧链路通信的UE的控制平面协议栈的第一示例性实施例的框图。

图6是示出执行侧链路通信的UE的控制平面协议栈的第二示例性实施例的框图。

图7是示出根据侧链路通信中的HARQ重传方案的重传方法的第一示例性实施例的序列图。

图8是示出根据侧链路通信中的盲重传方案的重传方法的第一示例性实施例的序列图。

图9是示出侧链路通信中的重传方案切换方法的第一示例性实施例的序列图。

图10是示出侧链路通信中的重传方案切换方法的第二示例性实施例的序列图。

图11是示出侧链路通信中的重传方案切换方法的第三示例性实施例的序列图。

图12是示出侧链路通信中的重传方案切换方法的第四示例性实施例的序列图。

图13是示出侧链路通信中的重传方案切换方法的第五示例性实施例的序列图。

具体实施方式

虽然本发明可以以各种方式进行修改并采用各种替换形式,但具体实施例在附图中以示例的方式被示出,并进行了详细描述。然而,应当理解,本说明书并不旨在将本发明限制于特定实施例,而是本发明将涵盖落入本发明的精神和范围内的所有修改方案、等同方案和替换方案。

虽然本文中可以使用术语“第一”、“第二”等来指代各种元件,但这些元件不应被解释为受这些术语的限制。这些术语仅用于区分一个元件和另一元件。例如,在不脱离本公开的范围的情况下,第一元件可以被称为第二元件,第二元件也可以被称为第一元件。术语“和/或”包括一个或多个相关列出项目的任意和所有组合。

在本申请的实施例中,“A和B中的至少一个”可以表示“A或B中的至少一个”或“A和B中的一个以上的组合中的至少一个”。并且,本申请中的实施例中,“A和B中的一个以上”可以表示“A或B中的一个以上”或“A和B中的一个以上的组合中的一个以上”。

应当理解,当元件被称为“连接”或“联接”到另一元件时,该元件可以直接连接或联接到另一元件,或者可以存在中间元件。另一方面,当一个元件被称为“直接连接”或“直接联接”到另一元件时,则不存在中间元件。

本文中使用的术语仅用于描述特定实施例,而不旨在限制本发明的实施例。如本文中所使用的,除非上下文另有明确指示,否则单数形式“一”、“一个”和“该”也包括复数形式。将进一步理解,术语“包括”、“包括有”、“包含”和/或“包含有”在本文中使用时具体指定存在所述的特征、数量、步骤、操作、元件、部件和/或其组合,但不排除存在或添加一个或多个其他特征、数量、步骤、操作、元件、部件和/或其组合。

除非另有定义,否则本文中使用的包括技术和科学术语的所有术语的含义与本发明所属领域的技术人员通常所理解的含义相同。将进一步理解,在通常使用的词典中定义的术语应被解释为具有与在现有技术的背景中的含义相同的含义,并且除非在本文中被明确定义,否则它们不应被解释成具有理想化或过度正式的含义。

在下文中,将参照附图详细描述本发明的优选示例性实施例。在描述本发明时,为了便于整体理解,在对附图的整个描述中,相同的数字指代相同的元件,并且将省略对相同元件的重复描述。

图1是示出车用无线通信技术(Vehicle to everything,V2X)通信场景的概念图。

如图1所示,V2X通信可以包括车辆到车辆(V2V)通信、车辆到基础设施(V2I)通信、车辆到行人(V2P)通信、车辆到网络(V2N)通信等。V2X通信可以由蜂窝通信系统(例如,蜂窝通信系统140)支持,并且由蜂窝通信系统130支持的V2X通信可以被称为“蜂窝-V2X(C-V2X)通信”。此处,蜂窝通信系统140可以包括4G通信系统(例如,LTE通信系统或LTE-A通信系统)、5G通信系统(如,NR通信系统)等。

V2V通信可以包括第一车辆100(例如,位于第一车辆100中的通信节点)和第二车辆110(例如,位于车辆110中的通信节点)之间的通信。可以通过V2V通信在第一车辆100和车辆110之间交换诸如速度(velocity)、方向(heading)、时间(time)、位置(position)等的各种驾驶信息。例如,可以基于通过V2V通信交换的驾驶信息来支持自动驾驶(例如,列队行驶(platooning))。由蜂窝通信系统140支持的V2V通信可以基于“侧链路”通信技术(例如,ProSe和D2D通信技术等)来执行。在这种情况下,第一车辆100与车辆110之间的通信可以使用在第一车辆100和第二车辆110之间建立的至少一个侧链路信道来执行。

V2I通信可以包括第一车辆100(例如,位于第一车辆100中的通信节点)和位于路边的基础设施(例如,路边单元(road side unit,RSU))120之间的通信。基础设施120还可以包括位于路边的交通信号灯或路灯。例如,当执行V2I通信时,可以在位于第一车辆100中的通信节点和位于交通信号灯中的通信节点之间执行通信。可以通过V2I通信在第一车辆100和基础设施120之间交换交通信息、驾驶信息等。由蜂窝通信系统140支持的V2I通信也可以基于侧链路通信技术(例如,ProSe和D2D通信技术等)来执行。在这种情况下,第一车辆100和基础设施120之间的通信可以使用在第一车辆100和基础设施120之间建立的至少一个侧链路信道来执行。

V2P通信可以包括第一车辆100(例如,位于第一车辆100中的通信节点)和人员130(例如,人员130携带的通信节点)之间的通信。可以通过V2P通信在第一车辆100和人员130之间交换第一车辆100的驾驶信息和人员130的移动信息,例如速度、方向、时间、位置等。位于第一车辆100中的通信节点或人员130携带的通信节点可以通过基于获得的驾驶信息和移动信息判断危险情况来产生指示危险的警报。由蜂窝通信系统140支持的V2P通信可以基于侧链路通信技术(例如,ProSe和D2D通信技术等)来执行。在这种情况下,位于第一车辆100中的通信节点和人员130携带的通信节点之间的通信可以使用在通信节点之间建立的至少一个侧链路信道来执行。

V2N通信可以是第一车辆100(例如,位于第一车辆100中的通信节点)与通过蜂窝通信系统140连接的服务器之间的通信。V2N通信可以基于4G通信技术(例如LTE或LTE-A)或5G通信技术(例如NR)来执行。此外,V2N通信可以基于在电气和电子工程师协会(Instituteof Electrical and Electronics Engineers,IEEE)802.11中定义的车辆环境中的无线接入(Wireless Access in Vehicular Environments,WAVE)通信技术或无线局域网(Wireless Local Area Network,WLAN)通信技术,或者在IEEE 802.15中定义的无线个人区域网(Wireless Personal Area Network,WPAN)通信技术来执行。

另一方面,支持V2X通信的蜂窝通信系统140可以配置如下。

图2是示出蜂窝通信系统的示例性实施例的概念图。

如图2所示,蜂窝通信系统可以包括接入网络(access network)、核心网络(corenetwork)等。接入网络可以包括基站(base station)210、中继器(relay)220、用户设备(User Equipment,UE)231至236等。UE 231至236可以包括位于图1的第一车辆100和第二车辆110中的通信节点、位于图1中的基础设施120中的通信节点、图1的人员130携带的通信节点等。当蜂窝通信系统支持4G通信技术时,核心网络可以包括服务网关(serving-gateway,S-GW)250、分组数据网络(packet data network,PDN)网关(P-GW)260、移动性管理实体(mobility management entity,MME)270等。

当蜂窝通信系统支持5G通信技术时,核心网络可以包括用户平面功能(userplane function,UPF)250、会话管理功能(session management function,SMF)260、接入和移动性管理功能(access and mobility management function,AMF)270等。可选地,当蜂窝通信系统在非独立(Non-Stand Alone,NSA)模式下操作时,由S-GW 250、P-GW 260和MME 270构成的核心网络既可以支持4G通信技术也可以支持5G通信技术,并且由UPF 250、SMF 260和AMF 270构成的核心网络既可以支持4G通信技术也可以支持5G通信技术。

