掌桥专利:专业的专利平台
掌桥专利
首页

显示面板及显示触控装置

文献发布时间:2024-01-17 01:20:32


显示面板及显示触控装置

技术领域

本文涉及但不限于触控技术领域,尤指一种显示面板及显示触控装置。

背景技术

随着便携式电子显示设备的发展,触控技术提供了一种新的人机互动界面,其在使用上更直接、更人性化。将触控技术与平面显示技术整合在一起,形成显示触控装置,可以使得平面显示装置具有触控功能。

发明内容

以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。

本公开实施例提供一种显示面板及显示触控装置。

一方面,本公开实施例提供一种显示面板,包括:有效区域、位于所述有效区域外围的周边区域。所述有效区域包括:衬底基板、依次设置在所述衬底基板上的显示结构层和触控结构层。所述周边区域包括:设置在所述衬底基板上的隔离坝、第一接地走线和第二接地走线。所述第一接地走线位于所述隔离坝靠近所述有效区域的一侧,所述第二接地走线位于所述隔离坝远离所述有效区域的一侧。

在一些示例性实施方式中,所述周边区域包括:位于所述有效区域一侧的绑定区域以及位于所述有效区域其它侧的边缘区域。所述绑定区域包括至少一个接地引脚。所述第一接地走线和所述第二接地走线与所述绑定区域的所述至少一个接地引脚电连接。

在一些示例性实施方式中,在所述绑定区域,所述第一接地走线和所述第二接地走线与同一个接地引脚电连接。

在一些示例性实施方式中,在所述绑定区域,所述第一接地走线、所述第二接地走线和所述接地引脚为一体结构。

在一些示例性实施方式中,所述触控结构层远离所述衬底基板一侧设置有盖板;所述触控结构层包括:至少一个触控导电层;所述第二接地走线与距离所述盖板最近的触控导电层为同层结构。

在一些示例性实施方式中,所述第二接地走线和第一接地走线为同层结构。

在一些示例性实施方式中,所述触控结构层包括:依次设置在所述显示结构层上的第一触控导电层、第一触控绝缘层、第二触控导电层和第二触控绝缘层。所述第一接地走线和第二接地走线与所述第二触控导电层为同层结构。

在一些示例性实施方式中,所述周边区域还包括:辅助接地走线;所述辅助接地走线与所述第一触控导电层为同层结构。所述辅助接地走线与所述第二接地走线连接,所述辅助接地走线在所述衬底基板的正投影与所述第二接地走线在所述衬底基板的正投影部分交叠。

在一些示例性实施方式中,所述第二触控绝缘层在所述衬底基板的正投影与所述第二接地走线在所述衬底基板的正投影部分交叠。

在一些示例性实施方式中,所述第二接地走线包括主体和面向所述有效区域一侧的锯齿部。

在一些示例性实施方式中,所述第二接地走线包括:外圈走线和内圈走线;所述外圈走线位于所述内圈走线远离所述有效区域的一侧。

在一些示例性实施方式中,所述外圈走线和内圈走线分开接地。

在一些示例性实施方式中,所述内圈走线开设有多个开孔,所述多个开孔沿着所述有效区域朝向边缘区域的方向设置为至少一列。

在一些示例性实施方式中,所述内圈走线开设的多个开孔沿着所述有效区域朝向边缘区域的方向设置为一列,所述多个开孔在所述衬底基板的正投影与位于周边区域并与所述显示结构层为同层结构的导电层在所述衬底基板的正投影没有交叠。

在一些示例性实施方式中,所述第二接地走线包括:外圈走线、内圈走线以及连接在所述外圈走线和内圈走线之间的多个连接走线;所述外圈走线位于所述内圈走线远离所述有效区域的一侧。

在一些示例性实施方式中,所述多个连接走线中的至少一个连接走线在所述衬底基板的正投影为矩形。

在一些示例性实施方式中,所述多个连接走线中的至少一个连接走线在所述衬底基板的正投影为S形。

在一些示例性实施方式中,单个所述连接走线包括依次连接的第一延伸段和第二延伸段,所述第一延伸段沿着所述有效区域朝向边缘区域的方向延伸,所述第二延伸段的延伸方向与第一延伸段的延伸方向交叉。依次连接的第一延伸段、第二延伸段和第一延伸段形成一个迂回,或者,依次连接的第二延伸段、第一延伸段和第二延伸段形成一个迂回。

在一些示例性实施方式中,单个所述连接走线的迂回的个数为3至5个。所述第一延伸段和第二延伸段的宽度为3微米至5微米,沿同一方向延伸的相邻延伸段之间的间距为3微米至5微米。

在一些示例性实施方式中,所述连接走线的数目小于或等于40个。

在一些示例性实施方式中,所述外圈走线和内圈走线之间连接有多个晶体管,单个所述晶体管的第一极与所述内圈走线电连接,所述晶体管的第二极与所述外圈走线电连接,所述晶体管的栅电极与第一电源线电连接。

在一些示例性实施方式中,所述晶体管为P型晶体管。

在一些示例性实施方式中,所述外圈走线和所述内圈走线之间设置多个尖端放电结构,至少一个尖端放电结构包括:第一电极和第二电极,所述第一电极与所述外圈走线为一体结构,所述第二电极位于所述第一电极和所述内圈走线之间;所述第一电极具有第一尖端,且所述第一电极的第一尖端面对所述第二电极;所述第一尖端与所述第二电极之间存在间隙。

在一些示例性实施方式中,所述第二电极具有第二尖端,且所述第二电极的第二尖端面对所述第一电极的第一尖端,所述第一尖端和所述第二尖端之间存在间隙。

在一些示例性实施方式中,所述第二电极在所述衬底基板的正投影为矩形。

在一些示例性实施方式中,所述外圈走线和所述内圈走线之间设置多个防静电电容,至少一个防静电电容包括第一极板和第二极板;所述第一极板与所述外圈走线为一体结构,所述第二极板位于所述第一极板靠近所述内圈走线的一侧。

在一些示例性实施方式中,所述第一极板具有面向所述第二极板的多个第一梳齿部,所述第二极板具有面向所述第一极板的多个第二梳齿部,所述多个第一梳齿部和多个第二梳齿部相互穿插。

在一些示例性实施方式中,相邻第一梳齿部和第二梳齿部之间的间距、所述第一梳齿部的宽度和所述第二梳齿部的宽度大致相同。

在一些示例性实施方式中,所述防静电电容的第一极板接地,所述第二极板为虚设的导电结构。

在一些示例性实施方式中,所述防静电电容的第一极板和第二极板均为多层叠设结构。

在一些示例性实施方式中,所述防静电电容的第一极板和第二极板在所述衬底基板的正投影为马赛克图案。

在一些示例性实施方式中,所述周边区域还包括:裂缝坝,所述裂缝坝位于所述隔离坝远离所述有效区域的一侧。所述外圈走线位于所述裂缝坝远离所述有效区域的一侧,且所述外圈走线在所述衬底基板的正投影与所述裂缝坝在所述衬底基板的正投影没有交叠。

在一些示例性实施方式中,所述外圈走线和所述内圈走线的宽度比为2.7至3.3。

在一些示例性实施方式中,所述周边区域还包括:多个辅助电极。所述多个辅助电极位于所述内圈走线靠近所述衬底基板的一侧,所述多个辅助电极与所述内圈走线之间设置有绝缘层,所述内圈走线在所述衬底基板的正投影覆盖所述多个辅助电极在所述衬底基板的正投影。

在一些示例性实施方式中,所述内圈走线开设有多个开孔,所述多个辅助电极在所述衬底基板的正投影排布在所述多个开孔在所述衬底基板的正投影之间。

在一些示例性实施方式中,所述多个开孔沿着所述有效区域朝向边缘区域的方向设置为一列,间隔两个开孔排布有一个辅助电极。

在一些示例性实施方式中,所述多个辅助电极为虚设的导电结构,所述辅助电极在所述衬底基板的正投影为矩形。

在一些示例性实施方式中,所述辅助电极沿第四方向的长度大于所述开孔沿第四方向的长度,所述辅助电极沿第五方向的长度小于所述开孔沿第五方向的长度。其中,所述第四方向为所述有效区域朝向边缘区域的方向,所述第五方向与所述第四方向交叉。

在一些示例性实施方式中,所述外圈走线在所述衬底基板的正投影与第二触控绝缘层在所述衬底基板的正投影没有交叠。

另一方面,本公开实施例提供一种显示触控装置,包括如上所述的显示面板。

在阅读并理解了附图和详细描述后,可以明白其他方面。

附图说明

附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。

图1A为显示面板的盖板表面摩擦产生的负电荷的传导示意图;

图1B为盖板表面摩擦产生的负电荷在显示面板内形成负电场的示意图;

图2为一种显示母板上包括多个显示触控基板的排布示意图;

图3为本公开至少一实施例的显示面板的示意图;

图4为图3中沿P-P’方向的局部剖面示意图;

图5为图3中区域S1的局部放大示意图;

图6为图3中区域S2的局部放大示意图;

图7为图6中区域S3的局部放大示意图;

图8为本公开至少一实施例的绑定区域的绑定引脚区域的局部示意图;

图9为本公开至少一实施例的第二接地走线的一种示意图;

图10为图9中沿Q-Q’方向的局部剖面示意图;

图11为本公开至少一实施例的第二接地走线的另一示意图;

图12A至图12C为本公开至少一实施例的连接走线的排布示意图;

图13为本公开至少一实施例的第二接地走线的另一示意图;

