掌桥专利:专业的专利平台
掌桥专利
首页

一种用于光催化辅助磨粒加工的自发光磨料

文献发布时间:2023-06-19 18:37:28


一种用于光催化辅助磨粒加工的自发光磨料

技术领域

本发明属于电化学抛光的技术领域,具体涉及一种用于光催化辅助磨粒加工的自发光磨料。

背景技术

硅、碳化硅、氮化镓、金刚石等高硬脆半导体。具有良好的机械性能,稳定的物理化学性能和优异的光学性能,在机械、光学、信息、航空航天和武器装备等军用和民用领域具有广泛应用,特别是集成电路芯片的衬底。作为唯一能够实现半导体基片全局平坦化的方法化学机械抛光过程需要用到磨料作为工具。但是,由于高硬脆半导体具有硬度高、脆性大、耐腐蚀的特点,磨料磨损严重,化学机械抛光效率极低,或者为提高效率而牺牲了表面质量,难以满足产业化需求。

目前,增强磨料的加工性能主要采用两种方式:1)磨粒包覆提高耐磨性,如一种磨粒/氧化镍核壳结构的复合磨粒及其制备方法和应用(ZL201210209689.X)、一种磨粒/氧化铝核壳结构的复合磨粒及其制备方法和应用(ZL201210210174.1)、带涂层磨料制品及制备带涂层磨料制品的方法(CN202080085085.1);2)磨粒成团提高自锐性,如一种具有高微破碎特性的超硬聚集体磨料及其制备方法(ZL201911335624.8)、一种超硬脆工件的研磨抛光方法(ZL201610857938.4)、松散磨料团粒及使用其研磨工件的方法(CN202180012880.2)、粘结磨料制品和制造方法(CN202180010661.0)、金属粘结磨料制品及制备金属粘结磨料制品的方法(ZL 201880014168.4)、一种长寿命树脂结合剂磨料及其制备方法(ZL201811388108.7);这些方法使得化学机械抛光效率得到提升,但是针对高硬脆半导体材料去除率增幅不明显,且表面质量较差,划伤严重。

发明内容

本发明提供一种用于光催化辅助磨粒加工的自发光磨料,解决了采用传统方法增强磨料加工性能,对硬脆半导体材料去除率增幅不明显,且表面质量较差,划伤严重等技术问题。

本发明可通过以下技术方案实现:

一种用于光催化辅助磨粒加工的自发光磨料,包括硬质微粉、应力发光剂、光催化剂按照质量百分比构成的聚合磨料,所述聚合磨料的粒度在5~150μm之间。

本发明的聚合磨料无需要借助外部紫外光源照射含有光催化剂的抛光液,抛光液再流入高硬脆半导体表面,产生光催化辅助抛光效果,而是利用化学机械抛光过程中的机械能促使应力发光剂自行发出紫外光,并且由于发光材料和光催化材料合成一体,光催化更容易发生,不易受到遮挡,聚合磨粒与高硬脆半导体表面摩擦同时发生光催化和氧化反应,力-热-光-化学反应多能场复合并集中于聚合磨料和高硬脆半导体表面接触区,将能大大提高材料去除效率。

进一步,所述硬质微粉的粒度设置在0.5~10μm之间,其含量为聚合磨料总质量的25~75%,所述应力发光剂的粒度设置在0.1~2μm之间,其含量为聚合磨料总质量的12.5~37.5%,所述光催化剂的粒度设置在0.1~2μm之间,其含量为聚合磨料总质量的12.5~37.5%。

进一步,所述硬质微粉设置为金刚石、立方氮化硼、氧化铝、碳化硅、二氧化硅中的一种或多种。

进一步,所述应力发光剂设置为下列陶瓷粉末中的一种或者多种,镨掺杂铌酸钠(NaNbO

进一步,所述光催化剂设置为钛酸锌(ZnTiO

一种基于上文所述的用于光催化辅助磨粒加工的自发光磨料,包括以下步骤:

(1)按照设定的质量百分比将硬质微粉、应力发光剂和光催化剂进行混合,在混合好的粉末中加入粘合剂,采用热压法制成胚体;

(2)所述热压胚体经过干燥、除胶、烧结、破碎、分级得到聚合磨料。

进一步,所述粘结剂设置为聚乙酸乙烯酯、聚乙烯醇、聚乙烯醇缩醛胶体中的一种或多种,其含量为混合粉末总质量的1~6%。

本发明有益的技术效果如下:

本发明的自发光磨料适用于硅、碳化硅、氮化镓、金刚石等高硬脆半导体化学机械抛光,无需外部设备,不用改变现有抛光设备和工艺条件,具有生产效率高,加工稳定性好,损伤小、成品率高、成本低等特点。

本发明提出的聚合磨料不同于现有改性磨料,仅通过增强磨粒耐磨性或者自锐性以提高加工效率。机械力不但使得聚合磨粒发生微破碎,致使聚合磨粒表面磨损的硬质微粉脱落,并且促使应力发光剂散出紫外光,聚合磨料中光催化剂受到照射,其处于价带的电子就会被激发跃迁到导带上,形成自由电子,同时在价带上产生带正电的空穴,带正电的空穴可以和吸附在聚合磨料表面的OH

附图说明

图1为本发明的自放电磨料的制备方法的流程示意图;

图2为本发明的高硬脆半导体表面游离磨料抛光原理和工艺示意图;

图3为本发明的高硬脆半导体表面固结磨料抛光原理和工艺示意图。

具体实施方式

下面结合附图及较佳实施例详细说明本发明的具体实施方式。

如图1所示,本发明提供了一种用于光催化辅助磨粒加工的自发光磨料,包括硬质微粉、应力发光剂、光催化剂,按照质量百分比称取,经过混料、成型、制粒工序,得到粒度在5~150μm之间的聚合磨料。具体如下:

所有实施例均在单面抛光机上开展,具体抛光工艺:抛光压力25kPa,抛光盘和单晶碳化硅片的转速为80r/min,抛光液流速60ml/min,抛光时间50min。

实施例1

先按照质量百分比40:30:30称取硬质微粉、应力发光剂、光催化剂并采用湿法球磨进行混料,加入以上粉体总质量的1%聚乙烯醇胶体,其中,超硬粉末包括质量百分比50:50为氧化铝和碳化硅微粉,粒度5~10μm,应力发光剂设置为NaNbO

然后经过热压成型、干燥、除胶、烧结、破碎、分级得到聚合磨料,其粒度28~40μm;

最后,将制备好的聚合磨料与酚醛树脂按质量百分比40:60搅拌混合,经过发泡后倒入模具经过热压成型,得到固结磨料抛光垫;制备好的抛光垫粘贴在抛光机的抛光盘上,按照图2中的抛光工艺参数对单晶碳基片进行抛光,经检验材料去除率MRR为1.2~1.3μm/min,表面粗糙度Sa由220 -250nm降为0.3~0.5nm,表面光滑无明显划痕。

实施例2

先按照质量百分比30:50:20称取硬质微粉、应力发光剂、光催化剂,加入以上粉体总质量的6%聚乙酸乙烯酯,其中,硬质微粉包括质量百分比50:50的金刚石微粉和二氧化硅微粉,粒度均5~7μm,应力发光剂包括质量百分比50:50的ZnGa

然后经过热压成型、干燥、除胶、烧结、破碎、分级得到聚合磨料,其粒度40~70μm;

最后,将制备好的聚合磨料与高分子基体(有机硅树脂和聚丙烯酰胺,质量百分比25:75)按质量百分比50:50搅拌混合,经过发泡后倒入模具经过凝胶-聚胶成型,得到半固结磨料抛光垫;制备好的抛光垫粘贴在抛光机的抛光盘上,按照图2中的抛光工艺参数对单晶碳化硅基片进行抛光,经检验材料去除率MRR为0.7~0.9μm/min,表面粗糙度Sa由220 -250nm降为0.6~1.5nm,表面光滑无明显划痕。

实施例3

先按照质量百分比75:10:15称取硬质微粉、应力发光剂、光催化剂并采用干粉混合法进行混料,加入以上粉体总质量的2%聚乙烯醇缩醛胶体,其中,超硬粉末包括质量百分比60:40的金刚石微粉和立方氮化硼微粉,金刚石粒度5~10μm,立方氮化硼粒度3~5μm,应力发光剂包括KxNa1-xNbO

然后经过热压成型、干燥、除胶、烧结、破碎、分级得到聚合磨料,其粒度为70~150μm;

最后制备好的聚合磨料加入树脂中,经过发泡后倒入模具经过热压成型,得到固结磨料抛光垫;制备好的抛光垫粘贴在抛光机的抛光盘上,按照图1中的抛光工艺参数对氮化镓基片进行抛光,经检验材料去除率MRR为2.5~3.0μm/min,表面粗糙度Sa由220-250nm降为0.8~1.2nm,表面光滑无明显划痕。

实施例4

先按照质量百分比50:20:30称取硬质微粉、应力发光剂、光催化剂并采用干粉混合法进行混料,加入以上粉体总质量的4%聚乙烯醇和聚乙酸乙烯酯胶体(质量百分比60:40),其中,硬质微粉包括质量百分比50:50的金刚石微粉和二氧化硅微粉,粒度均5~7μm,应力发光剂包括YAl

然后经过热压成型、干燥、除胶、烧结、破碎、分级得到聚合磨料,其粒度5~20μm;

最后,将制备好的聚合磨料加入pH=4的双氧水溶液中,得到化学机械抛光液;制备好的抛光液经过磁力搅拌器不断搅拌后流入单晶金刚石基片和聚氨酯抛光垫间隙中,按照图3中的抛光工艺参数对单晶金刚石基片进行抛光,经检验材料去除率MRR为0.8~1.0μm/min,表面粗糙度Sa由220 -250nm降为1.2~1.5nm,表面光滑无明显划痕。

实施例1-4中所述的制备聚合磨料干燥、除胶和烧结如下:

干燥:将加有胶黏剂的混合物在80℃~150℃范围内烘干;

除胶:除去颗粒中的胶黏剂,除胶温度在400~550℃范围内调节,时间为30-120min;

烧结:将除胶后的颗粒经高温烧结形成可进行固化或压制成形的金刚石聚集体,烧结温度600-900℃,时间为30-120min。

可以看出,相比应力发光剂和光催化剂的光化学作用,磨粒的机械作用对高硬脆半导体材料的去除影响更大,主要体现在硬质微粉粒度,这是由于光催化作用的根本是软化高硬脆半导体材料,提高了硬质微粉切入材料的深度,但是微粉粒度决定了切深的上限。通过实例1和实例2对比,确定固结磨料垫相比半固结磨料垫的加工性能更优;通过实例1和实例3对比,确定不同种类硬质微粉的混合体和不同种类光催化剂的混合体更有利于提高材料去除效率;通过实例1和实例4对比,确定固结磨料抛光方式优于游离磨料抛光方式。此外,聚合磨粒的粒度增大有利于提高材料去除效率,但比较有限。

虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,因此,本发明的保护范围由所附权利要求书限定。

技术分类

06120115629891