此外,当蜂窝通信系统支持网络切片(slicing)技术时,核心网络可以被划分为多个逻辑网络切片。例如,可以配置支持V2X通信的网络切片(例如,V2V网络切片、V2I网络切片、V2P网络切片、V2N网络切片等),并且可以通过配置在核心网络中的V2X网络切片来支持V2X通信。

构成蜂窝通信系统的通信节点(例如,基站、中继器、UE、S-GW、P-GW、MME、UPF、SMF、AMF等)可以通过使用码分多址(code division multiple access,CDMA)技术、时分多址(time division multiple access,TDMA)技术、频分多址(frequency division multipleaccess,FDMA)技术、正交频分复用(OFDM)技术、滤波OFDM技术、正交频分多址(orthogonalfrequency division multiplexing,OFDMA)技术、单载波FDMA(single carrier FDMA,SC-FDMA)技术、非正交多址(non-orthogonal multiple access,NOMA)技术、广义频分复用(generalized frequency division multiplexing,GFDM)技术、滤波器组多载波(filterbank multi-carrier,FBMC)技术、通用滤波多载波(universal filtered multi-carrier,UFMC)技术和空间分割多址(space division multiple access,SDMA)技术中的至少一种通信技术执行通信。

构成蜂窝通信系统的通信节点(例如,基站、中继器、UE、S-GW、P-GW、MME、UPF、SMF、AMF等)可以如下配置。

图3是示出构成蜂窝通信系统的通信节点的示例性实施例的概念图。

如图3所示,通信节点300可以包括至少一个处理器310、存储器320和连接到网络以执行通信的收发器330。此外,通信节点300可以进一步包括输入界面装置340、输出界面装置350、存储装置360等。包括在通信节点300中的每个组件可以通过总线370连接并相互通信。

然而,包括在通信节点300中的每个组件可以通过单独的接口或单独的总线而不是公共总线370连接到处理器310。例如,处理器310可以通过专用接口连接到存储器320、收发器330、输入界面装置340、输出界面装置350和存储装置360中的至少一个。

处理器310可以执行存储在存储器320和存储装置360中的至少一个中的至少一个指令。处理器310可以指中央处理单元(central processing unit,CPU)、图形处理单元(graphics processing unit,GPU)或执行根据本公开的实施例的方法的专用处理器。存储器320和存储装置360中的每一个可以包括易失性存储介质和非易失性存储介质中的至少一种。例如,存储器320可以包括只读存储器(read only memory,ROM)和随机存取存储器(random access memory,RAM)中的至少一种。

再次参照图2,在通信系统中,基站210可以形成宏小区(macro cell)或小小区(small cell),并且可以通过理想回程或非理想回程连接到核心网络。基站210可以将从核心网络接收的信号发送到UE 231至236和中继器220,并且可以将从UE 231至236和中继器220接收的信号发送到核心网络。UE 231、232、234、235和236可以属于基站210的小区覆盖范围(cell coverage)。UE 231、232、234、235和236可以通过执行与基站210的连接建立(connection establishment)过程而连接到基站210。UE 231、232、234、235和236可以在连接到基站210之后与基站210通信。

中继器220可以连接到基站210,并且可以中继基站210与UE 233和234之间的通信。也就是说,中继器220可以将从基站210接收的信号发送到UE 233和234,并且可以将从UE 233和234接收的信号发送到基站210。UE 234可以属于基站210的小区覆盖范围和中继器220的小区覆盖范围两者,并且UE 233可以属于中继器220的小区覆盖范围。也就是说,UE233可以位于基站210的小区覆盖范围之外。UE 233和234可以通过执行与中继器220的连接建立过程而连接到中继器220。UE233和234可以在连接到中继器220之后与中继器220通信。

基站210和中继器220可以支持多输入多输出(MIMO)技术(例如,单用户(singleuser,SU)-MIMO、多用户(multi-user,MU)-MIMO和大规模(massive)MIMO等)、协调多点(coordinated multipoint,CoMP)通信技术、载波聚合(Carrier Aggregation,CA)通信技术、非许可频带(unlicensed band)通信技术(例如许可辅助接入(Licensed AssistedAccess,LAA)、增强型LAA(enhanced LAA,eLAA)等)、侧链路通信技术(例如,ProSe通信技术、D2D通信技术)等。UE 231、232、235和236可以执行与基站210相对应的操作以及由基站210支持的操作。UE 233和234可以执行与中继器220相对应的操作以及由中继器220支持的操作。

这里,基站210可以被称为节点B(Node B,NB)、演进节点B(evolved Node B,eNB)、基站收发站(base transceiver station,BTS)、无线电远程头(radio remote head,RRH)、发送接收点(transmission reception point,TRP)、无线电单元(radio unit,RU)、路边单元(roadside unit,RSU)、无线电收发器(radio transceiver)、接入点(access point)、接入节点(node)等。中继器220可以被称为小基站、中继节点等。UE231至236中的每一个可以被称为终端(terminal)、接入终端(access terminal)、移动终端(mobile terminal)、站(station)、订户站(subscriber station)、移动站(mobile station)、便携式订户站(portable subscriber station)、节点、设备、车载单元(on-broad unit,OBU)等。

另一方面,UE 235和236之间的通信可以基于侧链路通信技术来执行。侧链路通信可以基于一对一(one-to-one)方案或一对多(one-to-many)方案来执行。当使用侧链路通信技术执行V2V通信时,UE 235可以是位于图1的第一车辆100中的通信节点,UE 236可以是位于图1的第二车辆110中的通信节点。当使用侧链路通信技术执行V2I通信时,UE235可以是位于图1的第一车辆100中的通信节点,UE 236可以是位于1的基础设施120中的通信节点。当使用侧链路通信技术执行V2P通信时,UE 235可以是位于图1的第一车辆100中的通信节点,UE 236可以是图1的人员130携带的通信节点。

根据参与侧链路通信的UE(例如,UE 235和236)的位置,应用侧链路通信的场景可以如下表1所示进行分类。例如,图2中所示的UE235和236之间的侧链路通信的场景可以是侧链路通信场景C。

【表1】

另一方面,执行侧链路通信的UE(例如,UE 235和236)的用户平面协议栈(userplane protocol stack)可以配置如下。

图4是示出执行侧链路通信的UE的用户平面协议栈的示例性实施例的框图。

如图4所示,左侧的UE可以是图2中所示的UE 235,右侧的UE可以是在图2中所示的UE 236。UE 235和236之间的侧链路通信的场景可以是表1的侧链路通信场景A至D之一。UE235和236中的每一个的用户平面协议栈可以包括物理(Physical,PHY)层、媒体访问控制(Medium Access Control,MAC)层、无线电链路控制(Radio Link Control,RLC)层和分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。

UE 235和236之间的侧链路通信可以使用PC5接口(例如,PC5-U接口)来执行。第2层标识符(ID)(例如,源(source)第二层ID、目标(destination)第2层ID)可以用于侧链路通信,并且第2层ID可以是为V2X通信(例如,V2X服务)配置的ID。此外,在侧链路通信中,可以支持混合自动重传请求(hybrid automatic repeat request,HARQ)反馈操作,并且可以支持RLC确认模式(RLC acknowledged mode,RLC AM)或RLC未确认模式(RLCunacknowledged mode,RLC UM)。

另一方面,执行侧链路通信的UE(例如,UE 235和236)的控制平面协议栈可以配置如下。

图5是示出执行侧链路通信的UE的控制平面协议栈的第一示例性实施例的框图,图6是示出执行侧链路通信的UE的控制平面协议栈的第二示例性实施例的框图。

如图5和图6所示,左侧的UE可以是图2中所示的UE 235,右侧的UE可以是在图2中所述的UE 236。UE 235和236之间的侧链路通信的场景可以是表1的侧链路通信场景A至D之一。图5中所示的控制平面协议栈可以是用于发送和接收广播信息(例如,物理侧链路广播信道(Physical Sidelink Broadcast Channel,PSBCH))的控制平面协议栈。