图14为本公开至少一实施例的第二接地走线的另一示意图;

图15为图14中沿X-X’方向的局部剖面示意图;

图16为本公开至少一实施例的第二接地走线的另一示意图;

图17为本公开至少一实施例的第二接地走线的另一示意图;

图18为本公开至少一实施例的第二接地走线的另一示意图;

图19为本公开至少一实施例的第二接地走线的另一示意图;

图20为图19中沿R-R’的局部剖面示意图;

图21为本公开至少一实施例的第二接地走线的另一示意图;

图22为图21中沿V-V’方向的局部剖面示意图;

图23为本公开至少一实施例的第二接地走线的另一示意图;

图24为图23中沿U-U’方向的局部剖面示意图;

图25为本公开至少一实施例的第二接地走线的另一示意图;

图26为图25中沿Y-Y’方向的局部剖面示意图;

图27A为图25中沿Z-Z’方向的一种局部剖面示意图;

图27B为图25中沿Z-Z’方向的另一种局部剖面示意图;

图27C为图25中沿Z-Z’方向的另一种局部剖面示意图;

图28为本公开至少一实施例的第二接地走线的另一示意图;

图29为本公开至少一实施例的第二接地走线的另一示意图;

图30为图29中区域S4的局部放大示意图;

图31为图29中区域S5的局部放大示意图;

图32为本公开至少一实施例的显示触控装置的示意图。

具体实施方式

下面将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。

在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。

本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”表示两个及以上的数量。

在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。

在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。其中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的传输,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。

在本公开中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏极)与源电极(源电极端子、源区域或源极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本公开中,沟道区域是指电流主要流过的区域。

在本公开中,为区分晶体管除栅电极之外的两极,将其中一个电极称为第一极,另一电极称为第二极,第一极可以为源电极或者漏电极,第二极可以为漏电极或源电极,另外,将晶体管的栅电极称为控制极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本公开中,“源电极”和“漏电极”可以互相调换。

在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。

在本公开中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。

本公开中的“约”、“大致”,是指不严格限定界限,允许工艺和测量误差范围内的情况。

在本公开中,“宽度”表示在走线的延伸平面内,与走线延伸方向垂直的方向的长度。

本公开实施例提供的显示面板可以集成触控结构。显示面板可以包括有机发光二极管(OLED)显示基板,或者可以是量子点发光二极管(QLED,Quantum Dot Light EmittingDiodes)显示基板,或者可以是等离子体显示装置(PDP)显示基板,或者可以是电泳显示(EPD)显示基板,或者可以是液晶显示(LCD)基板。在一些示例中,显示面板可以包括OLED显示基板,OLED显示基板可以包括:衬底基板、设置在衬底基板上的驱动电路层、设置在驱动电路层上的发光元件层以及设置在发光元件层上的封装层。触控结构设置在显示基板的封装层上,形成触控结构在薄膜封装上(Touch on Thin Film Encapsulation,简称Touch onTFE)的结构,显示结构和触控结构集成在一起,具有轻薄、可折叠等优点,可以满足柔性折叠、窄边框等产品需求。

Touch on TFE结构主要包括柔性多层覆盖表面式(FMLOC,Flexible Multi-LayerOn Cell)结构和柔性单层覆盖表面式(FSLOC,Flexible Single-Layer On Cell)结构。FMLOC结构是基于互容检测的工作原理,一般采用两层金属形成驱动(Tx)电极和感应(Rx)电极,集成电路(IC)通过检测驱动电极和感应电极间的互容来实现触控动作。FSLOC结构是基于自容(或电压)检测的工作原理,一般采用单层金属形成触控电极,集成电路通过检测触控电极自容(或电压)来实现触控动作。

图1A为显示面板的盖板表面摩擦产生的负电荷的传导示意图。图1B为盖板表面摩擦产生的负电荷在显示面板内形成负电场的示意图。图1A和图1B所示均为一种显示面板的剖面结构。

如图1A和图1B所示,显示面板可以包括:依次设置的散热膜层(SCF)11、承载膜层(U-film)12、显示触控基板13、偏光片(POL,Polarizer)14、光学胶(OCA,Optically ClearAdhesive)层15、盖板(CG)16、绝缘层18和高透防指纹膜(AF)19。盖板16可以为玻璃盖板。绝缘层18的材料可以为二氧化硅(SiO

如图1A和图1B所示,当用户手指(相当于金属棒)在盖板16表面进行摩擦时,会产生大量负电荷。由于同极性电荷彼此互斥,导致负电荷会扩散运动。由于显示面板的膜层材料大部分为高电阻材料,静电上下传导(即沿垂直剖面方向传导)比横向传导(即沿水平面方向传导)更容易,因此,静电会在盖板16表面积累后向下层传导。由于显示触控基板13的显示结构层132的金属膜层(例如,电源走线135和信号走线136)和触控结构层133的金属膜层可以导走静电,因此,大部分静电更多地是从显示面板的边缘无金属层的位置向下层依次传递。如图1B所示,盖板16、光学胶层15、偏光片14、显示触控基板13和承载膜层12的第二承载层122针对负电荷均具有高传导性,油墨17和散热膜层11的不导电散热层112对负电荷具有中传导性,承载膜层12的第一承载层121对于负电荷的传导能力较低。因此,在盖板16表面产生的负电荷会从显示面板的边缘向下层传递,依次经过光学胶层15、偏光片14、显示触控基板13的绝缘层和衬底基板131,在显示触控基板13的衬底基板131远离盖板16一侧(即背面)聚集形成负电场。在显示触控基板13形成的负电场,会导致驱动电路层的晶体管的阈值电压(Vth)发生正偏,从而造成显示触控基板13发亮的情况。例如,由于绿色子像素启动敏感,显示面板常会表现出画面发绿的显示不良。

本实施例提供一种显示面板,包括:有效区域以及位于有效区域外围的周边区域。有效区域包括衬底基板、依次设置在衬底基板上的显示结构层和触控结构层。周边区域包括:设置在衬底基板上的隔离坝、第一接地走线和第二接地走线。第一接地走线位于隔离坝靠近有效区域的一侧,第二接地走线位于隔离坝远离有效区域的一侧。

本实施例提供的显示面板,通过在周边区域设置第二接地走线,可以将盖板表面产生的负电荷导出,从而阻断静电传导路径,减小显示面板内部形成的负电场,改善由于负电场造成的显示结构层发亮情况。

在一些示例性实施方式中,周边区域可以包括:位于有效区域一侧的绑定区域以及位于有效区域其它侧的边缘区域。绑定区域包括至少一个接地引脚。第一接地走线和第二接地走线与绑定区域的至少一个接地引脚电连接。在一些示例中,在绑定区域,第一接地走线和第二接地走线可以与同一个接地引脚电连接。例如,在绑定区域,第一接地走线、第二接地走线和该接地引脚为一体结构。在本示例中,第一接地走线和第二接地走线在边缘区域没有电连接,在绑定区域可以进行电连接。然而,本实施例对此并不限定。例如,第一接地走线和第二接地走线之间可以没有电连接。

在一些示例性实施方式中,触控结构层远离衬底基板一侧设置有盖板。触控结构层包括:至少一个触控导电层。第二接地走线与距离盖板最近的触控导电层为同层结构。在一些示例中,显示面板可以为FSLOC结构,触控结构层包括一个触控导电层,则第二接地走线与该触控导电层为同层结构;或者,显示面板可以为FMLOC结构,触控结构层包括两个触控导电层,则第二接地走线可以与靠近盖板的触控导电层为同层结构。然而,本实施例对此并不限定。本示例中,通过设置第二接地走线与距离盖板最近的触控导电层为同层结构,可以有效导出盖板表面摩擦产生的感应电荷。

在一些示例性实施方式中,第二接地走线和第一接地走线可以为同层结构。例如,第一接地走线和第二接地走线可以与触控结构层的一个触控导电层为同层结构。然而,本实施例对此并不限定。例如,第一接地走线和第二接地走线可以为异层结构。比如,第二接地走线可以位于第一接地走线靠近衬底基板的一侧。

在一些示例性实施方式中,触控结构层可以包括:依次设置在显示结构层上的第一触控导电层、第一触控绝缘层、第二触控导电层和第二触控绝缘层。第一接地走线和第二接地走线与第二触控导电层为同层结构。然而,本实施例对此并不限定。例如,第二接地走线与第二触控导电层为同层结构,第一接地走线与第一触控导电层为同层结构。或者,第一接地走线与第二触控导电层为同层结构,第二接地走线与第一触控导电层为同层结构。

在一些示例性实施方式中,周边区域还可以包括:辅助接地走线。辅助接地走线与第一触控导电层为同层结构。辅助接地走线与第二接地走线连接。辅助接地走线在衬底基板的正投影与第二接地走线在衬底基板的正投影部分交叠。在本示例中,通过在第二接地走线靠近衬底基板一侧设置辅助接地走线,可以更加有效阻挡来自盖板的静电向衬底基板一侧传导。

在一些示例性实施方式中,第二触控绝缘层在衬底基板的正投影与第二接地走线在衬底基板的正投影部分交叠。第一触控绝缘层在衬底基板的正投影与第二接地走线在衬底基板的正投影可以没有交叠,或者部分交叠。然而,本实施例对此并不限定。

在一些示例性实施方式中,第二接地走线可以包括主体和面向有效区域一侧的锯齿部。即,第二接地走线面向有效区域的一侧呈锯齿状。本示例可以减小第二接地走线与第二触控绝缘层之间的接触面积,从而避免发生膜层剥落(peeling)。

