掌桥专利:专业的专利平台
掌桥专利
首页

氢填充接纳部

文献发布时间:2023-06-19 18:32:25


氢填充接纳部

技术领域

本公开涉及在氢填充时与喷嘴连接的接纳部。

背景技术

在专利文献1、专利文献2中公开有气体连接装置,该气体连接装置具备:喷嘴,具有用于供给气体的气体流路;和接纳部,具有供该喷嘴插入的插入空间、和通过插入喷嘴而与喷嘴的气体流路连接的气体流路。

专利文献1:日本特开2014-181777号公报

专利文献2:日本特开2009-156324号公报

在使大型车为燃料电池汽车的情况下,在以以往规格规定的最大的氢气体填充容量为30kg的范围内,不能确保充分的续航距离。另外,若增加氢填充量则存在填充时间变长的趋势,为了在短时间内填充氢,不仅需要以以往的填充速度进行填充,还需要更快(所谓的大流量)的填充。

发明内容

因此,在本公开中,鉴于上述问题,其目的在于即使将容量特别大的氢罐作为对象也能够抑制氢的填充时间并高效地进行氢填充。

基于以上的见解,本申请公开一种氢填充接纳部,该氢填充接纳部是在填充氢时供喷嘴连接的氢填充接纳部,在内部形成有直径D5(mm)的氢的流路,在外周的局部具有直径为D3(mm)的凹部,在将供喷嘴插入的一侧作为前端、将另一侧作为后端、并将后端的外周处的直径设为D1(mm)时,在后端与凹部之间具有外周的直径是小于D1(mm)且大于D3(mm)的直径的D2(mm)的台阶部,在前端的外周的直径设为D4(mm)时,D1(mm)大于D4(mm),直径D5(mm)为3.7mm以上。

“氢填充接纳部”是配置于从氢罐延伸的氢导入管的前端并与设置于氢供给装置侧的喷嘴连接的部件,并且是用于形成从氢供给装置向氢罐的氢流路的连接部件。

也可以构成为:在上述氢填充接纳部的基础上,流路的直径D5(mm)相对于台阶部的直径D2(mm)为1/7以上。

根据本公开,即使将容量特别大的氢罐作为对象,也能够适当地确保与喷嘴的连接,并抑制氢的填充时间来高效地进行向氢罐的氢填充。

附图说明

图1是表示氢填充装置1的概要的图。

图2是表示氢填充接纳部15的外观的图。

图3是表示氢填充接纳部15的剖面的图。

图4是表示氢填充接纳部15与喷嘴5的连接方式的图。

图5是表示氢填充接纳部15与喷嘴5的连接方式的图。

图6是表示氢填充接纳部15与喷嘴5不能连接的方式的图。

附图标记说明

1…氢填充装置;2…蓄压器;3…压缩机;4…氢供给管;5…喷嘴;10…燃料电池车辆;11…氢罐;12…氢导入管;15…氢填充接纳部;16…后端部;17…台阶部;18…凹部;19…前端部。

具体实施方式

1.氢填充的概要

在图1中示出了对使用本公开的氢填充接纳部15的一个例示性的情景进行说明的图。图1是概念性地表示氢填充装置1和搭载有被氢填充装置1填充氢的燃料电池的汽车(燃料电池车辆)10的图。

在所谓的氢站具备氢填充装置1,向燃料电池车辆10所具备的氢罐11供给氢。

燃料电池车辆10如公知的那样,但在车身内具备燃料电池系统。在燃料电池系统具备燃料电池和氢罐11,从氢罐11向燃料电池供给氢。燃料电池将从氢罐11供给的氢作为燃料气体,并通过另外供给的氧化气体(空气)使该燃料气体氧化,由此进行发电,通过该发电的电气使作为车辆的驱动源的马达旋转。此外,根据本公开,对于如上述那样尤其燃料电池车辆10是大型车且氢罐11的容量超过30kg的情况,也能够进行高效的氢的填充。

在氢填充装置1具备被封入氢的蓄压器2、将从蓄压器2向配管释放的氢压缩(升压)的压缩机(compressor)3、将升压后的氢从压缩机3向燃料电池车辆10供给的氢供给管4、以及控制氢供给的未图示的控制装置。在氢供给管4的前端配置有喷嘴5。

另一方面,在燃料电池车辆10中氢导入管12从氢罐11延伸,在氢导入管12的前端配置有与喷嘴5的连接部件、和作为填充口发挥功能的本公开的氢填充接纳部15。

将氢填充装置1的喷嘴5与燃料电池车辆10的氢填充接纳部15连接而形成用于氢填充的流路,通过压缩机3而从蓄压器2内释放的氢经由氢供给管4、喷嘴5、氢填充接纳部15、氢导入管12填充至氢罐11的路径。