图5所示的控制平面协议栈可以包括PHY层、MAC层、RLC层和无线资源控制(radioresource control,RRC)层。UE 235和236之间的侧链路通信可以使用PC5接口(例如PC5-C接口)来执行。图6中所示的控制平面协议栈可以是用于一对一方案侧链路通信的控制平面协议栈。图6所示的控制平面协议栈可以包括PHY层、MAC层、RLC层、PDCP层和PC5信令(signaling)协议层。

另一方面,在UE 235和236之间的侧链路通信中使用的信道可以包括物理侧链路共享信道(Physical Sidelink Shared Channel,PSSCH)、物理侧链路控制信道(PhysicalSidelink Control Channel,PSCCH)、物理侧链路发现信道(Physical SidelinkDiscovery Channel,PSDCH)和物理侧链路广播信道(PSBCH)。PSSCH可以用于发送和接收侧链路数据,并且可以通过高层信令在UE(例如,UE 235或236)中配置。PSCCH可以用于发送和接收侧链路控制信息(SCI),并且可以通过高层信令在UE(例如,UE 235或236)中配置。

PSDCH可以用于发现过程。例如,发现信号可以通过PSDCH发送。PSBCH可以用于发送和接收广播信息(例如,系统信息)。此外,解调参考信号(demodulation referencesignal,DMRS)、同步信号(synchronization signal)等可以用于UE 235和236之间的侧链路通信。同步信号可以包括主侧链路同步信号(primary sidelink synchronizationsignal,PSSS)和辅侧链路同步信号(secondary sidelink synchronization signal,SSSS)。

另一方面,侧链路发送模式(transmission mode,TM)可以被分类为如下表2中所示的侧链路TM 1至TM4。

【表2】

当支持侧链路TM 3或4时,UE 235和236中的每一个可以使用由基站210配置的资源池(resource pool)来执行侧链路通信。可以为侧链路控制信息和侧链路数据中的每一个配置资源池。

可以基于RRC信令过程(例如,专用RRC信令过程、广播RRC信令过程)来配置用于侧链路控制信息的资源池。用于接收侧链路控制信息的资源池可以通过广播RRC信令过程来配置。当支持侧链路TM 3时,用于发送侧链路控制信息的资源池可以通过专用RRC信令过程来配置。在这种情况下,可以通过由基站210在通过专用RRC信令过程配置的资源池内调度的资源来发送侧链路控制信息。当支持侧链路TM 4时,用于发送侧链路控制信息的资源池可以通过专用RRC信令过程或广播RRC信令过程来配置。在这种情况下,可以通过由UE(例如,UE 235或236)在通过专用RRC信令过程或广播RRC信令过程配置的资源池内自主选择的资源来发送侧链路控制信息。

当支持侧链路TM 3时,可以不配置用于发送和接收侧链路数据的资源池。在这种情况下,侧链路数据可以通过由基站210调度的资源来发送和接收。当支持侧链路TM 4时,用于发送和接收侧链路数据的资源池可以通过专用RRC信令过程或广播RRC信令过程来配置。在这种情况下,侧链路数据可以通过由UE(例如,UE 235或236)在由专用RRC信令过程或广播RRC信令过程配置的资源池内自主选择的资源来发送和接收。

在下文中,将描述侧链路通信方法。即使当描述了要在通信节点中的第一通信节点执行的方法(例如,信号的发送或接收)时,相应的第二通信节点也可以执行与在第一通信节点执行的方法相对应的方法(如,信号的接收或发送)。也就是说,当描述UE#1(例如,车辆#1)的操作时,与其相对应的UE#2(例如,车辆#2)可以执行与UE#1的操作相对应的操作。相反,当描述UE#2的操作时,相应的UE#1可以执行与UE#2的操作相对应的操作。在下面描述的示例性实施例中,车辆的操作可以是对位于车辆中的通信节点的操作。

在示例性实施例中,信令可以是高层信令、MAC信令和物理(PHY)信令中的一个或两个以上的组合。用于高层信令的消息可以称为“高层消息”或“高层信令消息”。用于MAC信令的消息可以称为“MAC消息”或“MAC信令消息”。用于PHY信令的消息可以称为“PHY消息”或“PHY信令消息”。高层信令可以指发送和接收系统信息(例如,主信息块(masterinformation block,MIB)、系统信息块(system information block,SIB))和/或RRC消息的操作。MAC信令可以指发送和接收MAC控制元素(control element,CE)的操作。PHY信令可以指发送和接收控制信息(例如,下行链路控制信息(downlink control information,DCI)、上行链路控制信息(uplink control information,UCI)或SCI)的操作。

侧链路信号可以是用于侧链路通信的同步信号和参考信号。例如,同步信号可以是同步信号/物理广播信道(synchronization signal/physical broadcast channel,SS/PBCH)块、侧链路同步信号(sidelink synchronization signal,SLSS)、主侧链路同步信号(primary sidelink synchronization signal,PSSS)、辅助链同步信号(SSSS)等。参考信号可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS)、DM-RS、相位跟踪参考信号(phase tracking-reference signal,PT-RS)、小区特定参考信号(cell-specific reference signal,CRS)、探测参考信号(sounding referencesignal,SRS)、发现参考信号(discovery reference signal,DRS)等。

侧链路信道可以是PSSCH、PSCCH、PSDCH、PSBCH、物理侧链路反馈信道(physicalsidelink feedback channel,PSFCH)等。此外,侧链路信道可以指包括映射到相应侧链路信道中的特定资源的侧链路信号的侧链路信道。侧链路通信可以支持广播服务、多播(multicast)服务、群播服务和单播(unicast)服务。

可以基于单SCI方案或多SCI方案来执行侧链路通信。当使用单SCI方案时,可以基于一个SCI(例如,1

第一阶段SCI可以包括优先级(priority)信息、频率资源分配(frequencyresource assignment)信息、时间资源分配信息、资源预留时段(resource reservationperiod)信息、解调参考信号(DMRS)模式信息、第二阶段SCI格式信息、贝塔偏置指示(beta_offset indicator)、DMRS端口的数量以及调制和编码方案(modulation and codingscheme,MCS)信息中的一个或多个信息元素。第二阶段SCI可以包括HARQ处理器标识符(ID)、冗余版本(redundancy version,RV)、源ID、目标ID、CSI请求信息、区域ID和通信范围要求(communication range requirement)中的一个或多个信息元素。

另一方面,可以在侧链路通信中重传数据。可以基于HARQ重传方案或盲(blind)重传方案来重传数据(例如,侧链路(SL)数据)。HARQ重传方案可以被称为第一重传方案,盲重传方案可以被称为第二重传方案。可选地,HARQ重传方案可以被称为第二重传方案,盲重传方案可以被称为第一重传方案。当使用HARQ重传方案时,当发生数据的否定确认(NACK)或不连续发送(DTX)时,可以重传数据。使用HARQ重传方案的情况可以意味着HARQ反馈被启用。在使用盲重传方案的情况下,无论数据的HARQ反馈(例如,NACK或DTX)如何都可以重传数据。使用盲重传方案的情况可能意味着HARQ反馈被禁用。

侧链路通信可以支持HARQ重传方案和/或盲重传方案。例如,HARQ重传方案可以用于侧链路通信,并且当满足预设定条件(例如,触发条件)时,重传方案可以从HARQ重传方案切换到盲重传方案。可选地,盲重传方案可以用于侧链路通信,并且当满足预设定条件(例如,触发条件)时,重传方案可以从盲重传方案切换到HARQ重传方案。可以以数据、发送块(TB)、代码块组(CBG)或HARQ过程为单位来执行重传方案的切换。

