掌桥专利:专业的专利平台
掌桥专利
首页

治疗性组织调节设备和方法

文献发布时间:2023-06-19 16:06:26



本申请是于2017年6月6日提交的名称为“治疗性组织调节设备和方法”的中国专利申请201780048254.2(PCT/US2017/036201)的分案申请。

相关申请

本申请是2017年6月5日提交的美国专利申请号15/614,460的继续申请,其全部内容据此通过引用明确并入本文。本申请要求2016年6月7日提交的美国临时申请号62/346,990和2017年2月14日提交的美国临时申请号62/458,990的优先权,这两个申请中的每个的全部内容据此通过引用明确并入本文。本申请还涉及2016年6月9日公布的PCT公布号WO2016/090175,其全部内容据此通过引用明确并入本文。

技术领域

本公开一般涉及治疗性组织调节,并且更具体地涉及用于治疗性地实现例如肝系统的靶向神经纤维的调节(modulation)(例如,消融)以治疗代谢疾病或病症(诸如糖尿病)的设备、系统和方法的实施例。

背景技术

慢性高血糖症是糖尿病的界定特性中的一个。高血糖症是血糖浓度升高的病症。血糖浓度升高可能是由于胰腺的胰岛素分泌受损,而且或可替代地是由于细胞无法正常地对胰岛素起反应。来自肝脏的过量葡萄糖释放是高血糖的重要原因。肝脏负责大约90%的葡萄糖产生和33%的葡萄糖摄取,并且2型糖尿病中的紊乱均导致禁食和餐后状态的高血糖症。

1型糖尿病由导致胰岛素产生不足的胰腺β细胞的自身免疫性破坏引起。2型糖尿病是更复杂的慢性代谢失调,其由于胰岛素产生不足以及细胞对胰岛素作用的抵抗而发展。胰岛素促进葡萄糖摄入各种组织中,并减少肝脏和肾脏产生葡萄糖;胰岛素抵抗导致外周葡萄糖摄取减少和内源性葡萄糖输出增加,这两者都使血液中的葡萄糖浓度高于正常水平。

目前的估计是,美国约有2600万人(超过8%的人口)患有某种形式的糖尿病。治疗,诸如药物、饮食和运动寻求控制血糖水平,这需要患者密切监测他或她的血糖水平。另外,患有1型糖尿病的患者和许多患有2型糖尿病的患者需要每天服用胰岛素。然而,胰岛素不是以片剂形式提供的,而是必须皮下注射。因为糖尿病的治疗是由患者每天自我管理的,所以遵从或遵守治疗可能是有问题的。

发明内容

本文所述的若干实施例一般涉及用于治疗性地实现靶向神经纤维的神经调节(neuromodulation)以治疗各种医学病症、失调和疾病的设备,系统和方法。在一些实施例中,靶向神经纤维的神经调节用于治疗或降低与各种代谢疾病相关的症状发生的风险。例如,靶向神经纤维的神经调节可以治疗或降低与多尿症(diabetes)(例如,糖尿病(diabetes mellitus))或其他多尿症相关疾病相关的症状发生的风险。本文所述的方法可有利地治疗多尿症,而无需每日胰岛素注射或持续监测血糖水平。由本文描述的设备、系统和方法提供的治疗可以是永久性的或至少是半永久性的(例如,持续数周,数月或数年),从而减少对持续或定期治疗的需要。本文描述的设备的实施例可以是临时的(和不可植入的)或可植入的。

在若干实施例中,本发明包括调节神经系统以治疗影响胰岛素和/或葡萄糖的失调,诸如胰岛素调控、葡萄糖摄取、代谢等。在一些实施例中,神经系统输入和/或输出被暂时或永久调节(例如,减少)。若干实施例被配置为执行以下效果中的一种或组合:消融神经组织、加热神经组织、冷却神经组织、使神经组织失活、切断神经组织、细胞裂解、细胞凋亡和坏死。在一些实施例中,进行局部神经调节,使周围组织不受影响。在其他实施例中,还治疗围绕一个或更多个靶向神经的组织。