在一些示例性实施方式中,第二接地走线可以包括:外圈走线和内圈走线。外圈走线位于内圈走线远离有效区域的一侧。外圈走线和内圈走线分开接地。在本示例中,内圈走线和外圈走线之间没有电连接。通过设置内圈走线和外圈走线分开接地,可以利用内圈走线导出显示面板内部产生的感应电荷,利用外圈走线拦截外部引入的静电,例如显示面板进行静电放电(ESD,Electro-Static Discharge)测试时引入的静电。本示例的内圈走线和外圈走线可以将内部感应电荷和外部静电荷隔开,并采用不同路径释放,从而改善显示面板的性能。

在一些示例性实施方式中,内圈走线可以开设有多个开孔,多个开孔沿着有效区域朝向边缘区域的方向设置为至少一列。例如,内圈走线开设的多个开孔沿着有效区域朝向边缘区域的方向仅设置为一列,多个开孔在衬底基板的正投影与位于周边区域并与显示结构层为同层结构的导电层在衬底基板的正投影可以没有交叠。本示例通过在内圈走线开设开孔,可以减小第二接地走线与第二触控绝缘层之间的大面积接触,从而避免发生膜层剥落。而且,开孔在衬底基板的正投影可以与其他导电层在衬底基板的正投影没有交叠,从而避免静电通过开孔向下传导影响其他导电层。然而,本实施例对此并不限定。例如,多个开孔沿着有效区域朝向边缘区域的一侧可以排布为两列或两列以上。

在一些示例性实施方式中,第二接地走线可以包括:外圈走线、内圈走线以及连接在外圈走线和内圈走线之间的多个连接走线。外圈走线位于内圈走线远离有效区域的一侧。在一些示例中,至少一个连接走线在衬底基板的正投影为矩形。或者,在一些示例中,至少一个连接走线在衬底基板的正投影为S形。本示例通过设置S形的连接走线,可以增加第二接地走线的电阻,从而防止静电击穿转接孔,起到保护作用。然而,本实施例对此并不限定。

在一些示例性实施方式中,连接走线的数目可以小于或等于40个。例如,连接走线的数目可以为6个、19个或40个。然而,本实施例对此并不限定。

在一些示例性实施方式中,外圈走线和内圈走线之间设置多个尖端放电结构。至少一个尖端放电结构包括:第一电极和第二电极。第一电极与外圈走线为一体结构,第二电极位于第一电极和内圈走线之间。第一电极具有第一尖端;第一电极的第一尖端面对第二电极,且第一尖端与第二电极之间存在间隙。在一些示例中,第二电极具有第二尖端;第二电极的第二尖端面对第一电极的第一尖端,且第一尖端和第二尖端之间存在间隙。或者,在一些示例中,第二电极在衬底基板的正投影可以为矩形。然而,本实施例对此并不限定。本示例通过设置多个尖端放电结构,可以增加静电吸收回路,避免静电集中放电,从而起到对显示面板的保护作用。

在一些示例性实施方式中,外圈走线和内圈走线之间设置多个防静电电容,至少一个防静电电容包括第一极板和第二极板。第一极板与外圈走线为一体结构,第二极板位于第一极板靠近内圈走线的一侧。在一些示例中,防静电电容的第一极板接地,第二极板为虚设的导电结构。在一些示例中,防静电电容的第一极板和第二极板可以为多层叠设结构,通过增加极板厚度而增大电容量。在一些示例中,第一极板具有面向第二极板的多个第一梳齿部,第二极板具有面向第一极板的多个第二梳齿部。多个第一梳齿部和多个第二梳齿部相互穿插。如此一来,可以通过增加两个极板之间的交叠面积来增大电容量。在本示例中,通过设置防静电电容,可以在瞬时高压静电接入时对防静电电容充电,起到分压作用,从而对显示面板的保护作用。

在一些示例性实施方式中,外圈走线和内圈走线之间连接有多个晶体管。单个晶体管的第一极与内圈走线电连接,晶体管的第二极与外圈走线电连接,晶体管的栅电极与第一电源线电连接。在一些示例中,晶体管可以为P型晶体管。在本示例中,晶体管可以将显示面板内部产生的感应电荷通过内圈走线有效导出至外圈走线,而且可以阻挡外部静电荷从外部进入内部。

在一些示例性实施方式中,周边区域还可以包括:多个辅助电极。多个辅助电极位于内圈走线靠近衬底基板的一侧。多个辅助电极与内圈走线之间设置有绝缘层,内圈走线在衬底基板的正投影覆盖多个辅助电极在衬底基板的正投影。在本示例中,通过设置辅助电极,可以在内圈走线和辅助电极之间形成保护电容,从而提供内部感应电荷的释放路径。

下面通过一些示例对本实施例的显示面板进行举例说明。

在一些示例性实施方式中,以柔性显示面板为例进行说明。在柔性显示面板的制备过程中,先制备显示母板,然后对显示母板进行切割,从而使显示母板被分割成多个显示触控基板,分开的显示触控基板均可以用于形成单个显示面板。图2为一种显示母板上包括多个显示触控基板的排布示意图。如图2所示,显示母板100上的多个基板区域200呈周期性规则排布,切割区域300位于基板区域200的外侧。基板区域200至少包括有效区域AA和位于有效区域AA至少一侧的绑定区域B1。例如,有效区域AA可以包括规则排布的多个子像素,绑定区域B1可以包括扇出区和绑定引脚。切割区域300内设置有第一切割道X1和第二切割道X2。在显示母板的所有膜层制备完成后,切割设备分别沿着第一切割道X1和第二切割道X2进行粗切割和精切割,形成显示触控基板。

图3为本公开至少一实施例的显示面板的示意图。本示例的显示面板以FMLOC结构为例进行示意。然而,本实施例对此并不限定。在另一些示例中,显示面板可以为FSLOC结构,具有单个触控导电层,第一接地走线和第二接地走线可以均与该触控导电层为同层结构。

在一些示例性实施方式中,如图3所示,在平行于显示面板的平面内,显示面板可以包括:有效区域AA、以及位于有效区域AA外围的周边区域。周边区域可以包括:位于有效区域AA一侧的绑定区域B1以及位于有效区域AA其它侧的边缘区域B2。对于叠设的显示基板和触控结构,有效区域AA既可以是触控区域,或者可以是显示区域,以下描述中的触控区域和显示区域均是指有效区域AA。

在一些示例性实施方式中,如图3所示,触控区域至少可以包括规则排布的多个触控电极,边缘区域B2至少包括多条触控引线、第一接地走线331和第二接地走线332,绑定区域B1至少包括将多条触控引线、第一接地走线331和第二接地走线332连接至外部控制装置的引脚。

在一些示例性实施方式中,触控结构可以为互容式结构。如图3所示,触控区域可以包括多个第一触控单元310和多个第二触控单元320。第一触控单元310具有沿第一方向D1延伸的线形状,多个第一触控单元310沿第二方向D2依次排列;第二触控单元320具有沿第二方向D2延伸的线形状,多个第二触控单元320沿第一方向D1依次排列。其中,第一方向D1与第二方向D2交叉,例如,第一方向D1垂直于第二方向D2。每个第一触控单元310可以包括沿第一方向D1依次排列的多个第一触控电极311和第一连接部312,第一触控电极311和第一连接部312交替设置且依次电连接。每个第二触控单元320可以包括沿第二方向D2依次排列的多个第二触控电极321,多个第二触控电极321间隔设置,相邻的第二触控电极321通过第二连接部322彼此电连接。在一些示例中,第二连接部322所在的膜层不同于第一触控电极311和第二触控电极321所在的膜层。第一触控电极311和第二触控电极321在第三方向D3上交替布置,第三方向D3与第一方向D1和第二方向D2均交叉。

在一些示例性实施方式中,多个第一触控电极311、多个第二触控电极321和多个第一连接部312可以同层设置在触控层,并且可以通过同一次图案化工艺形成,第一触控电极311和第一连接部312可以为相互连接的一体结构。第二连接部322可以设置在桥接层,通过过孔使相邻的第二触控电极321相互电连接,触控层与桥接层之间设置有触控绝缘层。在一些可能的实现方式中,多个第一触控电极311、多个第二触控电极321和多个第二连接部322可以同层设置在触控层,第二触控电极321和第二连接部322可以为相互连接的一体结构,第一连接部312可以设置在桥接层,通过过孔使相邻的第一触控电极311相互电连接。在一些示例中,第一触控电极可以是驱动(Tx)电极,第二触控电极可以是感应(Rx)电极。或者,第一触控电极可以是感应(Rx)电极,第二触控电极可以是驱动(Tx)电极。然而,本实施例对此并不限定。

在一些示例性实施方式中,第一触控电极311和第二触控电极321可以具有菱形状,例如可以是正菱形,或者是横长的菱形,或者是纵长的菱形。在一些可能的实现方式中,第一触控电极311和第二触控电极321可以具有三角形、正方形、梯形、平行四边形、五边形、六边形和其它多边形中的任意一种或多种,本公开在此不做限定。

在一些示例性实施方式中,第一触控电极311和第二触控电极321可以是透明导电电极形式。在另一些示例性实施方式中,第一触控电极311和第二触控电极321可以是金属网格形式,金属网格由多条金属线交织形成,金属网格包括多个网格图案,网格图案是由多条金属线构成的多边形。金属网格式的第一触控电极311和第二触控电极321具有电阻小、厚度小和反应速度快等优点。