图7是示出在侧链路通信中根据HARQ重传方案的重传方法的第一示例性实施例的序列图。

如图7所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图7所示的接收终端可以是一个或多个接收终端。也就是说,图7所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在步骤S701之前,可以通过系统信息和/或高层信令(例如,RRC消息和/或MAC CE)将侧链路通信的配置信息(例如,HARQ重传方案的配置信息)发送到发送终端和/或接收终端。发送终端可以通过PSCCH向接收终端发送第一阶段SCI(S701)。接收终端可以从发送终端接收第一阶段SCI,并且可以识别包括在第一阶段SCI中的信息元素。发送终端可以通过PSSCH向接收终端发送第二阶段SCI(例如,与在步骤S701中发送的第一阶段SCI相关联的第二阶段SCI)和数据(S702)。接收终端可以从发送终端接收第二阶段SCI,并且可以识别包括在第二阶段SCI中的信息元素。接收终端可以基于第一阶段SCI和/或第二阶段SCI执行数据接收操作。

当数据接收失败(例如,数据的解码失败)时,接收终端可以通过PSFCH向发送终端发送数据的NACK(S703)。当从接收终端接收到NACK时,发送终端可以确定接收终端中的数据接收失败。在这种情况下,发送终端可以向接收终端重传数据(S704)。在步骤S704中发送的第一阶段SCI可以是用于重传的SCI。也就是说,第一阶段SCI可以包括用于重传数据的调度信息。发送终端可以通过PSSCH向接收终端发送第二阶段SCI和数据(例如,重传数据)(S705)。可选地,可以在没有第一阶段SCI和第二阶段SCI或者没有第二阶段SCI的情况下发送重传数据。在步骤S704和步骤S705中,接收终端可以执行重传数据的接收操作。例如,接收终端可以接收第一阶段SCI和第二阶段SCI,并且可以基于接收到的SCI接收重传数据。可选地,接收终端可以在不接收第一阶段SCI和第二阶段SCI或者不接收第二阶段SCI的情况下接收重传数据。

在示例性实施例中,第二阶段SCI和数据可以通过同一PSSCH发送。可选地,第二阶段SCI和数据可以通过不同的PSSCH发送。可选地,第二阶段SCI可以通过PSCCH发送,并且数据可以通过PSSCH发送。当使用单SCI方案时,可以基于单个SCI(例如,第一阶段SCI)而不使用第二阶段SCI来执行根据HARQ重传方案的重传过程。在这种情况下,重传数据可以与单个SCI而不是第二阶段SCI一起被发送。可选地,数据可以在没有第一阶段SCI(例如,单个SCI)的情况下被重传。在示例性实施例中,单个SCI可以指应用单SCI方案时使用的SCI。

图8是示出根据侧链路通信中的盲重传方案的重传方法的第一示例性实施例的序列图。

如图8所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图8所示的接收终端可以是一个或多个接收终端。也就是说,图8所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在步骤S801之前,可以通过系统信息和/或高层信令(例如,RRC消息和/或MAC CE)向发送终端和/或接收终端发送侧链路通信的配置信息(例如,盲重传方案的配置信息)。发送终端可以通过PSCCH向接收终端发送第一阶段SCI(S801)。接收终端可以从发送终端接收第一阶段SCI,并且可以识别包括在第一阶段SCI中的信息元素。发送终端可以通过PSSCH向接收终端发送第二阶段SCI(例如,与在步骤S801中发送的第一阶段SCI相关联的第二阶段SCI)和数据(S802)。接收终端可以从发送终端接收第二阶段SCI,并且可以识别包括在第二阶段SCI中的信息元素。接收终端可以基于第一阶段SCI和/或第二阶段SCI执行数据接收操作。

在发送第一阶段SCI和第二阶段SCI之后,发送终端可以重传数据(S803)。发送终端可以基于由系统信息、高层信令、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来执行重复的数据发送。此外,接收终端可以基于由系统信息、高层信令、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来执行重传数据的接收操作。

在步骤S803中,第二阶段SCI和数据(例如,重传数据)可以通过PSSCH被发送到接收终端。可选地,在步骤S803中,数据可以在没有第二阶段SCI的情况下被重传。

在示例性实施例中,第二阶段SCI和数据可以通过同一PSSCH被发送。可选地,第二阶段SCI和数据可以通过不同的PSSCH被发送。可选地,第二阶段SCI可以通过PSCCH被发送,并且数据可以通过PSSCH被发送。当使用单SCI方案时,可以在没有第二阶段SCI的情况下基于单个SCI(例如,第一阶段SCI)来执行根据盲重传方案的重传过程。在这种情况下,重传数据可以与单个SCI而不是第二阶段SCI一起被发送。可选地,数据可以在没有第一阶段SCI(例如,单个SCI)的情况下被重传。

图9是示出侧链路通信中的重传方案切换方法的第一示例性实施例的序列图。

如图9所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图9所示的接收终端可以是一个或多个接收终端。也就是说,图9所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在侧链路通信中,重传方案可以从HARQ重传方案切换到盲重传方案。在步骤S901中,可以在发送终端和接收终端之间执行根据HARQ重传方案的重传过程。步骤S901可以包括图7所示的步骤S701至步骤S705。当在步骤S901中针对同一数据(例如,TB或CBG)出现n个NACK时,或者当在步骤S901中针对同一数据(例如TB或CBG)的NACK的数量大于或等于阈值时,发送终端可以向接收终端发送指示切换重传方案的重传切换指示符(S902)。可选地,无论上述条件如何,重传切换指示符都可以被发送。n可以是自然数。可以通过系统信息、RRC消息、MAC CE或控制信息(例如,DCI、SCI)中的至少一个用信号将阈值通知到发送终端和/或接收终端。

重传切换指示符可以指示从HARQ重传方案切换到盲重传方案。重传切换指示符的大小可以是1位或更大。重传切换指示符可以包括在第二阶段SCI中。当存在可用于盲重传方案的资源时,重传切换指示符可以被包括在第二阶段SCI中而不是第一阶段SCI中。在这种情况下,可以在步骤S902中发送重传数据和包括重传切换指示符的第二阶段SCI。盲重传相关信息可以通过第二阶段SCI发送。当使用单SCI方案时,重传切换指示符可以包括在单个SCI(例如,第一阶段SCI)中而不是第二阶段SCI中。在步骤S902中发送的第二阶段SCI可以触发或启动基于盲重传方案的重传过程。

在步骤S902中,接收终端可以从发送终端接收重传切换指示符。当从发送终端接收到重传切换指示符时,接收终端可以确定侧链路通信的重传方案从HARQ重传方案切换到盲重传方案。因此,接收终端可以基于盲重传方案接收重传数据。

发送终端可以基于由系统信息、RRC消息、MAC CE、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来重传数据(S903)。接收终端可以基于由系统信息、RRC消息、MACCE、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来执行重传数据的接收操作。用于第一盲重传的资源可以是由先前SCI(例如,步骤S901中的第一阶段SCI)保留的资源。例如,用于第一盲重传的资源可以是为HARQ重传保留的资源。

在根据盲重传方案的重传过程中,数据可以与第二阶段SCI一起被发送。可选地,在根据盲重传方案的第一次重传中(例如,在切换重传方案时)数据可以与第二阶段SCI一起被发送,并且从根据盲重传方案的第二次重传开始,数据可以在没有第二阶段SCI的情况下被发送。在根据盲重传方案的重传过程中,数据可以被重传预设次数。

图10是示出侧链路通信中的重传方案切换方法的第二示例性实施例的序列图。

如图10所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图10所示的接收终端可以是一个或多个接收终端。也就是说,图10所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在侧链路通信中,重传方案可以从HARQ重传方案切换到盲重传方案。在步骤S1001中,可以在发送终端和接收终端之间执行根据HARQ重传方案的重传过程。步骤S1001可以包括图7所示的步骤S701至S705。也就是说,步骤S1001可以与图9所示的步骤S901相同。当在步骤S1001中针对同一数据(例如,TB或CBG)出现n个NACK时,或者当在步骤S1101中针对同一数据(例如,TB或CBG)的NACK的数量大于或等于阈值时,发送终端可以向接收终端发送指示切换重传方案的重传切换指示符(S1002)。无论上述条件如何,重传切换指示符都可以被发送。n可以是自然数。可以通过系统信息、RRC消息、MAC CE或控制信息(例如,DCI、SCI)中的至少一个用信号将阈值通知到发送终端和/或接收终端。