在一些实施例中,如本文所述的靶向神经纤维的神经调节可用于治疗胰岛素抵抗、遗传代谢综合征、室性心动过速、心房颤动(fibrillation)或扑动(flutter)、心律失常、炎性疾病、高血压(动脉或肺)、肥胖、高血糖(包括葡萄糖耐量)、高脂血症、进食障碍和/或内分泌疾病。在一些实施例中,靶向神经纤维的神经调节治疗多尿症、胰岛素抵抗或其他代谢疾病的任何组合。在一些实施例中,临时或可植入的神经调节剂可用于调控饱腹感和食欲(例如,促进体重减轻)。在若干实施例中,调节(传入地或传出地)支配肝脏的神经组织用于治疗血色病、威尔森氏病、非酒精性脂肪性肝炎(NASH)、非酒精性脂肪肝病(NAFLD)和/或其他影响肝脏和/或肝脏代谢的病症。在一些实施例中,调节传入地或传出地)支配(肝脏的神经组织(例如,肝去神经)对于减轻全身交感紧张和导致的病症诸如高血压、充血性心力衰竭、心房颤动、阻塞性睡眠呼吸暂停和/或肾功能衰竭等是有效的。

在一些实施例中,与肝脏相关联的交感神经纤维被选择性地破坏(例如,消融、去神经、失能、切断、阻断、损伤、脱敏、移除)以减少肝葡萄糖产生和/或增加肝葡萄糖摄取,从而有助于多尿症和/或相关疾病或失调的治疗或降低其风险。破坏可以是永久的或临时的(例如,大约几天、几周或几个月)。在一些实施例中,肝丛中的交感神经纤维被选择性地破坏。在一些实施例中,在门脉三征(portal triad)周围(例如,在门脉三征的血管周围空间内)的交感神经纤维、在肝固有动脉近侧的肝总动脉周围的交感神经纤维、在肝固有动脉周围的交感神经纤维、邻近腹腔动脉的腹腔神经节中的交感神经纤维、支配或围绕肝脏的其他交感神经纤维、支配胰腺的交感神经纤维、支配脂肪组织(例如内脏脂肪)的交感神经纤维、支配肾上腺的交感神经纤维、支配小肠(例如十二指肠、空肠、回肠)的交感神经纤维、支配胃(或其部分,诸如幽门)的交感神经纤维、支配棕色脂肪组织的交感神经纤维、支配骨骼肌肉的交感神经纤维和/或支配肾脏的交感神经纤维被选择性地破坏或调节(同时或顺序地),以促进治疗或减轻与高血压、多尿症(diabetes)(例如,糖尿病(diabetes mellitus))或其他代谢疾病或失调相关联的症状。在一些实施例中,本文描述的方法,设备和系统用于治疗性调节与任何多尿症相关器官或组织相关联的自主神经。例如,关于胰腺和十二指肠,除了支配肝脏的神经之外或代替支配肝脏的神经,支配一个或两个结构的神经可以被神经调节(例如,消融),其中所述神经调节影响与多尿症或其他代谢疾病或失调相关联的一个或更多个症状/特性。此些症状/特性包括但不限于血浆或肝脏或其他器官中葡萄糖水平、胆固醇水平、脂质水平、甘油三酯水平、去甲肾上腺素水平、胰岛素调控等的变化(例如,增加或减少)。本文公开的关于肝调节(例如,肝去神经)的设备和方法可以可替代地或另外地用于对胰腺、十二指肠、胃或其他器官和结构的至少部分进行神经调节(例如,去神经)。

根据若干实施例,包含自主神经纤维的任何神经被调节,包括但不限于隐神经、股神经、腰神经、正中神经、尺神经、迷走神经和桡神经。除了肝动脉之外的动脉或静脉周围的神经可以另外地或可替代地被调节,诸如但不限于以下血管周围的神经:肠系膜上动脉、肠系膜下动脉、股动脉、骨盆动脉、门静脉、肺动脉、肺静脉、腹主动脉、腔静脉、脾动脉、胃动脉、颈内动脉、颈内静脉、椎动脉、肾动脉和肾静脉。根据本文的若干实施例,还可以调节腹腔动脉。