在一些示例性实施方式中,如图3所示,绑定区域B1位于触控区域AA的一侧,沿着远离触控区域AA的方向(例如,第二方向D2),绑定区域B1可以包括:依次设置的第一扇出区201、弯折区202、第二扇出区203、防静电区204、驱动芯片区205和绑定引脚区206。第一扇出区201可以设置显示基板的信号传输线和触控引线。显示基板的信号传输线至少可以包括高压线VDD、低压线VSS和多条数据传输线。多条数据传输线配置为以扇出(Fan-out)走线方式连接显示区域的数据线(Data Line),高压线VDD和低压线VSS配置为分别连接显示基板的高电平电源线和低电平电源线。多条触控引线配置为与绑定引脚区206的多个引脚对应连接。弯折区202可以设置凹槽,凹槽配置为使第二扇出区203、防静电区204、驱动芯片区205和绑定引脚区206弯折到触控区域AA的背面。第二扇出区203可以设置多条触控引线和以扇出走线方式引出的多条数据传输线。防静电区204可以设置防静电电路,防静电电路配置为消除静电。驱动芯片区205可以设置源驱动电路(Driver IC),源驱动电路配置为与第二扇出区203的多条数据传输线电连接。在一些可能的实现方式中,驱动芯片区205可以设置触控与显示驱动器集成电路(TDDI,Touch and Display Driver Integration)。绑定引脚区206可以设置多个引脚(PIN),多个引脚与多条触控引线和源驱动电路的多条信号传输线对应电连接,并通过绑定的柔性电路板(FPC)连接外部控制装置。

在一些示例性实施方式中,如图3所示,边缘区域B2位于有效区域AA远离绑定区域B1的多侧。例如,绑定区域B1位于有效区域AA的下侧,边缘区域B2位于有效区域AA的上侧、左侧和右侧。边缘区域B2至少设置有第一接地走线331、第二接地走线332以及多条触控引线。第二接地走线332位于第一接地走线331远离有效区域AA的一侧。第一接地走线331和第二接地走线332从边缘区域B2延伸至绑定区域B1,并在绑定区域B1的绑定引脚区206与接地引脚电连接。例如,第一接地走线331和第二接地走线332可以在绑定区域B1的绑定引脚区206与同一个接地引脚电连接。然而,本实施例对此并不限定。在本示例中,在边缘区域B2,第一接地走线331和第二接地走线332之间没有电连接,在绑定区域B1,第一接地走线331和第二接地走线332可以电连接。

在一些示例性实施方式中,多条触控引线可以包括多条驱动引线和多条感应引线。以第一触控电极为驱动电极,第二触控电极为感应电极为例,驱动引线的第一端与第一触控电极的电连接,驱动引线的第二端沿着边缘区域B2延伸到绑定区域B1。感应引线的第一端与第二触控电极电连接,感应引线的第二端沿着边缘区域B2延伸到绑定区域B1。然而,本实施例对此并不限定。

在一些示例性实施方式中,绑定区域B1和边缘区域B2的外侧设置有第一切割线和第二切割线,第二切割线为精切割线,位于绑定区域B1和边缘区域B2的外围,第二切割线的形状与绑定区域B1和边缘区域B2的外轮廓相同。第一切割线为粗切割线,位于第二切割线的外围,第一切割线的形状与第二切割线的轮廓可以大致相同。在本示例中,第二接地走线332远离有效区域AA的边缘可以通过第二切割线得到。然而,本实施例对此并不限定。

图4为图3中沿P-P’方向的局部剖面示意图。在一些示例性实施方式中,如图3和图4所示,在垂直于显示面板的方向上,有效区域AA的显示面板可以包括:衬底基板30、依次设置在衬底基板30上的显示结构层41和触控结构层31。显示结构层41可以包括:依次设置在衬底基板30上的驱动电路层42、发光结构层43和封装层44。触控结构层31以封装层44作为基底。在一些可能的实现方式中,显示结构层可以包括其它膜层,触控结构层与封装层之间可以设置其它膜层,本公开在此不做限定。

在一些示例性实施方式中,衬底基板30可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高衬底基板的抗水氧能力,半导体层的材料可以采用非晶硅(a-Si)。然而,本实施例对此并不限定。

在一些示例性实施方式中,有效区域AA的驱动电路层42可以包括构成像素电路的晶体管和存储电容。在图4中以有效区域AA的一个子像素的像素电路的一个晶体管(例如,第一晶体管421)为例进行示意。在一些示例中,如图4所示,有效区域AA的驱动电路层42可以包括:依次设置在衬底基板30上的半导体层、第一绝缘层411、第一栅金属层、第二绝缘层412、第二栅金属层、第三绝缘层413、第一源漏金属层、第四绝缘层414、第一平坦层415、第二源漏金属层和第二平坦层416。在一些示例中,半导体层至少包括:第一晶体管421的有源层。第一栅金属层至少包括:第一晶体管421的栅电极、像素电路的电容的第一电容极板。第二栅金属层至少包括:像素电路的电容的第二电容极板。第一源漏金属层至少包括:第一晶体管421的第一极和第二极。第二源漏金属层至少包括:阳极连接电极428,阳极连接电极428配置为连接发光元件的阳极和像素电路。

在一些示例性实施方式中,第一绝缘层411、第二绝缘层412、第三绝缘层413和第四绝缘层414可以为无机绝缘层,第一平坦层415和第二平坦层416可以为有机绝缘层。例如,第一绝缘层411、第二绝缘层412、第三绝缘层413和第四绝缘层414可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。其中,第一绝缘层411和第二绝缘层412可称之为栅绝缘(GI)层,第三绝缘层413可称之为层间绝缘(ILD)层,第四绝缘层414可称之为钝化(PVX)层。第一栅金属层、第二栅金属层、第一源漏金属层和第二源漏金属层可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。半导体层可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩或聚噻吩等材料,即本公开适用于基于氧化物(Oxide)技术、硅技术或有机物技术制造的晶体管。

在一些示例性实施方式中,如图4所示,有效区域AA的发光结构层43可以包括:阳极431、像素定义层434、有机发光层432和阴极433。阳极431设置在第二平坦层416上,通过第二平坦层416上开设的过孔与阳极连接电极428电连接。像素定义层434设置在阳极431和第二平坦层416上,其上设置有像素开口,像素开口暴露出阳极431,有机发光层432设置在像素开口内,阴极433设置在有机发光层432上,有机发光层432在阳极431和阴极433施加电压的作用下出射相应颜色的光线。在一些示例中,像素定义层434可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等材料。

在一些示例性实施方式中,如图4所示,有效区域AA的封装层44可以包括叠设的第一封装层441、第二封装层4442和第三封装层443,第一封装层441和第三封装层443可采用无机材料,第二封装层442可采用有机材料,第二封装层442设置在第一封装层441和第三封装层443之间,可以保证外界水汽无法进入发光结构层43。

在一些示例性实施方式中,如图4所示,有效区域AA的触控结构层31可以包括:依次叠设的缓冲层(图4中省略示意)、第一触控导电层(TMA)、第一触控绝缘层(TLD)301、第二触控导电层(TMB)和第二触控绝缘层(TOC)302。例如,第一触控导电层可以为前述的桥接层,第二触控导电层可以为前述的触控层。第一触控导电层可以包括第二连接部322,第二触控导电层可以包括第一触控电极311、第二触控电极321以及第一连接部312。在一些示例中,缓冲层和第一触控绝缘层301可以采用无机材料,第二触控绝缘层302可以采用有机材料。例如,缓冲层和第一触控绝缘层301可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第二触控绝缘层302可以采用聚酰亚胺(PI)等。然而,本实施例对此并不限定。

在一些示例性实施方式中,如图4所示,边缘区域B1沿着远离有效区域AA的方向,可以包括:第一子边缘区域B11、第二子边缘区域B12和第三子边缘区域B13。第一子边缘区域B11至少包括:栅极驱动电路、多条触控引线以及第一接地走线。在本示例中,触控引线和第一接地走线可以为双层走线结构。例如,一条触控引线可以包括电连接的第一子引线313a和第二子引线313b。第一接地走线可以包括电连接的第一子接地走线331a和第二子接地走线331b。第二子边缘区域B12位于第一子边缘区域B11远离有效区域AA的一侧,第二子边缘区域B12至少包括:第一隔离坝513、第二隔离坝514、以及至少一条(例如三条)第一面板裂纹检测(PCD,Panel Crack Detection)线516。第一面板裂纹检测线516可以配置为对显示结构层41进行检测。第三子边缘区域B13位于第二子边缘区域B12远离有效区域AA的一侧,第三子边缘区域B13至少包括:裂缝坝515以及第二接地走线332。