重传切换指示符可以指示从HARQ重传方案切换到盲重传方案。重传切换指示符的大小可以是1位或更大。重传切换指示符可以包括在第一阶段SCI中。当不存在可用于盲重传方案的资源时,重传切换指示符可以被包括在第一阶段SCI中而不是第二阶段SCI中。可选地,重传切换指示符可以包括在第二阶段SCI中。之后,可以使用由在步骤S1002中发送的第一阶段SCI分配的资源(例如,保留的资源)来执行根据盲重传方案的重传过程。可选地,当存在可用于盲重传方案的资源时,重传切换指示符也可以包括在第一阶段SCI中而不是第二阶段SCI中。在这种情况下,在步骤S1002中发送的第一阶段SCI可以指示释放(release)用于在步骤S1001中配置的HARQ重传方案的资源。也就是说,用于在步骤S1001中配置的HARQ重传方案的资源可以通过在步骤S1002中发送的第一阶段SCI被用于盲重传方案的资源覆盖(override)。可选地,在步骤S1002中发送的第一阶段SCI可以用于配置新的盲重传资源。

根据盲重传方案的重传过程可以由在步骤S1002中发送的第一阶段SCI触发或启动。在步骤S1002中,接收终端可以从发送终端接收重传切换指示符。当从发送终端接收到重传切换指示符时,接收终端可以确定侧链路通信的重传方案从HARQ重传方案切换到盲重传方案。发送终端可以基于由系统信息、RRC消息、MAC CE、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来重传数据(S1003和S1004)。接收终端可以基于由系统信息、RRC消息、MAC CE、第一阶段SCI和/或第二阶段SCI配置的盲重传相关信息来执行重传数据的接收操作。这里,重传切换指示符可以通过第二阶段SCI来发送。

在根据盲重传方案的重传过程中,数据可以与第二阶段SCI一起被发送。可选地,在根据盲重传方案的第一次重传中(例如,在切换重传方案时)数据可以与第二阶段SCI一起被发送,并且从根据盲重传方案的第二次重传开始,数据可以在没有第二阶段SCI的情况下被发送。在根据盲重传方案的重传过程中,数据可以被重传预设次数。

图11是示出侧链路通信中的重传方案切换方法的第三示例性实施例的序列图。

如图11所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是图2中所示的UE236。图11中所示的接收终端可以是一个或多个接收终端。也就是说,图11所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在侧链路通信中,重传方案可以从HARQ重传方案切换到盲重传方案。这里,可以使用单个SCI来执行侧链路通信。在步骤S1101中,可以在发送终端和接收终端之间执行根据HARQ重传方案的重传过程。步骤S1101可以包括图7所示的步骤S701至S705。也就是说,步骤S1101可以与图9所示的步骤S901相同。当在步骤S1101中针对同一数据(例如TB或CBG)出现n个NACK时,或者当在步骤S1001中针对同一数据(例如,TB或CBG)的NACK的数量大于或等于阈值时,发送终端可以向接收终端发送指示切换重传方案的重传切换指示符(S1102)。无论上述条件如何,重传切换指示符都可以被发送。n可以是自然数。可以通过系统信息、RRC消息、MAC CE和控制信息(例如,DCI、SCI)中的至少一个用信号将阈值通知到发送终端和/或接收终端。

重传切换指示符可以指示从HARQ重传方案切换到盲重传方案。重传切换指示符的大小可以是1位或更大。重传切换指示符可以包括在SCI(例如,单个SCI)中。此外,SCI可以包括盲重传相关信息(例如,用于数据重传的资源分配信息)。SCI可以触发或启动根据盲重传方案的重传过程。发送终端可以在发送包括重传切换指示符的SCI之后重传数据(S1103)。可以基于由系统信息、RRC消息、MAC CE和/或SCI配置的盲重传相关信息来重传数据。

接收终端可以从发送终端接收重传切换指示符。当从发送终端接收到重传切换指示符时,接收终端可以确定侧链路通信的重传方案从HARQ重传方案切换到盲重传方案。接收终端可以基于由系统信息、RRC消息、MAC CE和/或SCI配置的盲重传相关信息来执行重传数据的接收操作。

在根据盲重传方案的重传过程中,数据可以被重传预设次数。步骤S1104可以与步骤S1102相同或类似地执行,并且步骤S1105可以与步骤S1003相同或类似地执行。在根据盲重传方案的重传过程中,数据可以与SCI一起被发送。例如,数据可以在发送SCI之后被重传。可选地,在根据盲重传方案的第一次重传中(例如,在重传方案切换时)数据可以与SCI一起发送,并且从根据盲重传方案的第二次重传开始,数据可以在没有SCI的情况下被发送。

另一方面,当在图9至图11所示的示例性实施例中执行从HARQ重传方案到盲重传方案的切换时,重传方案可以按如下方式切换。

-通过包括重传切换指示符的第一阶段SCI切换重传方案

-通过包括重传切换指示符的第二阶段SCI切换重传方案

-通过包括重传切换指示符的第一阶段SCI和第二阶段SCI切换重传方案

-当使用单SCI方案时,通过包括重传切换指示符的单个SCI切换重传方案

指示在切换重传方案之前重用由SCI保留的资源(例如,调度资源)的指示符可以被附加地发送到接收终端。可选地,指示在切换重传方案之前释放由SCI保留的资源的指示符可以被附加地发送到接收终端。用于盲重传方案的新资源的资源保留信息(例如,调度信息、资源分配信息)可以通过SCI被发送。

重传切换指示符和资源重用/释放指示符可以包括在SCI(例如,第一阶段SCI、第二阶段SCI和/或SCI(即,单个SCI))中。也就是说,重传切换指示符和资源重用/释放指示符可以由SCI显式地指示。如下面的表3所示,重传切换指示符和资源重用/释放指示符可以被配置为2位。2位中的第一位可以是重传切换指示符,2位中的第二位可以是资源重用/释放指示符。

【表3】

根据表3设置为“10”的字段可以通过SCI发送。在这种情况下,上述字段(即,10)可以指示从HARQ重传方案切换到盲重传方案以及重用为先前的重传方案(即,HARQ重传方案)保留的资源。根据表3设置为“11”的字段可以通过SCI发送。在这种情况下,上述字段(即,11)可以指示从HARQ重传方案切换到盲重传方案以及释放为先前的重传方案(即,HARQ重传方案)保留的资源。释放保留的资源可能意味着保留的资源不被重用。

根据表3设置为“00”的字段可以通过SCI发送。在这种情况下,上述字段(即,00)可以指示从盲重传方案切换到HARQ重传方案以及重用为先前的重传方案(即,盲重传方案)保留的资源。根据表3设置为“01”的字段可以通过SCI发送。在这种情况下,上述字段(即,01)可以指示从盲重传方案切换到HARQ重传方案以及释放为先前的重传方案(即,盲重传方案)保留的资源。

可选地,在表3中,可以以切换位的形式配置重传切换(toggle)指示符。在这种情况下,设置为0的重传切换指示符可以指示保持先前的重传方案,并且设置为1的重传切换指示符可以指示切换重传方案。此外,在表3中,可以以切换位的形式配置资源重用/释放指示符。在这种情况下,设置为0的资源重用/释放指示符可以指示先前保留的资源未被释放,设置为1的资源重用和释放指示符可以指示先前保留的的资源被释放。