2.氢填充接纳部

在向容量大的氢罐高效地填充氢时,若使氢填充接纳部保持以往的状态不变,则氢的填充时间变长。这是因为以往的氢填充接纳部没有设想向容量大的氢罐高效地填充(流动)氢。另一方面,即使为了增大氢的流量而仅增大以往的氢填充接纳部,也不能与现有的喷嘴连接。

因此,需要能够与现有的喷嘴连接并且能够进行高效的氢填充的氢填充接纳部的新的形态。在本公开中,提供一种用于此目的的氢填充接纳部。

在图2、图3中示出了配置于氢导入管12的前端的本公开的一例所涉及的氢填充接纳部15的形态。图2是外观图(主视图、从与图1相同的方向观察的图),图3是沿着整体上为圆筒状的氢填充接纳部15的轴线的方向的剖视图。

根据图2、图3可知,氢填充接纳部15整体上为圆筒状,在其内侧形成有供喷嘴5的流路部5a(参照图4~图6)插入的喷嘴插入部20、和与喷嘴插入部20连续并成为氢流路的直径D5(mm)的流路21。

另一方面,氢填充接纳部15的外周面为供喷嘴5的嵌合部5b(参照图4~图6)嵌合的形状,以直径不同的多个部位与轴线延伸的方向平行地排列的方式配置。具体而言,氢填充接纳部15具备:后端部16,处于氢导入管12侧,直径为D1(mm),长度为L1(mm);台阶部17,与后端部16连续,直径为D2(mm),长度为L2(mm);凹部18,与台阶部17连续,直径为D3(mm),长度为L3(mm);以及前端部19,与凹部18连续,形成氢填充接纳部15的前端侧,直径为D4(mm),长度为L4(mm)。此外,这里,存在将氢填充接纳部15中的供喷嘴5插入的一侧记载为“前端”并将其相反侧(与氢导入管12连接的一侧)记载为“后端”的情况。

此外,也可以在氢填充接纳部15的后端与氢导入管12的端部之间配置有作为比氢填充接纳部15的外周更突出的圆环状的部件的限位器部件13。这是用于使供喷嘴插入的部分明确的部件,即使在因某些缺陷等原因导致喷嘴超出氢填充接纳部15而进一步插入的情况下,喷嘴也会与限位器部件13接触而被限制进一步的插入。

这里,优选流路21的直径D5(mm)为3.7mm以上。由此能够确保用于使较大的流量流动的氢的流路截面积,从而能够将氢高效地向氢罐供给。另外,更优选流路21的直径D5(mm)相对于台阶部17的直径D2(mm)为1/7以上。

另外,对于氢填充接纳部15的外周形状,优选如以下那样构成。由此能够与现有的喷嘴接合。

优选台阶部17的直径D2(mm)大于凹部18的直径D3(mm)且小于后端部16的直径D1(mm)。即,D3(mm)<D2(mm)<D1(mm)。

在夹着凹部18的后端部16和前端部19,优选后端部16的直径D1(mm)大于前端部19的直径D4(mm)。即D4(mm)<D1(mm)。

凹部18的直径D3(mm)比其他的部位的直径D1(mm)、D2(mm)、D4(mm)都小。

由此,例如能够如以下那样将喷嘴5与氢填充接纳部15连接。在图4、图5中示出了用于说明的图。在图4、图5中,以与图3相同的视点相对于图3所示的氢填充接纳部15组合示出了喷嘴5的流路部5a和嵌合部5b。

喷嘴5整体上具有双层管的形态,在作为圆筒的嵌合部5b的内侧同轴地配置有作为管状的流路部5a。流路部5a是形成氢的流路的管,根据图4、图5可知,插入至氢填充接纳部15的喷嘴插入部20。

另一方面,嵌合部5b以内壁面与氢填充接纳部15的外周面对置的方式配置,将喷嘴5与氢填充接纳部15连接。具体而言,在喷嘴5以从嵌合部5b的内壁面突出的方式设置有卡合爪5c,通过该卡合爪5c与氢填充接纳部15的凹部18卡合,从而两者稳定地连接。卡合爪5c能够通过未图示的切换机构来相对于嵌合部5b的内壁面突出或没入,能够根据需要切换并维持突出的姿势和没入的姿势。

但是,现有的喷嘴5的嵌合部5b的内面形状虽然是公知的,但也有多个种类,例如,既有如图4那样只有卡合爪5c的形状,也有如图5那样在嵌合部5b的内面除了卡合爪5c之外还设置有从卡合爪5c向喷嘴5的前端侧延伸的突起5d的形状。

