掌桥专利:专业的专利平台
掌桥专利
首页

一种改进谷木生物质复合材料及其制备方法

文献发布时间:2023-06-19 11:24:21



技术领域

本发明涉及PVC木塑材料技术领域,特别涉及一种改进谷木生物质复合材料及其制备方法。

背景技术

木塑复合材料中含有木粉和塑料,因此复合材料兼具了木材和塑料的优点如:(1)木塑复合材料内含有塑料和纤维,具有优异的力学性能,握钉力优于木质材料。(2)良好的强度性能。木塑复合材料内含塑料,因而具有较好的弹性模量。此外,由于内含纤维并经与塑料充分混合,因而具有与硬木相当的抗压、抗弯曲等力学性能,并且其耐用性明显优于普通木质材料。表面硬度高。(3)具有耐水、耐腐性能,使用寿命长。木塑材料及其产品与木材相比,可抗强酸碱、耐水、耐腐蚀,并且不繁殖细菌,不易被虫蛀、不长真菌,使用寿命长。

木塑复合材料的木粉原料可来源于稻壳、秸秆、竹木等谷木。由于稻壳、秸秆等材料无法用做食品原料,因此将稻壳、秸秆等材料用做木粉原料,可避免废料堆砌和焚烧给环境带来的污染,同时提高了废料的经济附加值。

现有的木塑复合材料在加工过程中会产生边角料,边角料中同样包含稻壳、秸秆以及竹粉等成分;而这些加工过程中产生的边角料通常直接燃烧或掩埋处理,对环境带来持久性的破坏影响,因此木塑复合材料边角料的合理利用是目前亟待解决的问题。

可见,现有技术还有待改进和提高。

发明内容

鉴于上述现有技术的不足之处,本发明的目的在于提供一种改进谷木生物质材料及其制备方法,旨在解决现有木塑复合材料边角料无法合理回收利用的问题。

为了达到上述目的,本发明采取了以下技术方案:

一种改进谷木生物质复合材料,其中,按重量份数计包括以下组分:

所述的改进谷木生物质复合材料中,所述改性稻壳粉的组份包括:稻壳粉、稻壳改性剂;所述稻壳改性剂为硅烷偶联剂、铝酸脂、钛酸酯中的一种或多种。

所述的改进谷木生物质复合材料中,所述稻壳粉、稻壳改性剂的质量比为100:1-5。

所述的改进谷木生物质复合材料中,所述填充剂包括碳酸钙、滑石粉、高岭土中的一种。

所述的改进谷木生物质复合材料中,所述丙烯酸树脂加工改性剂为ACR加工改性剂。

所述的改进谷木生物质复合材料中,所述润滑剂包括内润滑剂和外润滑剂,且内润滑剂和外润滑剂的质量比为1:0.5-1;所述内润滑剂包括硬脂酸、硬脂酸酯、硬脂酸酰胺、硬脂酸醇、脂肪醇、脂肪酸酯中的一种或多种;所述外润滑剂包括聚乙烯蜡、氧化聚乙烯蜡、石蜡中的一种或多种。

所述的改进谷木生物质复合材料中,所述发泡剂包括黄发泡剂和白发泡剂,且黄发泡剂和白发泡剂的质量比为1:1-5:所述黄发泡剂包括偶氮二甲酰胺、偶氮二异丁腈、亚硝基类发泡剂或酰肼类发泡剂中的一种;所述白发泡剂为碳酸氢钠、碳酸氢铵、碳酸铵或叠氮化合物中的一种。

所述的改进谷木生物质复合材料中,所述抗菌剂为银离子抗菌剂。

所述的改进谷木生物质复合材料中,所述光稳定剂为紫外线吸收剂。

一种如上所述的改进谷木生物质复合材料的制备方法,其中,所述制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得40-200目的稻壳粉;

S002:按照步骤S001处理获得的稻壳粉和稻壳改性剂之间100:1-5的质量比称取原料,将原料置于高速搅拌机中混合均匀,并在120-140℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得40-160目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为15-30r/min,模具温度为175-185℃,模唇温度为55-165℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

有益效果:

本发明提供了一种改进谷木生物质复合材料及其制备方法,所获得木塑复合材料的冲击强度、弯曲强度、拉伸强度、硬度和握螺钉力等力学性能均优于现有标准,同时,木塑复合材料的使用寿命长,具有良好的抗菌防腐性能,应用领域广泛。此外,具有以下优点:

(1)本发明使用了木塑复合材料加工过程中所产生的边角料作为原料,而边角料可来源于多种类型的木塑复合材料,相比木粉原料单一的木塑复合材料,仍能够保持优异的力学性能。

(2)本发明使用木塑复合材料的边角料以取代部分稻壳粉,从而可减少企业稻壳粉等生物质材料的使用量,增加企业的经济效益的同时,减少处理含有聚氯乙烯成分的边角料而引起的环境污染。

具体实施方式

本发明提供一种改进谷木生物质复合材料及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,举以下实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组分:

稻壳富含纤维素、木质素、二氧化硅;脂肪和蛋白含量极低,具有良好的韧性,可用于引入复合材料中,以增强复合材料的力学性能。上述配比的改进谷木生物质复合材料中,稻壳粉经过改性处理,能够提高稻壳纤维与其它原料的相容性和分散性,并使密炼反应时,稻壳的纤维能够与其它原料反应更加充分,使复合材料的硬度、冲击强度、弯曲强度、抗拉强度、握螺钉力等力学性能均得到提高。此外,上述组成中引入有木塑复合材料的边角料,所述边角料的来源不仅限于以稻壳粉为木粉的木塑复合材料,也还包括以秸秆粉、竹木等木粉为原料的木塑复合材料。由于竹木和秸秆中的纤维含量远高于稻壳,因此通过在配方中引入多种复合材料的边角料,不仅能够使边角料能够合理回收利用,也能够保持甚至提高原有稻壳木塑复合材料的力学性能。

上述的改性稻壳粉包括稻壳预处理获得的稻壳粉以及稻壳改性剂,且所述稻壳粉、稻壳改性剂的质量比为100:1-5。其中,所述稻壳改性剂为硅烷偶联剂、铝酸脂、钛酸酯中的一种或多种。

由于聚氯乙烯为亲油性物质,极性小,而稻壳粉中的纤维素含有多个羟基,使得其极性大,表现为亲水性物质,两者的极性不同,两相的界面相容性较低,难以形成物理或化学键的结合;而上述稻壳改性剂均属偶联剂,偶联剂能够包覆于极性物质上,并通过化学和物理作用将两种性质差异很大,不易结合的材料牢固地结合起来。上述配比的稻壳粉和稻壳改性剂,能使极性的稻壳与非极性的聚氯乙烯界面具有较好的相容性和分散性,提高物料之间的反应程度,使木塑复合材料的力学性能得到进一步提高。

上述配比的改进谷木生物质复合材料中,所述聚氯乙烯树脂粉的聚合度将影响原料的流动性和复合材料的成型效果,聚合度越高,则聚氯乙烯树脂粉的流动性越差,本发明中,采用聚合度为650-1150的聚氯乙烯树脂粉,具有较高的流动性,且成型效果较好。

上述配比的改进谷木生物质复合材料中,所述填充剂为碳酸钙、滑石粉、高岭土中的一种。并且所述碳酸钙、炭黑、硅藻土中的粒径均为1000-1800目。在木塑复合材料中添加填充剂,可降低企业成本,并能提高木塑复合材料的强度和硬度,同时提高产品的阻燃性能。填充剂的粒径越细,则越容易均匀分散到其它原料中,使所得制品的性能更加均匀。上述填充剂中,所述碳酸钙为轻质碳酸钙,轻质碳酸钙具有较大体积,从而能在提高制品的强度和硬度的同时,减轻质量。所述滑石粉可显著提高制品的硬度、耐热性,较小粒径的滑石粉亦能提高制品的冲击强度;所述高岭土可提高制品的表面性能、尺寸精度、机械强度、耐磨性、绝缘强度等。

上述配比的改进谷木生物质复合材料中,所述稳定剂为复合钙锌稳定剂。聚氯乙烯树脂对热极为敏感,当加热温度达到90℃以上时,就会发生轻微的热分解。当温度达到120℃时,会发生明显的热分解反应,使聚氯乙烯树脂颜色逐渐加深。通过在配方中引入稳定剂能够防止或减少聚氯乙烯树脂分解,抑制分解着色。进一步的,上述复合钙锌稳定剂为硬脂钙和硬脂酸锌的组合物,是一种高效复合稳定剂,能够有效抑制聚氯乙烯树脂的分解着色。