可以由SCI指示从HARQ重传方案切换到盲重传方案以及重用为先前的重传方案保留的资源。在这种情况下,当盲重传的数量大于为先前的重传方案保留的资源的数量时,指示切换到盲重传方案的SCI可以包括用于盲重传的附加资源的预留信息(例如,分配信息、调度信息)。可选地,在使用为先前的重传方案保留的最后资源的盲重传步骤中,包括用于盲重传的附加资源的保留信息的SCI可以被发送。在切换到盲重传方案之前保留的资源和为盲重传方案新保留的资源可以根据时间上的先后顺序来使用。

当盲重传的数量小于保留的资源的数量(例如,为先前的重传方案保留的资源的数量)时,其余的保留的资源可以不用于盲重传。在最后一个盲重传步骤中,指示释放保留的资源的SCI可以被发送。通过在盲重传过程中发送的SCI随时保留用于盲重传的附加资源。

资源重用/释放信息可以由指示保留的资源的索引的反向(backward)指示符来指示。SCI(例如,第一阶段SCI、第二阶段SCI和/或单个SCI)可以包括大小为1位的反向指示符,并且反向指示符可以如下面的表4所示地配置。

【表4】

反向指示符可以指示在当前侧链路发送之后是否存在使用保留的资源的附加侧链路发送。表4中定义的反向指示符可以包括在SCI中,而不是表3中定义的资源重用/释放指示符。设置为0的反向指示符可以指示在当前侧链路发送之后存在SL发送。也就是说,设置为0的反向指示符可以指示重用保留的资源。设置为1的反向指示符可以指示在当前侧链路发送之后不存在SL发送。也就是说,设置为1的反向指示符可以指示“没有保留的资源”或“释放保留的资源”。

可选地,反向指示符的大小可以是2位。在这种情况下,反向指示符可以指示三个保留的资源的相对位置。例如,具有2位的反向指示符可以如下面的表5所示地配置。

【表5】

设置为“11”的反向指示符可以指示保留的资源的释放。当从HARQ重传方案切换到盲重传方案被指示并且反向指示符被设置为00、01或10时,反向指示符可以指示重用由反向指示符指示的保留的资源。HARQ重传方案可以被切换到盲重传方案,保留的资源中的第一保留的资源可以用于HARQ重传方案,并且保留的资源中从第二保留的资源开始可以用于盲重传方案。在这种情况下,发送终端可以发送包括重传切换指示符和设置为01的反向指示符的SCI(例如,第一阶段SCI、第二阶段SCI和/或单个SCI)。可以使用与上述SCI相关联的资源来执行根据盲重传方案的重传过程。

HARQ重传方案可以被切换到盲重传方案,保留的资源中的第二保留的资源可以用于HARQ重传方案,并且保留的资源中从第三保留的资源开始可以被用于盲重传方案。在这种情况下,发送终端可以发送包括重传切换指示符和设置为10的反向指示符的SCI(例如,第一阶段SCI、第二阶段SCI和/或单个SCI)。可以使用与上述SCI相关联的资源来执行根据盲重传方案的重传过程。

为了释放为先前的重传方案保留的资源,发送终端可以发送包括设置为11的反向指示符的SCI。在接收到设置为11的反向指示符时,接收终端可以确定为先前的重传方案保留的资源被释放。保留的资源可以在发送包括设置为11的反向指示符的SCI或者通过与SCI相关联的数据资源进行重传之后被释放。

当HARQ重传方案被切换到盲重传方案时,由包括在第一SCI中的反向指示符指示的保留的资源以及相应的保留的资源之后的保留的资源均可以被重用。例如,当包括在第一SCI中的反向指示符被设置为01时,对应于01的第二保留的资源和在第二保留的资源之后的所有保留的资源可以被用于盲重传。

当HARQ重传方案被切换到盲重传方案并且包括在SCI(例如,第一SCI)中的反向指示符被设置为11时,到与SCI相关联(例如,由SCI调度)的数据资源为止可以被用于盲重传,并且与相应的SCI相关联的数据资源之后的保留的资源可以被释放。

当HARQ重传方案被切换到盲重传方案,并且包括在SCI(例如,第一SCI)中的反向指示符被设置为除11之外的值(例如,00、01或10)时,保留的资源可以被用于盲重传。当包括在SCI中的反向指示符被设置为11时,到与SCI相关联的数据资源为止可以被用于盲重传,并且与相应的SCI相关联的数据资源之后的保留的资源可以被释放。

可选地,可以释放包括设置为11的反向指示符的SCI之后的资源(例如,与SCI相关联的数据资源和相应数据资源之后的保留的资源)。当表3中定义的重传切换指示符在没有针对保留的资源的释放指示的情况下被发送时,这可能指示释放保留的资源。可选地,当为先前的重传方案保留的资源存在时,为先前的重传方案保留的资源可以被重用于当前的重传方案(例如,切换的重传方案)。

当如图9所示的示例性实施例那样仅使用第二阶段SCI来切换重传方案时,表3中定义的第一位(即,重传切换指示符)和表4或表5中定义的反向指示符的组合可以包括在第二阶段SCI中。在这种情况下,第二阶段SCI可以指示重用或释放保留的资源以及切换重传方案。可选地,当在没有第一阶段SCI的情况下切换重传方案时,为先前的重传方案保留的资源可以被重用。可选地,当为先前的重传方案保留的资源被重用时,可以在没有第一阶段SCI的情况下切换重传方案。在上述示例性实施例(例如,在没有第一阶段SCI的情况下切换重传方案的示例性实施例)中,第二阶段SCI可以不包括指示重用或释放保留的资源的信息。然而,重传切换指示符(例如,表3中定义的第一位)可以包括在第二阶段SCI中。SCI(例如,第一阶段SCI、第二阶段SCI和/或单个SCI)可以包括反向指示符而不包括重传切换指示符。在这种情况下,包括反向指示符的SCI可以被解译为指示切换重传方案的SCI。

包括在第二阶段SCI中的HARQ反馈启用/禁用指示符可以被用作重传切换指示符。在这种情况下,当HARQ反馈启用/禁用指示符指示HARQ反馈被启用时,它可以指示保持HARQ重传方案而不切换重传方案。当HARQ反馈启用/禁用指示符指示HARQ反馈被禁用时,它可以指示从HARQ重传方案切换到盲重传方案。

第一阶段SCI和第二阶段SCI都可以用于指示切换重传方案以及重用或释放保留的资源。在这种情况下,重传切换指示符、资源重用/释放指示符和反向指示符中的至少一个指示符可以包括在第一阶段SCI中,而不包括在第一阶段SCI中的其余指示符可以包括在第二阶段SCI中。例如,表3中定义的重传切换指示符可以包括在第一阶段SCI中,并且表3中定义的资源重用/释放指示符可以包括在第二阶段SCI中。可选地,表3中定义的重传切换指示符可以包括在第二阶段SCI中,并且表3中定义的资源重用/释放指示符可以包括在第一阶段SCI中。

包括在第一阶段SCI和第二阶段SCI中的现有字段可以被用于指示(例如,表示)重传切换指示符、资源重用/释放指示符和/或反向指示符。例如,包括在第二阶段SCI中的HARQ反馈启用/禁用指示符可以用于指示重传切换指示符。包括在第一阶段SCI中的反向指示符可以被用于指示资源重用/释放指示符。

用于指示重传方案的切换的方法可以根据图9所示的示例性实施例(例如,通过第二阶段SCI切换重传方案)或图10所示的示例性实施例(例如,通过第一阶段SCI切换重传方案)来执行。发送终端可以选择用于指示切换重传方案的方法(例如,图9所示的示例性实施例或图10所示的示例性实施例),并且可以使用所选择的用于指示切换的方法。

在根据HARQ重传方案的重传过程中,可以使用第二阶段SCI而不使用第一阶段SCI来执行数据重传。在这种情况下,为了重用为HARQ重传方案保留的资源并最小化切换重传方案导致的延迟(latency),可以通过第二阶段SCI指示从HARQ重传方案切换到盲重传方案。然而,当不存在为HARQ重传方案保留的资源时,可以通过第一阶段SCI指示从HARQ重传方案到盲重传方案的切换。当在根据HARQ重传方案的重传过程中使用第一阶段SCI和第二阶段SCI时,可以如图10所示的示例性实施例那样通过第一阶段SCI指示从HARQ重传方案到盲重传方案的切换。