在一些示例性实施方式中,如图4所示,第一子边缘区域B11的显示面板可以包括:衬底基板30以及依次设置在衬底基板30上的驱动电路层42、第一平坦层415、第二平坦层416、第一连接电极512、隔离柱511、阴极433、封装层44、设置在封装层44上的多条第一子引线313a和第一子接地走线331a、第一触控绝缘层301、设置在第一触控绝缘层301上的多条第二子引线313b和第二子接地走线331b、以及第二触控绝缘层302。第一子边缘区域B11的驱动电路层42可以包括构成栅驱动电路的晶体管和存储电容。在一些示例中,第一子边缘区域B1的栅驱动电路可以包括扫描驱动电路和发光控制驱动电路。在图4中边缘区域B1以扫描驱动电路的一个晶体管(例如,第二晶体管422)和一个电容(例如,第一电容424)、以及发光控制驱动电路的一个晶体管(例如,第三晶体管423)和一个电容(例如,第二电容425)为例进行示意。第一子边缘区域B1的驱动电路层的膜层结构可以与有效区域AA的驱动电路层的膜层结构类似,故于此不再赘述。第一子接地走线331a和多条第一子引线313a与第一触控导电层为同层结构,第二子接地走线331b和多条第二子引线313b与第二触控导电层为同层结构,多条第一子引线313a和多条第二子引线313b可以一一对应电连接,从而实现双层走线结构的触控引线。第一子接地走线331a和第二子接地走线331b电连接,实现双层走线结构的第一接地走线。在触控引线和第一接地走线之间设置有保护(Guard)线,保护线包括电连接的第一保护子线315a和第二保护子线315b,第一保护子线315a与第一触控导电层为同层结构,第二保护子线315b与第二触控导电层为同层结构。换言之,在本示例中,保护线为双层走线结构。第一接地走线远离触控引线和保护线一侧还可以设置至少一条(例如两条)第二面板裂纹检测线314。第二面板裂纹检测线314配置为对触控结构层31进行检测。第二面板裂纹检测线314与第二触控导电层为同层结构。然而,本实施例对此并不限定。在另一些示例中,第一接地走线、触控引线和保护线可以为单层走线结构,例如可以与第一触控导电层为同层结构或者可以与第二触控导电层为同层结构。

在一些示例性实施方式中,如图4所示,第二子边缘区域B12的显示面板可以包括:衬底基板30以及设置在衬底基板30上的复合绝缘层、第一面板裂纹检测线516、低压线426、第二连接电极427、隔离坝(例如,第一隔离坝513和第二隔离坝514)、第一封装层441、第三封装层443、第一触控绝缘层301和第二触控绝缘层302。复合绝缘层可以包括:叠设在衬底基板30上的第一绝缘层411至第三绝缘层413。第一面板裂纹检测线516可以设置在第二绝缘层412上,可以与第二栅金属层为同层结构。低压线426可以与驱动电路层42的第一源漏金属层为同层结构,第二连接电极427可以与驱动电路层42的第二源漏金属层为同层结构。阴极433可以通过第一连接电极512与第二连接电极427电连接,第一连接电极512可以通过第二连接电极427与低压线426电连接。第一隔离坝513位于第二隔离坝514靠近有效区域AA的一侧。第二隔离坝514可以由第一坝基、第二坝基、第三坝基和第四坝基叠设形成。第一隔离坝513可以由第二坝基、第三坝基和第四坝基叠设形成。其中,第一坝基与可以第一平坦层415为同层结构,第二坝基可以与第二平坦层416为同层结构,第三坝基可以与像素定义层434为同层结构,第四坝基可以与隔离柱511为同层结构。然而,本实施例对此并不限定。

在一些示例性实施方式中,如图4所示,第三子边缘区域B13的显示面板可以包括设置在衬底基板30上的裂缝坝515以及第二接地走线332。裂缝坝515形成在复合绝缘层上,裂缝坝515可以包括多个间隔设置的裂缝,裂缝可以暴露出衬底基板30。第一平坦层415可以覆盖裂缝坝515。第二接地走线332设置在覆盖裂缝坝515的第一平坦层415上。第二触控绝缘层302可以暴露出第二接地走线332的部分表面。在一些示例中,第一触控绝缘层301与第二接地走线332在衬底基板30的正投影可以没有交叠。第二接地走线332在衬底基板30的正投影与裂缝坝515在衬底基板30的正投影可以部分交叠。然而,本实施例对此并不限定。例如,第一触控绝缘层301与第二接地走线332在衬底基板30的正投影可以部分交叠。在本示例中,在边缘区域B1形成凹凸状的裂缝坝515,是用于避免在显示母板切割过程中影响有效区域AA和第一子边缘区域B11的膜层结构,多个间隔设置的裂缝不仅能够减小有效区域AA和第一子边缘区域B11的受力,而且能够截断裂纹向有效区域AA和第一子边缘区域B11方向传递。

在一些示例性实施方式中,如图4所示,第一接地走线331位于第一子边缘区域B11,隔离坝位于第二子边缘区域B12,第二接地走线332位于第三子边缘区域B13。第一接地走线331在衬底基板30的正投影位于隔离坝靠近有效区域AA的一侧,第二接地走线332在衬底基板30的正投影位于隔离坝远离有效区域AA的一侧。在本示例中,第一接地走线331和第二接地走线332可以为同层结构,例如均与第二触控导电层为同层结构。然而,本实施例对此并不限定。在另一些示例中,第一接地走线和第二接地走线可以为异层结构,比如,第一接地走线可以与第一触控导电层为同层结构,第二接地走线可以与第二触控导电层为同层结构。在另一些示例中,第二接地走线可以与触控结构层靠近衬底基板的任一导电层为同层结构。

本示例性实施例中,通过在第三子边缘区域B13设置第二接地走线332,可以将盖板表面摩擦产生的负电荷利用第二接地走线332导出。另外,由于第二触控导电层相较于第一触控导电层具有较大的厚度和较小的电阻,且第二触控导电层相较于其他导电层更接近盖板,通过设置第二接地走线332与第二触控导电层同层,可以有效导出大部分静电,从而减小显示面板内部形成的负电场,改善由于负电场造成的发亮问题。

在一些示例性实施方式中,第二接地走线332在衬底基板30的正投影与其他导电层在衬底基板30的正投影可以没有交叠。通过设置第二接地走线332避开下方所有的金属膜层,可以防止对第二接地走线332下方的金属膜层造成静电击伤。

图5为图3中区域S1的局部放大示意图。图5中简单示意了边缘区域B1内的栅极驱动电路420、以及多条走线的位置,省略示意了其余结构。如图5所示,第一接地走线331位于多条触控引线313远离有效区域AA的一侧,第一接地走线331和多条触控引线313之间设置有保护线315,第二面板裂纹检测线314位于第一接地走线331远离保护线315和多条触控引线313的一侧。第一接地走线331和第二面板裂纹检测线314在衬底基板的正投影与栅极驱动电路420在衬底基板的正投影可以存在交叠。第一面板裂纹检测线516在衬底基板的正投影位于第二接地走线332在衬底基板的正投影和第二面板裂纹检测线314在衬底基板的正投影之间。第二接地走线332在衬底基板的正投影靠近有效区域AA的一侧最接近的金属走线为第一面板裂纹检测线516。

在一些示例性实施方式中,如图5所示,第二接地走线332的宽度大于第一接地走线331的宽度。本示例中,走线的宽度是指经过切割设备切割后形成的显示触控基板上的走线的宽度。在一些示例中,第一接地走线331的宽度L1可以约为13.5微米至16.5微米,例如可以约为15微米。第二接地走线332的宽度L2可以约为100微米至300微米,例如可以约为125微米或者可以约为300微米。第二接地走线332与最邻近的金属走线(即第一面板裂纹检测线516)之间的间距L3可以约为67.5微米至82.5微米,例如可以约为75微米。然而,本实施例对此并不限定。

图6为图3中区域S2的局部放大示意图。图7为图6中区域S3的局部放大示意图。图6和图7中均简单示意了第一接地走线331和第二接地走线332的位置,省略示意了其余结构。如图6和图7所示,第一接地走线331和第二接地走线332可以从边缘区域B2延伸至绑定区域B1。在第一扇出区201和第二扇出区203之间的弯折区域202,第一接地走线331断开,通过第一弯折走线401电连接;第二接地走线332断开,通过第二弯折走线402电连接;触控引线313断开,通过第三弯折走线403电连接。如图7所示,在绑定区域B1的第一扇出区201和弯折区域202的交界处,第一接地走线331可以通过第一过孔K1与第一弯折走线401电连接,第二接地走线332可以通过第一过孔K1与第二弯折走线402电连接,触控引线313可以通过第一过孔K1与第三弯折走线403电连接。在本示例中,第一接地走线331、第二接地走线332和触控引线313可以与第二触控导电层为同层结构,第一弯折走线401、第二弯折走线402和第三弯折走线403可以与第一源漏金属层为同层结构。在本示例中,通过在弯折区域202对第一接地走线331和第二接地走线332通过弯折走线进行换层连接,可以减薄弯折区域202的膜层厚度,从而有利于弯折。

在一些示例中,如图7所示,可以在第一扇出区域201的第二接地走线332上进行挖孔,以避免第二接地走线332和第二触控绝缘层大面积接触,导致膜层剥落问题。

图8为本公开至少一实施例的绑定区域的绑定引脚区域的局部示意图。在一些示例性实施方式中,如图8所示,绑定引脚区域206设置多个绑定引脚(例如,包括接地引脚405)。第一接地走线331和第二接地走线332延伸至绑定引脚区域206,并与接地引脚405电连接,以便后续与柔性电路板绑定连接。在绑定引脚区域206,第一接地走线331、第二接地走线332和接地引脚405可以为一体结构,例如均与第二触控导电层为同层结构。然而,本实施例对此并不限定。例如,绑定引脚区域可以包括多个接地引脚,第一接地走线和第二接地走线在绑定引脚区域可以电连接不同的接地引脚。

下面通过多个示例对第二接地走线进行举例说明。下述示例中均以图3中区域S1的第二接地走线332为例进行说明。其中,第二接地走线332可以与第二触控导电层为同层结构。在本示例中,沿着有效区域AA朝向边缘区域B2的方向可以为第四方向,与第四方向在同一平面内且与第四方向交叉的方向为第五方向。例如,第五方向与第四方向位于同一平面内,且第五方向垂直于第四方向。在区域S1中,第一方向D1可以平行于第四方向,第二方向D2可以平行于第五方向。