上述配比的改进谷木生物质复合材料中,所述丙烯酸树脂加工改性剂为ACR加工改性剂属于核-壳共聚物。ACR加工改性剂与聚乙树脂相容性好,在加工过程中高相对分子质量的ACR分子能插入聚乙树脂分子链之间,起着“缠结”的作用,可以显著提高聚乙树脂熔体的弹性和黏性。它不仅能明显改善树脂的熔体流动性、热变性、耐候性及制品表面的光泽等,而且可以提高PVC制品的抗冲击性能;此外,ACR加工改性剂还可起到外润滑剂的作用。

上述配比的改进谷木生物质复合材料中,所述抗菌剂为银离子抗菌剂,通过引入银离子抗菌剂使银离子附载于复合材料的多孔结构中,并使银离子干扰细菌中细胞壁的合成,细菌中的细胞壁重要组分为肽聚糖;银离子抗菌剂对细胞壁的干扰作用,主要为抑制多糖链与四肽交联连结,从而使细胞壁失去完整性,失去对渗透压的保护作用,同时可抑制细菌中蛋白质的合成,使得蛋白质的合成过程变更和停止,并使细菌死亡,因而银离子抗菌剂具有抑制微生物的生长、繁殖和杀死微生物的作用,从而有效地抑制和杀死PVC发泡板上的细菌,具有良好的抗菌效果,避免了细菌吸附在复合材料上,同时保障了用户的身体和健康。

上述配比的改进谷木生物质复合材料中,所述润滑剂由内润滑剂和外润滑剂组成;所述内润滑剂包括硬脂酸、硬脂酸酯、硬脂酸酰胺、硬脂酸醇、脂肪醇、脂肪酸酯中的一种或多种;所述外润滑剂包括聚乙烯蜡、氧化聚乙烯蜡、石蜡中的一种或多种。所述内润滑剂能够降低聚氯乙烯树脂之间的内摩擦,增加聚氯乙烯树脂的熔融速率;同时内润滑剂与聚氯乙烯树脂具有一定的相容性,能够改善塑化性能;此外,当树脂熔体变形时,聚氯乙烯分子间能够相互滑移和旋转,从而使聚氯乙烯分子间的内摩擦减小,流动性增加。所述的外润滑剂能够减少树脂熔体与加工设备(或模具)表面之间的摩擦。与内润滑剂相比,外润滑剂与聚氯乙烯树脂的相容性更小。在加工过程中,润滑剂分子很容易从树脂熔体内部迁移至表面,并在熔体与加工设备的界面处形成定向排列的润滑剂层,这种由润滑剂分子层所构成的润滑界面对聚合物熔体和加工设备起到隔离作用,减少了两者之间的摩擦。通过实验发现,当内润滑剂和外润滑剂的质量比为1:0.5-1时,树脂熔体的流动性最好,同时能够很好的防止熔体粘附在加工设备(或模具)表面。

上述配比的改进谷木生物质复合材料中,所述发泡剂由黄发泡剂和白发泡剂混合组成,且黄发泡剂和白发泡剂的质量比为1:1-5:所述黄发泡剂包括偶氮二甲酰胺、偶氮二异丁腈、亚硝基类发泡剂或酰肼类发泡剂中的一种;所述白发泡剂为碳酸氢钠、碳酸氢铵、碳酸铵或叠氮化合物中的一种。由于黄发泡剂分解温度高,单用黄发泡剂,当要求制品厚度较厚时,容易出现破壁和泡孔,而白发泡剂剂量过多,前期挥发更多的气体,会给给料筒中的物料的流动性造成障碍。因此。在生产木塑复合材料时,通常不会在配方中单独引入黄发泡剂和白发泡剂,而是将黄发泡剂和白发泡剂混合使用,通过黄发泡剂和白发泡剂的协同作用克服上述单一使用发泡剂所产生的问题。并进一步的,当黄发泡剂和白发泡剂的质量比为1:1-5时,发泡效果最好。

上述配比的改进谷木生物质复合材料中,所述光稳定剂为紫外线吸收剂。紫外线吸收剂的作用能够有效地吸收波长为290-410nm的紫外线,而很少吸收可见光,且本身具有良好的热稳定性和光稳定性。将其掺入木塑复合材料中,能够减少聚氯乙烯树脂的降解,阻止或延迟光老化过程,从而延长木塑复合材料的使用寿命。