在根据HARQ重传方案的重传过程中,第一阶段SCI的发送可以被选择性地执行。在这种情况下,当从HARQ重传方案切换到盲重传方案时,可以根据为HARQ重传方案的资源保留状态来使用图9所示的示例性实施例或图10所示的示例性实施例。例如,当存在为HARQ重传方案保留的资源,并且保留的资源是第一阶段SCI的发送资源时,可以使用图10所示的示例性实施例。又例如,当第一阶段SCI的发送资源未被保留时,可以使用图9所示的示例性实施例。又例如,当不存在为HARQ重传方案保留的资源时,可以使用图10所示的示例性实施例。

在SL群播通信或SL单播通信中,接收终端可以向发送终端报告信道状态信息。当发送终端从少于特定数量的接收终端接收信道状态信息时,当存在具有低于特定阈值的信道状态的一个或多个接收终端时,当信道状态等于或小于特定阈值的接收终端的数量大于或等于特定数量时,或者当难以可靠地执行HARQ重传操作时,可以将HARQ重传方案切换到盲重传方案。

发送终端可以向接收终端发送包括区域ID和/或通信范围信息的SCI。接收终端可以从发送终端接收SCI,并且可以识别SCI中包括的区域ID和/或通信范围信息。接收终端可以基于区域ID和/或通信范围信息(例如,与通信范围信息相关联的信道状态)来确定从发送终端接收信道和/或信号的可能性。当确定难以从发送终端接收信道和/或信号时,接收终端可以向发送终端发送相应的信息(例如,接收信道和/或信号的可能性),并且发送终端可以从接收终端接收相应的信息。当基于相应信息确定接收终端难以接收信道和/或信号时,发送终端可以将HARQ重传方案切换到盲重传方案。

当超过一定数量的接收终端从由包括在从发送终端发送的SCI中的区域ID所指示的区域偏离时,或者当超过一定数量的接收终端从由包括在发送终端发送的SCI中的通信范围信息所指示的通信范围移出时,发送终端可能无法从接收终端接收HARQ反馈(例如,HARQ-ACK)。在这种情况下,发送终端可以将HARQ重传方案切换到盲重传方案。

对于需要低延迟(low-latency)的数据发送,发送终端可以将HARQ重传方案切换到盲重传方案。为了支持该操作,基站可以向发送终端发送低延迟数据发送的请求和/或切换到盲重传方案的请求。在这种情况下,可以最小化发送终端和接收终端之间的发送延迟。

在NR V2X通信网络中,可以向接收终端提供群播和/或单播服务,并且接收终端可以基于HARQ重传方案接收数据。在这种情况下,可能出现终端需要从NR V2X通信网络移动到LTE V2X通信网络的情况,并且LTE V2X通信网络可能不支持HARQ重传方案。因此,当接收终端从NR V2X通信网络移动到LTE V2X通信网络时,发送终端可以向接收终端指示从HARQ重传方案切换到盲重传方案,并且可以通过使用盲重传方案向终端提供不间断的通信服务。

另一方面,可以基于图12或图13所示的示例性实施例来执行从盲重传方案切换到HARQ重传方案的方法。

图12是示出侧链路通信中的重传方案切换方法的第四示例性实施例的序列图。

如图12所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图12中所示的接收终端可以是一个或多个接收终端。也就是说,图12所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在侧链路通信中,重传方案可以从盲重传方案切换到HARQ重传方案。在步骤S1201中,可以在发送终端和接收终端之间执行根据盲重传方案的重传过程。步骤S1201可以包括图8所示的步骤S801至S803。发送终端可以向接收终端发送指示切换重传方案的重传切换指示符(S1202)。当在步骤S1201中数据被重传n次或更多次时,可以发送重传切换指示符。n可以是自然数。可以通过系统信息、RRC消息、MAC CE或控制信息(例如,DCI、SCI)中的至少一个向发送终端和/或接收终端用信号通知n。

重传切换指示符可以指示从盲重传方案切换到HARQ重传方案。重传切换指示符的大小可以是1位或更大。重传切换指示符可以包括在第二阶段SCI中。当存在可用于HARQ重传方案的资源时,重传切换指示符可以包括在第二阶段SCI中而不是第一阶段SCI中。在这种情况下,可以在步骤S1202中发送重传数据和包括重传切换指示符的第二阶段SCI。当使用单SCI方案时,重传切换指示符可以包括在单个SCI中而不是第二阶段SCI中。

根据HARQ重传方案的重传过程可以由在步骤S1202中发送的第二阶段SCI触发或启动。在步骤S1202中,接收终端可以从发送终端接收重传切换指示符。当从发送终端接收到重传切换指示符时,接收终端可以确定侧链路通信的重传方案从盲重传方案切换到HARQ重传方案。可以基于由系统信息、RRC消息、MAC CE、第一阶段SCI和/或第二阶段SCI配置的HARQ重传相关信息来执行发送终端和接收终端之间的通信。例如,当在步骤S1202中数据接收失败时,接收终端可以将数据的NACK发送到发送终端(S1203)。当从接收终端接收到数据的NACK时,发送终端可以重传数据(S1204)。在步骤S1204中,重传数据可以与第二阶段SCI一起被发送。用于第一HARQ重传的资源可以是由先前的SCI(例如,步骤S1201中的第一阶段SCI)保留的资源。例如,用于第一HARQ重传的资源可以是为盲重传方案保留的资源。

图13是示出侧链路通信中的重传方案切换方法的第五示例性实施例的序列图。

如图13所示,通信系统可以包括发送终端和接收终端。发送终端可以指发送SL数据的终端,接收终端可以指接收SL数据的终端。例如,发送终端可以是图2中所示的UE 235,接收终端可以是在图2中所示的UE 236。图13所示的接收终端可以是一个或多个接收终端。也就是说,图13所示的方法可以应用于一个发送终端和一个或多个接收终端之间的通信。发送终端和接收终端中的每一个可以被配置为与图3所示的通信节点300相同或类似。发送终端和接收终端中的每一个可以支持图4至图6所示的协议栈。

在侧链路通信中,重传方案可以从盲重传方案切换到HARQ重传方案。在步骤S1301中,可以在发送终端和接收终端之间执行根据盲重传方案的重传过程。步骤S1301可以包括图8所示的步骤S801至S803。也就是说,步骤S1301可以与图12中所示的步骤S1201相同。发送终端可以向接收终端发送指示切换重传方案的重传切换指示符(S1302)。当在步骤S1301中数据被重传n次或更多次时,可以发送重传切换指示符。n可以是自然数。可以通过系统信息、RRC消息、MAC CE和控制信息(例如,DCI、SCI)中的至少一个用信号将n通知到发送终端和/或接收终端。

重传切换指示符可以指示从盲重传方案切换到HARQ重传方案。重传切换指示符的大小可以是1位或更大。重传切换指示符可以包括在第一阶段SCI中。当不存在可用于HARQ重传方案的资源时,重传切换指示符可以包括在第一阶段SCI中而不是第二阶段SCI中。之后,可以使用由在步骤S1302中发送的第一阶段SCI分配的资源(例如,保留的资源)来执行根据HARQ重传方案的重传过程。可选地,即使当存在可用于HARQ重传方案的资源时,重传切换指示符也可以包括在第一阶段SCI中而不是第二阶段SCI中。可选地,重传切换指示符可以通过第一阶段SCI和第二阶段SCI、通过第二阶段SCI或通过单个SCI来发送。在这种情况下,在步骤S1302中发送的第一阶段SCI可以指示释放用于在步骤S1301中配置的盲重传方案的资源。也就是说,用于在步骤S1301中配置的盲重传方案的资源可以通过在步骤S1302中发送的第一阶段SCI被用于HARQ重传方案的资源覆盖。可选地,在步骤S1302中发送的第一阶段SCI可以被用于配置新的HARQ重传资源。这里,重传切换指示符可以通过第二阶段SCI发送。