图9为本公开至少一实施例的第二接地走线的一种示意图。图10为图9中沿Q-Q’方向的局部剖面示意图。在一些示例性实施方式中,如图9所示,第二接地走线332可以包括:外圈走线3322、内圈走线3321以及连接走线3323。外圈走线3322位于内圈走线3321远离有效区域AA的一侧,外圈走线3322和内圈走线3321之间通过多个连接走线3323电连接。连接走线3323在衬底基板30的正投影可以为矩形。连接走线3323的一端与外圈走线3322电连接,另一端与内圈走线3321电连接。外圈走线3322、内圈走线3321和连接走线3323可以为一体结构。内圈走线3321上开设有多个开孔3321a,且多个开孔3321a可以沿第四方向D4排布为三列。相邻两列的开孔3321a在第五方向D5上存在错位。然而,本实施例对此并不限定。

在一些示例性实施方式中,如图9和图10所示,第二触控绝缘层302在衬底基板30上的正投影与第二接地走线332在衬底基板30的正投影部分交叠。例如,第二触控绝缘层302可以覆盖内圈走线3321,不覆盖外圈走线3322。在本示例中,通过对内圈走线3321采用开孔设计,可以避免第二接地走线332与第二触控绝缘层302大面积直接接触,可以避免膜层剥落情况。

图11为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图11所示,第二接地走线332可以包括:外圈走线3322、内圈走线3321、以及连接走线3323。外圈走线3322位于内圈走线3321远离有效区域AA的一侧,外圈走线3322和内圈走线3321之间通过多个连接走线3323电连接。

在一些示例性实施方式中,如图11所示,多个连接走线3323位于外圈走线3322和内圈走线3321之间。单个连接走线3323的一端电连接外圈走线3322,另一端电连接内圈3321。外圈走线3322、内圈走线3321和连接走线3323可以为一体结构。在一些示例中,单个连接走线3323在衬底基板的正投影可以为S型。在一些示例中,单个连接走线3323的电阻可以约为10欧姆至20欧姆,例如可以约为12欧姆。单个连接走线3323可以包括多个依次连接的第一延伸段3323a和第二延伸段3323b。第一延伸段3323a可以沿第四方向D4延伸,第二延伸段3323b可以沿第五方向D5延伸。依次连接的第二延伸段3323b、第一延伸段3323a和第二延伸段3323b可以形成一个迂回。多个迂回可以沿第四方向D4依次排布。单个连接走线3323可以包括多个迂回。例如,单个连接走线3323的迂回个数可以约为3至5个。如图11所示,单个连接走线3323可以包括3个迂回。在一些示例中,第一延伸段3323a的长度(即沿第四方向D4的长度)小于第二延伸段3323b的长度(即沿第五方向D5的长度)。第一延伸段3323a的宽度(即沿第五方向D5的长度)与第二延伸段3323b的宽度(即沿第四方向D4的长度)可以大致相同。例如,第一延伸段3323a的宽度L30可以约为3微米至5微米,比如可以约为5微米。相邻第二延伸段3323b之间的间距L31可以约为3微米至5微米,比如可以约为5微米。第二延伸段3323b与相邻的外圈走线3322之间的间距、第二延伸段3323b与相邻的内圈走线3321之间的间距可以与间距L31大致相同。然而,本实施例对此并不限定。例如,连接走线的第一延伸段的长度可以大于第二延伸段的长度,依次连接的第一延伸段、第二延伸段和第一延伸段可以形成一个迂回,多个迂回可以沿第五方向依次排布。本示例性实施方式中,利用连接走线电连接外圈走线和内圈走线,且通过多次折回的方式延长连接走线的长度,可以提高接地电阻,从而增加第二接地走线的电阻,并提升静电防护效果。

在一些示例性方式中,连接走线的数量可以根据第二接地走线的总电阻和电容的数量来匹配,以避免设置过多的连接走线导致因并联电阻过小而引入外部电荷,使ESD测试失效,或者设置太少的连接走线导致因工艺风险而使线路被瞬间ESD浪涌电流烧断失效。在一些示例中,连接走线的数目可以小于或等于40个。例如,连接走线的数目可以约为20至40个,比如可以约为6个、19个或40个。

图12A至图12C为本公开至少一实施例的连接走线的排布示意图。图12A至图12C中简单示意了多个连接走线的位置。如图12A所示,第二接地走线可以包括6个连接走线3323。6个连接走线3323可以分别位于上侧、左侧和右侧的边缘区域,且每一侧排布2个连接走线3323。如图12B所示,第二接地走线可以包括19个连接走线3323。19个连接走线3323可以分别排布在上侧、左侧和右侧的边缘区域,其中,上侧的边缘区域排布有5个,左侧和右侧的边缘区域分别排布7个。如图12C所示,第二接地走线可以包括40个连接走线3323。40个连接走线3323可以分别排布在上侧、左侧和右侧的边缘区域,其中,上侧的边缘区域排布有10个,左侧和右侧的边缘区域分别排布15个。在一些示例中,左侧和右侧边缘区域内的连接走线3323的排布位置可以相对于显示面板在第一方向D1的中心线对称,上侧边缘区域内的连接走线3323的排布位置可以关于显示面板在第一方向D1的中心线对称。然而,本实施例对此并不限定。本示例性实施方式中,通过控制连接走线的数量,可以实现增加第二接地走线的电阻,而且减小对相邻金属膜层的静电击穿风险。

在一些示例性实施方式中,如图11所示,内圈走线3321开设有多个开孔3321a,多个开孔3321a沿第四方向D4排布为一列。多个开孔3321a沿垂直于第四方向D4的第五方向D5依次排布。在一些示例中,开孔3321a在衬底基板的正投影可以为矩形。开孔3321a的大小与有效区域的子像素的尺寸可以大致相同,相邻开孔3321a的间隔与有效区域的相邻子像素的间隔可以大致相同。例如,开孔3321a在衬底基板的正投影的尺寸可以约为5微米×5微米。然而,本实施例对此并不限定。例如,开孔在衬底基板的正投影可以为圆形或椭圆形等其他形状。本示例中,通过在内圈走线设置开孔,可以减小第二接地走线与第二触控绝缘层的直接接触面积,从而降低膜层剥落风险。

在一些示例性实施方式中,如图11所示,外圈走线3322和内圈走线3321之间设置多个防静电电容3324。防静电电容3324可以排布在相邻连接走线3323之间的间隔内。至少一个防静电电容3324可以包括第一极板3324a和第二极板3324b。第一极板3324a与外圈走线3322可以为一体结构。第二极板3324b位于第一极板3324a靠近内圈走线3321的一侧。在本示例中,外圈走线3322、内圈走线3321、连接走线3323和防静电电容3324的第一极板3324a可以为一体结构。第一极板3324a具有面向第二极板3324b的多个第一梳齿部,第二极板3324b具有面向第一极板3324a的多个第二梳齿部。多个第一梳齿部和第二梳齿部可以相互穿插。如此一来,可以在有限空间内增大两个极板的交叠面积,减小电容间距,从而增大电容量。然而,本实施例对此并不限定。在本示例中,通过在内圈走线和外圈走线之间设置防静电电容,可以在通过瞬时高压静电时对防静电电容充电,起到分压作用,改善静电击穿风险。

在一些示例性实施方式中,如图11所示,外圈走线3322和内圈走线3321的宽度比可以约为2.7至3.3,例如可以约为3。在一些示例中,内圈走线3321的宽度L21可以约为15微米至25微米,例如可以约为20微米。外圈走线3322的宽度L22可以约为50微米至70微米,例如可以约为60微米。外圈走线3322和内圈走线3321之间的间距L23可以约为50微米至60微米,例如可以约为45微米或55微米。防静电电容3324的第二极板3324b与内圈走线3321之间的间距L24可以约为12微米至35微米,例如可以约为15微米或30微米。防静电电容3324的第二极板3324b远离外圈走线3322的边缘与外圈走线3322靠近第二极板3324b边缘之间的距离L25可以约为21微米至28微米,例如可以约为25微米。防静电电容3324的第二极板3324b沿第五方向D5延伸的主体部分的宽度L26、防静电电容3324的第二极板3324b的第二梳齿部的宽度L27、第一极板3324a的第一梳齿部的宽度、以及第一极板3324a的第一梳齿部和第二极板3324b的第二梳齿部之间的间距L28可以大致相同,比如可以约为4微米至6微米,例如可以约为5微米。防静电电容3324的第二极板3324b的第二梳齿部与外圈走线3322之间的间距L29可以约为4微米至6微米,例如可以约为5微米。然而,本实施例对此并不限定。本示例通过设置如上尺寸的第二接地走线,可以达到较优的静电传导效果。

本示例性实施方式中,在边缘区域设置的第二接地走线可以通过连接走线将显示面板内部产生的感应电荷导出,连接走线和防静电电容的组合结构可以缓冲ESD测试的放电时间常数,避免将静电荷从显示面板外部引入内部,从而保护内部线路。

图13为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图13所示,第二接地走线332的内圈走线3321开设有多个开孔3321a,且多个开孔3321a沿第四方向D4排布为两列。相邻两列的开孔3321a在第五方向D5上错位排布。在本示例中,第一列开孔(例如,靠近有效区域的一列开孔)中的一个开孔3321a在第四方向D4上与第二列开孔(例如,远离有效区域的一列开孔)中的两个相邻开孔3321a之间的间隔对齐。在一些示例中,内圈走线3321的宽度L21’可以约为67微米至83微米,例如可以约为75微米。外圈走线3322的宽度L22’可以约为50微米至70微米,例如可以约为60微米。然而,本实施例对此并不限定。关于本实施例的第二接地走线的其余结构可以参照图11所示实施例的说明,故于此不再赘述。