本公开的氢填充接纳部能够与这样的现有的多个种类的喷嘴嵌合(连接),喷嘴的形态并不特别地限定,但在将从卡合爪5c到嵌合部5b的前端的长度设为LN1(mm)并将突起5d的长度设为LN2(mm)时,优选使用LN2(mm)为9.7mm以上的喷嘴。更优选LN1(mm)为30.6mm以下。另外,优选用LN1/LN2表示的比为0.31以上。

另外,与该内面形状无关,喷嘴设想的氢流量的范围也有多个种类,为了向大容量的氢罐高效地进行氢填充,需要能够灵活地相对于这样的多个种类的喷嘴连接的氢填充接纳部。

对于以上那样的喷嘴的形态,通过如本公开的氢填充接纳部那样设置台阶部17,即使在喷嘴5的嵌合部5b有突起5d,也能够将喷嘴5与氢填充接纳部15适当地连接。

具体而言,如图4所示的例子那样,通过在嵌合部5b的内面仅配置卡合爪5c而未配置突起5d的喷嘴5的卡合爪5c与凹部18卡合,从而将喷嘴5与氢填充接纳部15稳定地连接。

另一方面,如图5所示,在嵌合部5b的内面除了卡合爪5c之外还配置有突起5d的喷嘴5以突起5d与台阶部17对置的方式配置,由于不妨碍喷嘴5与氢填充接纳部15的连接,因此将喷嘴5与氢填充接纳部15稳定地连接。若没有台阶部17而后端部16延伸至与凹部18邻接的位置,则后端部16碰到突起5d,因此不能进行喷嘴5与氢填充接纳部15的连接。

如以上那样,根据本公开的氢填充接纳部15,能够应对喷嘴的种类灵活地连接,能够提高喷嘴的种类的选择项,因此能够抑制氢的填充时间来高效地进行氢填充。

另一方面,由于喷嘴的形态、和具备该喷嘴的氢填充装置的性质,存在不能进行适当的氢填充的情况。因此,通过调整氢填充接纳部15的上述长度L1~L3,也能够构成为在这样的情况下不能将喷嘴5与氢填充接纳部15在物理上连接。例如,如图6所示,能够举出构成为:在喷嘴5与氢填充接纳部15的连接时,在卡合爪5c到达至凹部18前,突起5d与后端部16接触。根据该结构,构成为不能进行喷嘴5与氢填充接纳部15的连接。

以下,对能够将氢填充接纳部15与喷嘴5嵌合的情况和不能嵌合的情况的具体的例子进行说明。

如图4所示,对于喷嘴5不具有突起5d而具有卡合爪5c的喷嘴5,为了能够使氢填充接纳部15与喷嘴5嵌合,L1(mm)、L2(mm)、L3(mm)的合计值为LN1(mm)以上即可。即,

L1+L2+L3≥LN1

因此,例如优选使L1+L2+L3为20.6mm以上。

另一方面,对于喷嘴5不具有突起5d而具有卡合爪5c的喷嘴5,为了不能使氢填充接纳部15与喷嘴5嵌合,L1(mm)、L2(mm)、L3(mm)的合计值不足LN1(mm)即可。即,

L1+L2+L3<LN1

因此,例如优选使L1+L2+L3不足20.6mm。

如图5所示,对于喷嘴5具有突起5d和卡合爪5c的喷嘴5,为了能够使氢填充接纳部15与喷嘴5嵌合,L1(mm)、L2(mm)、L3(mm)的合计值为LN1(mm)以上并且L2(mm)与L3(mm)的合计值为LN2(mm)以上即可。即,

L1+L2+L3≥LN1

L2+L3≥LN2

因此,例如优选使L1+L2+L3为20.6mm以上,并使L2+L3为9.7mm以上。

另一方面,对于喷嘴5具有突起5d和卡合爪5c的喷嘴5,为了不能使氢填充接纳部15与喷嘴5嵌合,L1(mm)、L2(mm)、L3(mm)的合计值不足LN1(mm)并且L2(mm)与L3(mm)的合计值不足LN2(mm)即可。即,

L1+L2+L3<LN1

L2+L3<LN2

因此,例如优选使L1+L2+L3不足20.6mm并使L2+L3不足9.7mm。

这里,作为避免(不能嵌合)组合喷嘴5与氢填充接纳部15较好的一例,可以举出在作为对象的压力或者流量的范围方面,喷嘴5大于氢填充接纳部15的组合的情况。这是因为担心在这样的情况下氢填充的效率偏低。

技术分类

06120115607111