根据若干实施例,治疗性神经调节系统用于选择性地破坏交感神经纤维。神经调节系统可包括消融导管系统和/或输送导管系统(例如,中空、实心或部分中空的导管、探针、轴或具有或不具有管腔的其他输送设备)。消融导管系统可以使用射频(RF)能来消融交感神经纤维以引起交感神经通信的神经调节或破坏。在一些实施例中,消融导管系统使用超声能来消融交感神经纤维。在一些实施例中,消融导管系统使用超声(例如,高强度聚焦超声或低强度聚焦超声)能来选择性地消融交感神经纤维。在其他实施例中,消融导管系统使用电穿孔来调节交感神经纤维。如本文所用,消融导管不应限于引起消融,还包括促进神经调节的设备(例如,部分或可逆消融、堵塞而不消融、刺激)。在一些实施例中,输送导管系统将药物或化学试剂输送至神经纤维以调节神经纤维(例如,经由化学消融)。与化学消融(或一些其他形式的化学介导的神经调节)一起使用的化学试剂可以例如包括苯酚、醇或引起神经纤维化学消融的任何其他化学试剂。在一些实施例中,使用冷冻疗法。例如,提供消融导管系统,其使用冷冻消融来选择性地调节(例如,消融)交感神经纤维。在其他实施例中,输送导管系统与近距离放射疗法一起使用以调节神经纤维。导管系统可以进一步利用以下的任何组合:RF能、超声能、聚焦超声(例如,HIFU(高强度聚焦超声)、LIFU(低强度聚焦超声))能、电离能(诸如X射线、质子束、γ射线、电子束和α射线)、电穿孔、药物输送、化学消融、冷冻消融、近距离放射疗法或任何其他形态,以引起自主(例如,交感神经或副交感神经)神经纤维的破坏或神经调节(例如,消融、去神经、刺激)。如下所述,在一些实施例中使用微波能或激光能(或两种、三种或更多种能量源的组合)。在一些实施例中,能量与基于非能量的神经调节(例如,药物输送)结合使用。

在一些实施例中,微创外科手术技术用于输送治疗性神经调节系统。例如,用于交感神经纤维的破坏或神经调节的导管系统(例如,中空的、实心的、部分中空的、导管、探针、轴或具有或不具有管腔的其他输送设备)可以在动脉内输送(例如,经由股动脉、肱动脉、桡动脉)。在一些实施例中,消融导管系统推进到肝固有动脉以(完全或部分)消融肝丛中的交感神经纤维。在其他实施例中,消融导管系统推进到肝总动脉以消融肝总动脉周围的交感神经纤维。在一些实施例中,消融导管系统推进到腹腔动脉或腹腔干,以消融腹腔神经节或腹腔丛中的交感神经纤维(例如,包括其下游的神经)。可以在其他动脉(例如,左肝动脉、右肝动脉、胃十二指肠动脉、胃动脉、脾动脉、肾动脉等)内推进消融或输送导管系统,以便破坏与肝脏或其他器官或组织(诸如胰腺、脂肪组织(例如肝脏的内脏脂肪)、肾上腺、胃、小肠、胆囊、胆管、棕色脂肪组织、骨骼肌)相关联的靶向交感神经纤维,该其他器官或组织中的至少一些可能与多尿症有临床相关性。在若干实施例中,腹腔神经节的神经调节(例如,去神经、剥离、刺激)或腹腔神经节活动的调节促进高血压的治疗。

在一些实施例中,治疗性神经调节或破坏系统通过静脉系统在血管内(intravascularly)或在血管内地(endovascularly)输送。例如,治疗性神经调节系统可以通过门静脉或通过下腔静脉输送。在一些实施例中,神经调节系统经皮输送至胆管树以调节或破坏交感神经纤维。

在其他实施例中,神经调节系统通过经腔或腹腔镜输送以调节或破坏交感神经纤维。例如,神经调节系统可以通过胃或通过十二指肠进行经腔输送。

在一些实施例中,结合图像引导技术完成神经调节系统的微创输送。例如,可视化设备诸如光纤镜可用于在神经调节系统的微创外科手术输送期间提供图像引导。在一些实施例中,荧光镜、计算机断层扫描(CT)、射线照相、光学相干断层扫描(OCT)、血管内超声(IVUS)、多普勒、热成像和/或磁共振(MR)成像与神经调节系统的输送结合使用。在一些实施例中,不透射线标记位于神经调节系统的远端,以帮助神经调节系统的输送和对齐。