图14为本公开至少一实施例的第二接地走线的另一示意图。图15为图14中沿X-X’方向的局部剖面示意图。在一些示例性实施方式中,如图14和图15所示,在第二接地走线332的内圈走线3321靠近衬底基板30的一侧设置辅助电极333。辅助电极333可以与第一触控导电层为同层结构。第一触控绝缘层301可以覆盖辅助电极333。辅助电极333与第二接地走线332的内圈走线3321可以作为电容的两个极板,形成保护电容,起到保护作用。在本示例中,辅助电极333为虚设的导电结构,没有电连接关系。在一些示例中,辅助电极333在衬底基板30的正投影可以为矩形。辅助电极333在衬底基板30的正投影可以间隔排布在多个开孔3321a在衬底基板的正投影之间。辅助电极333在衬底基板30的正投影与开孔3321a在衬底基板30的正投影没有交叠。例如,多个开孔3321a沿第四方向D4排布为一列,多个辅助电极333可以沿第四方向D4排布为一列,且在第五方向D5上,多个辅助电极333和多个开孔3321a可以间隔排布。比如,间隔两个开孔3321a可以排布一个辅助电极333。然而,本实施例对此并不限定。例如,一个开孔和一个辅助电极可以间隔排布,或者,间隔三个及以上开孔排布一个辅助电极。

在一些示例中,如图14所示,辅助电极333沿第四方向D4的长度可以大于开孔3321a沿第四方向D4的长度,辅助电极333沿第五方向D5的长度可以小于开孔3321a沿第五方向D5的长度。其中,辅助电极333沿第四方向D4的长度L32可以约为9微米至11微米,例如可以约为10微米,沿第五方向D5的长度L33可以约为3.5微米至4.5微米,例如可以约为4微米。辅助电极333与相邻的开孔3321a之间的间距L34可以约为1.5微米至2微米,例如可以约为1.75微米。开孔3321a沿第四方向D4的长度可以约为5微米,沿第五方向D5的长度可以约为5微米。然而,本实施例对此并不限定。

关于本实施例的第二接地走线的其余结构可以参照图11所示实施例的说明,故于此不再赘述。

图16为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图16所示,第二接地走线332的内圈走线3321和外圈走线3322之间设置多个尖端放电结构(例如,第一尖端放电结构3325A和第二尖端放电结构3325B)。多个尖端放电结构可以排布在相邻连接走线3323之间的间隔内。第一尖端放电结构3325A可以包括:第一电极3325a和第二电极3325b,第一电极3325a与外圈走线3322可以为一体结构,第二电极3325b可以位于第一电极3325a和内圈走线3321之间。第二电极3325b为虚设的导电结构,没有电连接关系。第一电极3325a具有第一尖端,且第一电极3325a的第一尖端面对第二电极3325b。第一电极3325a的第一尖端与第二电极3325b之间存在间隙。第二电极3325b在衬底基板的正投影可以为矩形。第二尖端放电结构3325B可以包括:第一电极3325c和第二电极3325d,第一电极3325c与外圈走线3322可以为一体结构,第二电极3325d位于第一电极3325c和内圈走线3321之间。第二电极3325d为虚设的导电结构,没有电连接关系。第一电极3325c具有第一尖端,第二电极3325d具有第二尖端,且第二电极3325d的第二尖端面对第一电极3325c的第一尖端,第一电极3325c的第一尖端和第二电极3325d的第二尖端之间存在间隙。第一尖端放电结构3325A为尖对线结构,第二尖端放电结构3325B为尖对尖结构。在一些示例中,尖对尖结构和尖对线结构可以间隔排布。本示例的多个尖端放电结构采用尖对尖结构和尖对线结构的组合设计,可以改善工艺限制的影响,以保证尖端放电结构的功能。然而,本实施例对此并不限定。在另一些示例中,第二接地走线的尖端放电结构可以均为尖对线结构或者可以均为尖对尖结构。

在一些示例性实施方式中,如图16所示,第一尖端放电结构3325A的第一电极3325a的第一尖端和第二电极3325b之间的间距L35可以约为2微米至3.5微米,例如可以约为3微米。第二尖端放电结构3325B的第一电极3325c的第一尖端和第二电极3325d的第二尖端之间的间距L36可以约为2微米至3.5微米,例如可以约为3微米。在一些示例中,间距L35和L36可以大致相同。在另一些示例中,间距L35可以不同于L36,例如间距L35可以约为2.5微米,间距L36可以约为3微米。然而,本实施例对此并不限定。

关于本实施例的第二接地走线的其余结构可以参照前述实施例的说明,故于此不再赘述。

本示例性实施方式中,通过在第二接地走线的外圈走线和内圈走线之间设置尖端放电结构,可以增加静电吸收回路,从而改善静电击穿风险。

图17为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图17所示,第二接地走线332的内圈走线3321开设有多个开孔3321a,且多个开孔3321a沿第四方向D4排布为两列。相邻两列的开孔3321a在第五方向D5上错位排布。在本示例中,内圈走线3321的宽度可以约为67微米至83微米,例如可以约为75微米,外圈走线3322的宽度可以约为50微米至70微米,例如可以约为60微米。然而,本实施例对此并不限定。关于本实施例的第二接地走线的其余结构可以参照图16所示实施例的说明,故于此不再赘述。

图18为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图18所示,第二接地走线332靠近有效区域的一侧呈锯齿状。第二接地走线332可以具有主体332a和锯齿部332b。锯齿部332b包括从主体332a向有效区域一侧延伸的多个凸条。多个凸条的形状和尺寸可以大致相同。凸条在衬底基板的正投影可以为矩形。相邻凸条之间的间隔可以大致相同。例如,相邻凸条之间的间隔、凸条沿第五方向D5的长度可以大致相同。第二触控绝缘层302可以覆盖第二接地走线332的锯齿部332b。在本示例中,通过在第二接地走线332形成锯齿部332b,可以减小第二接地走线332与第二触控绝缘层302之间的直接接触面积,防止膜层剥落情况。

图19为本公开至少一实施例的第二接地走线的另一示意图。图20为图19中沿R-R’的局部剖面示意图。在一些示例性实施方式中,如图19和图20所示,第二接地走线332可以为条状结构,且没有设置开孔。第二接地走线332靠近衬底基板30一侧可以设置辅助接地走线335。辅助接地走线335可以与第一触控导电层为同层结构。辅助接地走线335在衬底基板30的正投影与第二接地走线332在衬底基板的正投影可以部分交叠。辅助接地走线335可以设置在边缘区域,在绑定区域可以不设置辅助接地走线。例如,在图6中,辅助接地走线335可以仅延伸至绑定区域B2和边缘区域B1的交界处,在绑定区域B2的第一扇出区域201可以不设置辅助接地走线,以避免对该位置的第一触控导电层的其他走线产生影响。在一些示例中,第一触控绝缘层301可以不覆盖辅助接地走线335,使得辅助接地走线335与第二接地走线332可以直接接触,实现连接。然而,本实施例对此并不限定。例如,第一触控绝缘层可以覆盖一部分的辅助接地走线,未被覆盖的另一部分辅助接地走线可以与第二接地走线直接接触。第二触控绝缘层302可以覆盖一部分的第二接地走线332。

在本示例性实施方式中,通过为第二接地走线设置辅助接地走线,可以更有效阻挡来自盖板的电荷。

图21为本公开至少一实施例的第二接地走线的另一示意图。图22为图21中沿V-V’方向的局部剖面示意图。在一些示例性实施方式中,如图21和图22所示,第二接地走线332可以包括:内圈走线3321、外圈走线3322和连接走线3323。在内圈走线3321靠近衬底基板30一侧设置辅助接地走线335。辅助接地走线335可以与第一触控导电层为同层结构。第一触控绝缘层301可以不覆盖或者覆盖部分的辅助接地走线335,以使得未被第一触控绝缘层301覆盖的辅助接地走线335直接与内圈走线3321接触。在本示例中,通过在设置开孔的内圈走线3321靠近衬底基板30一侧辅助接地走线335,可以避免盖板摩擦产生的电荷部分从内圈走线的开孔的位置向下形成感应电场,可以有效阻止感应电场的形成,更有效阻隔盖板电荷转移至显示面板内部。关于本实施例的第二接地走线的其余结构可以参照前述实施例的说明,故于次不再赘述。

图23为本公开至少一实施例的第二接地走线的另一示意图。图24为图23中沿U-U’方向的局部剖面示意图。在一些示例性实施方式中,如图23和图24所示,第二接地走线332可以包括主体332a和锯齿部332b。辅助接地走线335位于锯齿部332b靠近衬底基板30的一侧。辅助接地走线335可以与第一触控导电层为同层结构。第一触控绝缘层301可以不覆盖或者覆盖部分的辅助接地走线335,以使得未被第一触控绝缘层301覆盖的辅助接地走线335直接与第二接地走线332的锯齿部332b接触。在本示例中,通过在第二接地走线332形成锯齿部332b,可以减小第二接地走线332与第二触控绝缘层302之间的直接接触面积,防止膜层剥落问题。而且,辅助接地走线可以避免盖板摩擦产生的电荷部分从锯齿部的凸条的间隔位置向下形成感应电场,可以有效阻止感应电场的形成,更有效阻隔盖板电荷转移至显示面板内部。关于本实施例的第二接地走线的其余结构可以参照前述实施例的说明,故依次不再赘述。