根据HARQ重传方案的重传过程可以由在步骤S1302中发送的第一阶段SCI触发或启动。在步骤S1302中,接收终端可以从发送终端接收重传切换指示符。当从发送终端接收到重传切换指示符时,接收终端可以确定侧链路通信的重传方案从盲重传方案切换到HARQ重传方案。可以基于由系统信息、RRC消息、MAC CE、第一阶段SCI和/或第二阶段SCI配置的HARQ重传相关信息来执行发送终端和接收终端之间的通信。例如,发送终端可以向接收终端发送第二阶段SCI和重传数据(S1303)。

当在步骤S1303中数据接收失败时,接收终端可以将数据的NACK发送到发送终端(S1304)。当从接收终端接收到数据的NACK时,发送终端可以确定接收终端中的数据接收失败。因此,发送终端可以发送第一阶段SCI(S1305),并且发送与第一阶段SCI相关联的重传数据和第二阶段SCI(S1306)。在步骤S1305和步骤S1306中,接收终端可以执行监视操作以接收重传数据。可选地,根据HARQ重传方案的重传过程中的第一次数据重传(例如,步骤S1303)之后的数据重传可以基于第二阶段SCI而不是第一阶段SCI来执行。

在图12和图13所示的示例性实施例中,可以应用上述表3至表5中定义的参数来解译/处理为先前的重传方案保留的资源。

在图12所示的示例性实施例中,在表3中定义的重传切换指示符和资源重用/释放指示符、在表3中定义的重传切换指示符和在表4或表5中定义的反向指示符的组合、或者在表4或表5中定义的反向指示符可以通过第二阶段SCI(例如,在步骤S1202中的第二阶段SCI)来发送。基于该操作,重传方案的切换和/或保留的资源的重用或释放可以被指示。当为先前的重传方案保留的资源是可重用的时,可以使用第二阶段SCI而不使用第一阶段SCI来切换重传方案。在这种情况下,第二阶段SCI可以不包括指示重用或释放为先前的重传方案保留的资源的信息。然而,重传切换指示符可以以表3中定义的第一位的形式通过第二阶段SCI被发送。

包括在第二阶段SCI中的HARQ反馈启用/禁用指示符可以用作重传切换指示符。在这种情况下,当HARQ反馈启用/禁用指示符指示HARQ反馈被启用时,它可以指示保持HARQ重传方案而不切换重传方案。当HARQ反馈启用/禁用指示符指示HARQ反馈被禁用时,它可以指示从HARQ重传方案切换到盲重传方案。

在图13所示的示例性实施例中,第一阶段SCI或单个SCI可以包括表3中定义的重传切换指示符和资源重用/释放指示符,因此,重传方案的切换和保留的资源的重用或释放可以被显式地指示。第一阶段SCI或单个SCI可以包括表4或表5中定义的反向指示符,因此,保留的资源的重用或释放可以被显式地指示。在这种情况下,为了指示重传方案的切换,第一阶段SCI或单个SCI可以包括表3中定义的第一位(例如,重传切换指示符)。也就是说,第一阶段SCI或单个SCI可以不包括表3中定义的第二位(例如,资源重用/释放指示符)。可选地,第一阶段SCI或单个SCI可以包括反向指示符而不包括重传切换指示符。在这种情况下,包括反向指示符的SCI(例如,第一阶段SCI、第二阶段SCI和/或单个SCI)可以被解译为指示重传切换的SCI。

在图13所示的示例性实施例中,可以通过第一阶段SCI和第二阶段SCI来指示重传方案的切换以及保留的资源的重用或释放。在这种情况下,重传切换指示符、资源重用/释放指示符和反向指示符中的至少一个指示符可以包括在第一阶段SCI中,而不包括在第一阶段SCI中的其余指示符可以包括在第二阶段SCI中。例如,表3中定义的重传切换指示符可以包括在第一阶段SCI中,并且表3中定义的资源重用/释放指示符可以包括在第二阶段SCI中。可选地,表3中定义的重传切换指示符可以包括在第二阶段SCI中,并且表3中定义的资源重用/释放指示符可以包括在第一阶段SCI中。

包括在第一阶段SCI和第二阶段SCI中的现有字段可以被用于指示重传切换指示符、资源重用/释放指示符和/或反向指示符。例如,包括在第二阶段SCI中的HARQ反馈启用/禁用指示符可以被用于指示重传切换指示符。包括在第一阶段SCI中的反向指示符可以被用于指示资源重用/释放指示符。

用于指示重传方案的切换的方法可以根据图12所示的示例性实施例(例如,通过第二阶段SCI切换重传方案)或图13所示的示例性实施例(例如,通过第一阶段SCI切换重新传方案)来执行。发送终端可以选择用于指示重传方案的切换的方法(例如,图12所示的示例性实施例或图13所示的示例性实施例),并且可以使用所选择的用于指示切换的方法。

在根据盲重传方案的重传过程中,可以使用第二阶段SCI而不使用第一阶段SCI来执行数据重传。在这种情况下,为了重用为盲重传方案保留的资源并最小化切换重传方案导致的延迟,可以通过第二阶段SCI指示从盲重传方案切换到HARQ重传方案。然而,当不存在为盲重传方案保留的资源时,可以通过第一阶段SCI指示从盲重传方案切换到HARQ重传方案。当在根据盲重传方案的重传过程中使用第一阶段SCI和第二阶段SCI时,可以如图13所示的示例性实施例中那样通过第一阶段SCI指示从盲重传模式切换到HARQ重传模式。

在根据盲重传方案的重传过程中,可以选择性地执行第一阶段SCI的发送。在这种情况下,当从盲重传方案切换到HARQ重传方案时,可以根据为盲重传方案的资源保留状态来使用图12所示的示例性实施例或图13所示的示例性实施例。例如,当存在为盲重传方案保留的资源,并且保留的资源是第一阶段SCI的发送资源时,可以使用图13所示的示例性实施例。又例如,当未保留第一阶段SCI的发送资源时,可以使用图12所示的示例性实施例。又例如,当不存在为盲重传方案保留的资源时,可以使用图13所示的示例性实施例。

当提供广播服务的发送终端通过高层信令接收到从盲重传方案切换到HARQ重传方案的指示时,或者当发送终端从基站接收到指示从盲重传方案切换到HARQ重传方案的信息时,如图12和/或图13所示的示例性实施例那样盲重传方案可以被切换到HARQ重传方案。

在LTE V2X通信网络中,可以向接收终端提供广播服务,并且接收终端可以基于盲重传方案接收数据。在这种情况下,可能出现终端需要从LTE V2X通信网络移动到NR V2X通信网络的情况。在这种情况下,当广播服务被切换到群播服务和/或单播服务时,发送终端可以向接收终端指示从盲重传方案切换到HARQ重传方案,并且可以通过使用HARQ重传方案向终端提供不间断的通信服务。

本公开的示例性实施例可以被实施为可由各种计算机运行的程序指令并记录在计算机可读介质上。计算机可读介质可以包括程序指令、数据文件、数据结构或其组合。记录在计算机可读介质上的程序指令可以是为本公开而设计和配置的,或者可以是对于计算机软件领域的技术人员公知和可用的。

计算机可读介质的示例可以包括被具体配置为存储和执行程序指令的、诸如ROM、RAM和闪存的硬件装置。程序指令的示例包括例如由编译器(compiler)生成的机器代码,以及可以由计算机使用解译器(interpreter)等执行的高级语言代码。上述示例性硬件装置可以被配置为作为至少一个软件模块来操作以执行本公开的示例性实施例,反之亦然。

虽然已经详细描述了本公开的示例性实施例及其优点,但是应当理解,在不脱离本公开的范围的情况下,可以在此进行各种改变、替换和改动。

技术分类

06120115929992