在一些实施例中,使用开放式外科手术程序来接近待调节的神经纤维。

在一些实施例中,本文描述的形态中的任一个,包括但不限于RF能、超声能、HIFU、热能、光能、除RF能之外的电能、药物输送、化学消融、冷冻消融、蒸汽或热水、电离能(诸如X射线、质子束、γ射线、电子束和α射线)或任何其他形态与开放式外科手术程序结合使用以调节或破坏交感神经纤维。

在一些实施例中还提供了经由微波能和激光能的神经调节,并在本文中论述。在其他实施例中,通过外科手术切割(例如,横切)神经纤维以破坏神经信号的传导或以其他方式引起神经创伤。

在一些实施例中,非侵入性(例如,经皮)程序用于调节或破坏交感神经纤维(例如,支配肝脏的神经,肝动脉、腹腔动脉、胃十二指肠动脉、脾动脉内或周围的神经,支配胰腺的神经,和/或支配十二指肠的神经)。在一些实施例中,本文描述的形态中的任一种,包括但不限于RF能、超声能、HIFU能量、放射疗法、光能、红外能、热能、蒸汽、热水、磁场、电离能、其他形式的电或电磁能量或任何其他形态与非侵入性程序结合使用以调节或破坏交感神经纤维。

根据一些实施例,神经调节系统用于在一个或更多个位置或靶位点调节或破坏交感神经纤维。例如,消融导管系统(例如,包括本文描述的消融设备或方法,例如超声、RF、低温等)可以以周向(circumferential)或径向图案执行消融,和/或消融导管系统可以在沿血管长度线性间隔开的多个点处执行消融。在其他实施例中,消融导管系统以能够引起交感神经纤维的通信路径破坏的任何其他图案(例如,螺旋图案、Z字形图案、多个线性图案等)在一个或更多个位置处执行消融。图案可以是连续的或不连续的(例如,间歇的)。消融可以靶向在血管周界(circumference)的某些部分(例如,周界的半部或小于半部的部分)。在一些实施例中,对血管壁的调节(例如,对血管壁的热创伤或损害)是非周向(circumferential)的。可以在血管的一个象限、两个象限、三个象限或四个象限中执行消融或其他治疗。在一个实施例中,不在血管的多于两个象限中执行消融或其他治疗。在其他实施例中,消融或其他治疗在其他增量的扇形中执行,诸如2、3、5或6个节段。在一些实施例中,扇形可以跨越90度到120度的径向距离。在其他实施例中,扇形可以跨越120度到240度的径向距离。在各种实施例中,扇形以大约90度、120度、144度或180度的增量径向设置以便实现期望的效果。

根据本文公开的本发明的实施例,治疗各种医学失调和疾病的治疗性神经调节包括靶向神经纤维的神经刺激。例如,可以刺激自主神经纤维(例如,交感神经纤维、副交感神经纤维)以治疗多尿症(diabetes)(例如,糖尿病(diabetes mellitus))或其他病症、疾病和失调或降低其发生风险。

在一些实施例中,刺激支配肝脏的副交感神经纤维。在一些实施例中,刺激支配胰腺、脂肪组织(例如,肝脏的内脏脂肪)、肾上腺、胃(例如,或其部分,诸如幽门)、肾、棕色脂肪组织、骨骼肌和/或小肠(例如,十二指肠)的副交感神经纤维。根据一些实施例,刺激支配肝脏,胰腺,脂肪组织,肾上腺,胃,肾,棕色脂肪组织,骨骼肌和小肠的副交感神经纤维的任何组合,以治疗或缓解与多尿症(diabetes)(例如,糖尿病(diabetes mellitus))或其他病症、疾病或失调相关联的症状,或降低其发生的风险。在一些实施例中,直接在内部或外部刺激器官或组织。例如,组织(或组织的组成部分,诸如细胞、受体、压力感受器等)的调节可以通过本文描述的若干实施例实现,并且可以在有或没有神经调节的情况下发生。