一种如上所述的改进谷木生物质复合材料的制备方法,其中,所述制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得40-200目的稻壳粉;本步骤中,稻壳需进行水洗除杂、晾晒等预处理,否则稻壳混有杂质和较高的水分时,难以进行改性处理,并且影响木塑复合材料的质量。

S002:按照步骤S001处理获得的稻壳粉和稻壳改性剂之间100:1-5的质量比称取原料,将原料置于高速搅拌机中混合均匀,并在120-140℃下进行反应,得改性稻壳粉;本步骤通过对稻壳表面进行改性处理,使极性的稻壳表面与非极性的聚氯乙烯界面具有较好的相容性和分散性,从而提高物料之间的反应程度,使木塑复合材料的力学性能得到有效提高。

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得40-160目的边角料粉;本步骤中,边角料的来源不仅限于以稻壳粉为木粉的木塑复合材料,也还包括以高纤维含量的秸秆粉和竹木等木粉为原料的木塑复合材料;将边角料引入配方中,能够提高稻壳木塑复合材料的力学性能。

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体。

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为15-30r/min,模具温度为175-185℃,模唇温度为55-165℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

步骤S005中,需要严格控制螺杆转速,螺杆转速过高会导致聚氯乙烯树脂和改性稻壳粉的降解和糊化。同时,混合密炼温度,模具温度,模唇温度同样会影响密炼效果,若温度过高,聚氯乙烯树脂容易分解,而改性稻壳粉容易炭化,导致树脂熔体的粘度较低;但是温度过低会影响发泡和塑化过程,使木塑复合材料挤出困难,并影响成品的性能。当为步骤S005中的条件时,可获得性能较佳的密炼效果。

通过上述制备步骤,可得到力学性能较佳的木塑复合材料,相比单一以稻壳粉为木粉原料的木塑复合材料,合理利用了木塑复合材料的边角料,在确保木塑复合材料的力学性能得到提升的同时,经济效益更高。为了进一步的阐述本发明提供的改进谷木生物质复合材料及其制备方法,提供如下实施例:

实施例1

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组分:

其中,所述聚氯乙烯树脂粉的聚合度为650-1150;所述改性稻壳粉由质量比为100:1的稻壳粉和硅烷偶联剂组成。所述润滑剂由内润滑剂和外润滑剂组成,所述内润滑剂为硬脂酸和硬脂酸酯,所述外润滑剂为聚乙烯蜡,硬脂酸和硬脂酸酯的质量比为1:1,内润滑剂和外润滑剂的质量比为1:0.5。所述发泡剂包括黄发泡剂和白发泡剂,所述黄发泡剂为偶氮二异丁腈,白发泡剂为碳酸氢铵,二者的质量比为1:1。

上述的改进谷木生物质复合材料的制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得40-100目的稻壳粉;

S002:按照配比称取稻壳改性剂和步骤S001处理获得的稻壳粉,将原料置于高速搅拌机中混合均匀,并在120℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得40-80目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为15r/min,模具温度为175℃,模唇温度为55℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

实施例2

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组份:

其中,所述聚氯乙烯树脂粉的聚合度为650-1150;所述改性稻壳粉由质量比为100:5的稻壳粉和铝酸酯组成。所述润滑剂由内润滑剂和外润滑剂组成,所述内润滑剂为硬脂酸和硬脂酸酰胺,所述外润滑剂为石蜡,硬脂酸和硬脂酸酰胺的质量比为1:1,内润滑剂和外润滑剂的质量比为1:1。所述发泡剂包括黄发泡剂和白发泡剂,所述黄发泡剂为亚硝基类发泡剂,白发泡剂为碳酸铵,二者的质量比为1:5。

上述的改进谷木生物质复合材料的制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得100-200目的稻壳粉;

S002:按照配比称取稻壳改性剂和步骤S001处理获得的稻壳粉,将原料置于高速搅拌机中混合均匀,并在140℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得80-160目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为30r/min,模具温度为185℃,模唇温度为165℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

实施例3

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组份:

其中,所述聚氯乙烯树脂粉的聚合度为650-1150;所述改性稻壳粉由质量比为100:1.3的稻壳粉和铝酸酯组成。所述润滑剂由内润滑剂和外润滑剂组成,所述内润滑剂为硬脂酸和脂肪醇,所述外润滑剂为聚乙烯蜡和氧化聚乙烯蜡。各润滑剂的质量比如下:硬脂酸:脂肪醇:聚乙烯蜡:氧化聚乙烯蜡=1.5:1.5:1.3:1。所述发泡剂包括黄发泡剂和白发泡剂,所述黄发泡剂为偶氮二甲酰胺,白发泡剂为碳酸氢钠,二者的质量比为1;1.3。

上述的改进谷木生物质复合材料的制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得100-200目的稻壳粉;

S002:按照配比称取稻壳改性剂和步骤S001处理获得的稻壳粉,将原料置于高速搅拌机中混合均匀,并在130℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得100-160目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为25r/min,模具温度为180℃,模唇温度为150℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

实施例4

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组分:

其中,所述聚氯乙烯树脂粉的聚合度为650-1150;所述改性稻壳粉由质量比为100:3的稻壳粉和钛酸酯组成。所述润滑剂由内润滑剂和外润滑剂组成,所述内润滑剂为脂肪酸酯,所述外润滑剂为聚乙烯蜡,内润滑剂和外润滑剂的质量比为1:0.6。所述发泡剂包括黄发泡剂和白发泡剂,所述黄发泡剂为酰肼类发泡剂,白发泡剂为叠氮化合物,二者的质量比为1:4。

上述的改进谷木生物质复合材料的制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得60-100目的稻壳粉;

S002:按照配比称取稻壳改性剂和步骤S001处理获得的稻壳粉,将原料置于高速搅拌机中混合均匀,并在125℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得60-120目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为20r/min,模具温度为180℃,模唇温度为80℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

实施例5

本发明提供一种改进谷木生物质复合材料,按重量份数计包括以下组分:

其中,所述聚氯乙烯树脂粉的聚合度为650-1150;所述改性稻壳粉由质量比为100:4的稻壳粉和硅烷偶联剂组成。所述润滑剂由内润滑剂和外润滑剂组成,所述内润滑剂为硬脂酸和硬质酸醇,所述外润滑剂为石蜡,硬脂酸和硬脂酸酰胺的质量比为1:1,内润滑剂和外润滑剂的质量比为1:0.8。所述发泡剂包括黄发泡剂和白发泡剂,所述黄发泡剂为偶氮二甲酰胺,白发泡剂为碳酸氢钠,二者的质量比为1:3。

上述的改进谷木生物质复合材料的制备方法包括以下步骤:

S001:对稻壳进行预处理:将稻壳进行除杂、粉碎、过筛处理,得80-100目的稻壳粉;

S002:按照配比称取稻壳改性剂和步骤S001处理获得的稻壳粉,将原料置于高速搅拌机中混合均匀,并在135℃下进行反应,得改性稻壳粉;

S003:对木塑复合材料边角料进行预处理:将边角料粉碎、过筛处理,得80-120目的边角料粉;

S004:按重量份称量所述的改进谷木生物质复合材料的各组份,并混合均匀,得混合粉体;

S005:将步骤S004所述的混合粉体进行混合密炼,螺杆转速为25r/min,模具温度为180℃,模唇温度为125℃;

S006:步骤S005中的密炼物挤出至发泡模具,经发泡模具发泡成型及定型模冷却定型后,进行切割,得所述改进谷木生物质复合材料。

将上述实施例1-5所得的改进谷木生物质复合材料标注为1

从上表可知,通过使用木塑复合材料的边角料以取代稻壳木塑复合材料中的部分稻壳粉,依然能够保持较好的冲击强度、弯曲强度、拉伸强度、硬度和握螺钉力等力学性能,使得难以回收利用的边角料得以回收利用,提高了边角料的使用价值,企业经济效益提高的同时,可以减少处理含有聚氯乙烯成分的边角料而引起的环境污染。

此外,通过琼脂板菌落计数方法,分别测定的上述实施例1至5改进谷木生物质复合材料对白腐菌和褐腐菌在作用一段时间后的抗菌性能,其结果如下表所示。

通过上表可知,上述实施例所提供的改进谷木生物质复合材料具有良好的抗菌性能。

可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

相关技术
  • 一种改进谷木生物质复合材料及其制备方法
  • 一种轻木基多层生物质碳复合材料的制备方法和应用
技术分类

06120112909204