上述实施方式所示的结构可以适当地组合。例如,在图11所示的第二接地走线的内圈走线靠近衬底基板一侧可以设置辅助接地走线。然而,本实施例对此并不限定。

上述实施方式提供的显示面板,可以有效导出因盖板表面摩擦产生的感应电荷,而且可以有效阻挡和缓解外部ESD测试时电荷导入对显示面板内部线路的影响。而且,上述实施方式节省材料和制备成本。

图25为本公开至少一实施例的第二接地走线的另一示意图。图26为图25中沿Y-Y’方向的局部剖面示意图。在一些示例性实施方式中,如图25和图26所示,第二接地走线332可以包括:外圈走线3322和内圈走线3321。外圈走线3322和内圈走线3321之间设置多个晶体管337,多个晶体管337的排布位置可以类似于连接走线的排布位置,故于此不再赘述。在一些示例中,晶体管337可以为P型晶体管。然而,本实施例对此并不限定。

在本示例中,如图26所示,每个晶体管337与内圈走线3321和外圈走线3322连接。单个晶体管337可以包括:有源层3370、栅电极3373、第一极3371和第二极3372。晶体管337的有源层3370可以与驱动电路层的半导体层为同层结构,栅电极3373可以与驱动电路层的第一栅金属层为同层结构,第一极3371和第二极3372可以与驱动电路层的第一源漏金属层为同层结构。晶体管337的栅电极3373可以设置在覆盖有源层3370的第一绝缘层411上,第一极3371和第二极3372可以设置在覆盖栅电极3373的第三绝缘层413上。晶体管337的第一极3371可以通过第一平坦层415上的过孔与内圈走线3321电连接,第二极3372可以通过第一平坦层415上的过孔与外圈走线3322电连接。例如,第一极3371可以为晶体管337的源电极,第二极3372可以为晶体管337的漏电极。晶体管337的栅电极3373可以与第一电源线VGL电连接。第一电源线VGL可以为栅极驱动电路电连接的低电位电源线。本实施例对于第一电源线VGL和栅电极3373的连接方式并不限定。例如,第一电源线VGL位于驱动电路层的第一源漏金属层,则第一电源线VGL和栅电极3373可以通过连接电极实现电连接;或者,第一电源线VGL和栅电极3373可以为同层结构,比如两者可以为一体结构。

本示例在外圈走线和内圈走线之间连接晶体管,晶体管可以将显示面板内部产生的感应电荷通过内圈走线有效导出至外圈走线,而且可以阻挡外部ESD测试时的电荷从外部进入内部。

图27A为图25中沿Z-Z’方向的一种局部剖面示意图。在一些示例性实施方式中,如图25和图27A所示,内圈走线3321和外圈走线3322之间设置多个防静电电容3324。防静电电容3324包括第一极板3324a和第二极板3324b。第一极板3324a和第二极板3324b可以为单层结构,例如与第二触控导电层为同层结构。关于防静电电容3324的结构可以参照图11对应的实施例说明,故于此不再赘述。

图27B为图25中沿Z-Z’方向的另一局部剖面示意图。在一些示例性实施方式中,如图27B所示,防静电电容3324的第一极板3324a可以包括:叠设的第一子极板3324a1和第二子极板3324a2,第二极板3324b可以包括:叠设的第四子极板3324b1和第五子极板3324b2。第一子极板3324a1和第二子极板3324a2直接接触,第四子极板3324b1和第五子极板3324b2直接接触。例如,第一子极板3324a和第二子极板3324a2在衬底基板30的正投影可以重合,第四子极板3324b1和第五子极板3324b2在衬底基板30的正投影可以重合。第一子极板3324a1和第四子极板3324b1可以与第二触控导电层为同层结构,第二子极板3324a2和第五子极板3324b2可以与驱动电路层的半导体层为同层结构。在本示例中,防静电电容3324的第一极板3324a和第二极板3324b均为双层结构。

图27C为图25中沿Z-Z’方向的另一局部剖面示意图。在一些示例性实施方式中,如图27C所示,防静电电容3324的第一极板3324a可以包括:叠设的第一子极板3324a1、第三子极板3324a3和第二子极板3324a2,第二极板3324b可以包括:叠设的第四子极板3324b1、第六子极板3324b3和第五子极板3324b2。例如,第一子极板3324a1、第二子极板3324a2和第三子极板3324a3在衬底基板30的正投影可以重合,第四子极板3324b1、第五子极板3324b2和第六子极板3324b3在衬底基板30的正投影可以重合。第一子极板3324a1和第四子极板3324b1可以与第二触控导电层为同层结构,第三子极板3324a3和第六子极板3324b3可以与驱动电路层的第一栅金属层为同层结构,第二子极板3324a2和第五子极板3324b2可以与驱动电路层的半导体层为同层结构。在本示例中,防静电电容3324的第一极板3324a和第二极板3324b均为三层结构。然而,本实施例对此并不限定。在另一些示例中,还可以在第一触控导电层设置电容极板的子极板。

在本示例中,通过设计防静电电容的两个极板为多层结构,可以增加极板厚度从而增大电容量,改善静电击穿风险。

图28为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图28所示,第二接地走线332可以包括外圈走线3322和内圈走线3321。内圈走线3321和外圈走线3322之间设置晶体管337和尖端放电结构(例如包括:第一尖端放电结构3325A和第二尖端放电结构3325B)。本示例中的晶体管337的结构可以参照图25所示的实施例,尖端放电结构的说明可以参照图16所示的实施例,故于此不再赘述。

在本示例中,显示面板内部产生的感应电荷可以通过内圈走线和晶体管从外圈走线接地导出,ESD测试时的外部静电可以通过外圈走线接地释放,还可以通过尖端放电结构泄放。

图29为本公开至少一实施例的第二接地走线的另一示意图。在一些示例性实施方式中,如图29所示,位于边缘区域的第二接地走线可以包括:内圈走线3321和外圈走线3322。内圈走线3321和外圈走线3322分开接地。例如,绑定区域的绑定引脚区206可以包括多个独立的接地引脚。内圈走线3321延伸至绑定引脚区206,并与其中一个接地引脚电连接,例如可以为一体结构。外圈走线3322延伸至绑定引脚区206,并与其中另一个接地引脚电连接,例如可以为一体结构。在一些示例中,第一接地走线可以在绑定引脚区与独立的一个接地引脚电连接,即第一接地走线可以与内圈走线和外圈走线均没有电连接;或者,第一接地走线可以在绑定引脚区与内圈走线连接同一个接地引脚;或者,第一接地走线可以在绑定引脚区与外圈走线连接同一个接地引脚。然而,本实施例对此并不限定。

在一些示例中,内圈走线3321的两端可以均延伸至绑定引脚区,并分别与接地引脚电连接,或者,内圈走线3321的一端可以延伸至绑定引脚区,并连接接地引脚。外圈走线3322的两端可以均延伸至绑定引脚区,并分别与接地引脚电连接,或者,外圈走线3322的一端延伸至绑定引脚区,并连接接地引脚。然而,本实施例对此并不限定。

在本示例中,通过将第二接地走线的内圈走线和外圈走线完全隔离形成护城河,使得显示面板内部产生的感应电荷通过内圈走线接地放电,外部静电可以通过外圈走线接地释放。

图30为图29中区域S4的局部放大示意图。在区域S4中,第一方向D1可以平行于第四方向D4,第二方向D2可以平行于第五方向D5。在一些示例性实施方式中,如图30所示,第二接地走线可以包括:外圈走线3322和内圈走线3321,内圈走线3321和外圈走线3322之间可以设置防静电电容3324。关于防静电电容3324的结构可以参照前述实施例的说明,故于此不再赘述。

在本示例中,通过将第二接地走线的内圈走线和外圈走线完全隔离形成护城河,使得显示面板内部产生的感应电荷通过内圈走线接地放电,外部静电可以通过外圈走线接地释放和防静电电容耗散两种方式分流。

图31为图29中区域S5的局部放大示意图。在一些示例性实施方式中,如图31所示,在边缘区域的拐角位置或者边缘位置,防静电电容3324的第一极板3324a和第二极板3324b可以设置为不规则形状,例如第一极板3324a和第二极板3324b在衬底基板的正投影可以为马赛克图案。通过设置具有不规则形状的第一极板和第二极板的防静电电容3324,可以实现在非规则区域内合理排布防静电电容。然而,本实施例对此并不限定。在另一些示例中,边缘区域的防静电电容的第一极板和第二极板在衬底基板的正投影均可以为马赛克图案。本示例设置的防静电电容可以用于耗散外部静电。

上述实施方式所示的结构可以适当地组合。例如,第二接地走线可以包括分开接地的外圈走线和内圈走线,且外圈走线和内圈走线之间可以设置多个尖端放电结构。然而,本实施例对此并不限定。

图32为本公开至少一实施例的显示触控装置的示意图。如图32所示,本实施例提供一种显示触控装置91,包括前述实施例的显示面板910。在一些示例中,显示面板910可以为集成触控结构的OLED显示面板。显示触控装置91可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示和触控功能的产品或部件。在一些示例性实施方式中,显示触控装置91可以为穿戴式显示装置,例如可以通过某些方式佩戴在人体上。比如,显示触控装置91可以为智能手表、智能手环等。然而,本实施例对此并不限定。

本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。

本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。

技术分类

06120116146102