在一些实施例中,靶向自主神经纤维的神经调节通过减少全身性葡萄糖来治疗多尿症(diabetes)(例如,糖尿病(diabetes mellitus))和相关病症。例如,靶向神经纤维的治疗性神经调节可通过减少肝葡萄糖产生来减少全身葡萄糖。在一些实施例中,通过破坏(例如,消融)交感神经纤维来减少肝葡萄糖产生。在其他实施例中,通过刺激副交感神经纤维来减少肝葡萄糖产生。

在一些实施例中,靶向神经纤维的治疗性神经调节通过增加肝葡萄糖摄取来减少全身性葡萄糖。在一些实施例中,通过破坏(例如,消融)交感神经纤维来增加肝葡萄糖摄取。在其他实施例中,通过刺激副交感神经纤维来增加肝葡萄糖摄取。在一些实施例中,通过治疗性神经调节降低甘油三酯或胆固醇水平。

在一些实施例中,肝丛的交感神经纤维的破坏或调节对肝脏周围的副交感神经纤维没有影响。在一些实施例中,肝丛的交感神经纤维的破坏或调节(例如,消融或去神经)引起极低密度脂蛋白(VLDL)水平的降低,从而引起对脂质谱(lipid profile)的有益效果。在若干实施例中,本发明包括神经调节疗法以影响交感神经驱动和/或甘油三酯或胆固醇水平,包括高密度脂蛋白(HDL)水平、低密度脂蛋白(LDL)水平和/或极低密度脂蛋白(VLDL)水平。在一些实施例中,交感神经的去神经或消融降低甘油三酯水平、胆固醇水平和/或中枢交感神经驱动。例如,在一些实施例中,去甲肾上腺素水平可能受影响。

在其他实施例中,靶向神经纤维的治疗性神经调节(例如,肝去神经)通过增加胰岛素分泌来减少全身性葡萄糖。在一些实施例中,通过破坏(例如,消融)交感神经纤维(例如,肝动脉的周围分支)来增加胰岛素分泌。在其他实施例中,通过刺激副交感神经纤维来增加胰岛素分泌。在一些实施例中,可调节胰腺周围的交感神经纤维以降低胰高血糖素水平并提高胰岛素水平。在一些实施例中,调节肾上腺周围的交感神经纤维以影响肾上腺素或去甲肾上腺素水平。可以靶向肝脏的脂肪组织(例如,内脏脂肪)以影响甘油或游离脂肪酸水平。在一些实施例中,胰岛素水平保持相同,或者提高或降低小于±5%、小于±10%、小于±2.5%,或其重叠范围。在一些实施例中,当胰腺的一部分单独或与肝总动脉或其他肝动脉分支或与门脉三征相关联的结构组合消融时,胰岛素水平保持恒定或基本恒定。在各种实施例中,支配肝脏的神经的去神经(例如,肝总动脉或与门脉三征相关联的其他结构周围的交感神经)不影响受试者对低血糖事件作出反应的能力。

在若干实施例中,本发明包括调节神经系统以治疗影响胰岛素和/或葡萄糖的失调,诸如胰岛素调控、葡萄糖摄取、代谢等。在一些实施例中,神经系统输入和/或输出被暂时或永久调节(例如,减少)。若干实施例被配置为执行以下效果中的一种或组合:消融神经组织、加热神经组织、冷却神经组织、使神经组织失活、切断神经组织、细胞裂解、细胞凋亡和坏死。在一些实施例中,执行局部神经调节,使周围组织不受影响。在其他实施例中,还治疗一个或更多个靶向神经周围的组织。

根据若干实施例,肝去神经的方法以比肾去神经程序更短的程序和能量施加时间执行。在若干实施例中,在治疗期间执行肝去神经而不引起受试者的疼痛或减轻受试者的疼痛。根据若干实施例,执行神经调节(例如,去神经或消融)而不引起靶血管(例如肝动脉)内的狭窄或血栓形成。在涉及热治疗的实施例中,与现有的去神经系统和方法相比,可以防止或减少损失到血流的热量,引起更低的功率和更短的治疗时间。在各种实施例中,神经调节的方法在对靶血管很少或没有内皮损害(例如,小于20%的靶血管消融)的情况下执行。在若干实施例中,能量输送在所有方向上基本相等地输送(例如,全向输送)。在神经调节系统的各种实施例(例如,本文描述的基于导管的能量输送系统)中,保持与靶血管壁的足够的电极接触,从而降低功率水平、电压水平、血管壁或组织热创伤和治疗时间。

根据若干实施例,提供了降低受试者体内血糖水平的方法。该方法包括将RF、超声波等的消融导管(例如,中空、实心、部分中空的导管、探针、轴或具有或不具有管腔的其他输送设备)插入受试者的血管系统中,并将RF消融导管推进到肝动脉分支或与门脉三征相关联的其他结构(例如,肝固有动脉或肝总动脉)的位置。在一个实施例中,该方法包括使热抑制肝总动脉或肝固有动脉周围的肝丛的交感神经内的神经通信的治疗有效量的RF、超声等能量通过消融导管在血管内(intravascularly)或在血管内地(endovascularly)输送到肝固有动脉的内壁,从而降低受试者体内的血糖水平。在一些实施例中,将治疗有效量的RF、超声等能量输送到肝总动脉或肝固有动脉还包括输送足以调节(例如,消融、去神经)胰腺和/或十二指肠的神经的能量,这可以提供协同效果。在各种实施例中,血糖水平从基线水平降低30%-60%(例如,40%-50%、30%-50%、35%-55%、45%-60%或其重叠范围)。

在一个实施例中,在靶血管的内血管壁的位置处或在靶神经的位置处的治疗有效量的RF能在约100J和约2kJ之间的范围内(例如,约100J和约1kJ之间、约100J和约500J之间、约250J和约750J之间、约300J和约1kJ之间、约300J和约1.5kJ之间、约500J和1kJ之间,或其重叠范围)。在一个实施例中,治疗有效量的RF能具有约0.1W和约14W之间的功率(例如,约0.1W和约10W之间、约0.5W和约5W之间、约3W和约8W之间、约2W和约6W之间、约5W和约10W之间、约8W和约12W之间、约10W和约14W之间,或其重叠范围)。本文提供的范围可以是根据电极、根据能量输送位置或总能量输送。RF,超声等能量可以沿靶血管或在多个不同血管内的一个位置或多个位置输送。在一些实施例中,输送足以引起神经周围的组织纤维化从而引起神经脱落的RF、超声等能量。在一些实施例中,沿长度的各种电极被打开或关闭以定制治疗长度。

根据若干实施例,组织调节设备(例如,适于血管内肝神经调节的神经调节设备)包括伸长轴和球囊,该伸长轴包括近端部分和远端部分,该球囊定位在该远端部分,该球囊被配置为从非膨胀输送配置转换为膨胀部署配置。在该实施例中,球囊包括沿球囊的外表面定位的多个电极阵列,电极阵列中的每个包括多个间隔开的电极。在该实施例中,电极阵列中的每个被配置为通过单独的连接线连接到发生器,使得电极阵列中的每个可单独控制(例如,激活或去激活)。多个电极阵列布置成沿球囊的外表面形成螺旋图案。当处于膨胀部署配置时,多个电极阵列中的至少一个适于与血管壁(例如,肝总动脉、肝固有动脉、胃十二指肠动脉、脾动脉、腹腔动脉、肾动脉)接触。

在一些实施例中,在其最长方面中的多个电极阵列中的每个的大小小于或等于身体组织中的热传导的特性长度。在一些实施例中,每个电极阵列或组中的多个间隔开的电极紧密间隔,使得电极定位在具有不超过6mm的最长方面或尺寸的区或区域内(例如,当电极阵列由四个电极组成时)。在各种实施例中,每个电极阵列由两个和八个之间的间隔开的电极(例如,两个、三个、四个、五个、六个、七个、八个电极)组成。每个电极阵列可以具有相同数量的电极,或一些电极阵列可以具有与其他电极阵列不同数量的电极。在各种实施例中,电极阵列或组的数量范围是从2到8(例如,两个、三个、四个、五个、六个、七个、八个阵列或组)。然而,在其他实施例中可以存在多于八个阵列或组。

在一些实施例中,电极阵列通过粘合剂耦接到球囊的外表面。在一些实施例中,电极阵列耦接到柔性衬底。球囊可包括涂层,其覆盖球囊的整个外表面(除了电极的有效电极区域),或覆盖球囊的外表面的大部分和/或除有效电极区域之外的电极。在一些实施例中,在多个电极阵列中的至少一个中从第一电极跨越到最后电极的连接线的一部分形成Z字形图案。设置在球囊的外表面上的电极阵列中的每个可以形成连接线的Z字形图案,以减小总间隔并避免球囊在非膨胀配置中折叠(例如,以减小整体轮廓)。在一些实施例中,该设备包括沿伸长轴的远端部分定位的一个或更多个损伤间隔指示器或标记,以促进损伤区的受控间隔。一个或更多个损伤间隔指示器(例如,不透射线标记)可以定位在球囊远侧的远侧延伸部上、可以定位在球囊近侧,和/或可以定位在球囊内。

根据若干实施例,消融具有受控损伤间隔图案的血管周围的神经的方法包括将神经调节设备插入血管内。神经调节设备包括第一电极和第二电极,第一电极和第二电极沿神经调节设备的远端部分在第一电极的远侧间隔开,并且至少一个损伤间隔指示器定位在第二电极的远侧。该方法进一步包括使第一电极在第一接触位置处接触血管的内壁,并且使第二电极在第二接触位置处接触血管的内壁,其中第一接触位置和第二接触位置以分离距离彼此轴向间隔开。该方法进一步包括使第一电极和第二电极在接触位置处时将射频能量输送到血管的内壁。该方法还包括使用至少一个损伤间隔指示器在血管内轴向重新安置神经调节设备,并使第一电极在第三接触位置处接触血管的内壁,并且使第二电极在第四接触位置处接触内壁,其中第三接触位置和第四接触位置以分离距离彼此轴向间隔开。然后可以从血管中移除神经调节设备。

在一些实施例中,第一位置和第二位置相对于彼此处于血管内壁的不同象限中,并且第三位置和第四位置相对于彼此处于血管内壁的不同象限中。第一位置和第三位置可以处于同一象限中,并且第二位置和第三位置可以处于同一象限中。例如,神经调节设备可以适于偏转或以其他方式改变配置,使得第一电极和第二电极中的一个在第一象限处与血管壁接触,而第一电极和第二电极中的另一个在与第一象限不同的第二象限处与血管壁接触。在一些实施例中,第一电极和第二电极被配置为在血管壁的相对侧上的象限中与血管壁接触(例如,间隔开约180度的接触位置)。在一些实施例中,第一接触位置和第二接触位置周向间隔开120度和210度之间。在一些实施例中,第一接触位置和第二接触位置周向间隔开约90度。

在其他实施例中,第一位置和第二位置在同一象限中,并且第三位置和第四位置在同一象限中。例如,第一电极和第二电极可以被定位成在第一象限中接触血管的内壁,并且被激活以在第一象限中形成间隔开的损伤区域,并然后神经调节设备可以使用至少一个间隔指示器缩回或推进一段距离,并且第一电极和第二电极可以被定位成在不同于第一象限的第二象限中(例如,在血管周界的相对侧上)接触血管的内壁。

在一些实施例中,至少一个损伤间隔指示器以等于分离距离的距离与第二电极轴向间隔开。在其他实施例中,至少一个损伤间隔指示器以分离距离两倍的距离与第二电极轴向间隔开。在其中使用定位在第二电极远侧的两个间隔开的损伤间隔指示器的实施例中,近侧损伤间隔指示器可以邻近第二电极定位(例如,在2mm内、在1mm内),并且两个间隔开的损伤间隔指示器之间的间隔可以等于分离距离或者是分离距离的两倍。在一些实施例中,在血管内轴向重新安置神经调节设备包括在重新安置之前将两个损伤间隔指示器中的远侧一个与两个损伤间隔指示器中的近侧一个的位置对齐。分离距离可以在3mm和8mm之间(例如,3mm、4mm、5mm、6mm、7mm、8mm)。

根据若干实施例,适于组织接触感测和组织调节的神经调节系统包括神经调节设备,该神经调节设备包括具有近端部分和远端部分的伸长轴以及定位在伸长轴的远端部分处的电极组件。在一个实施例中,电极组件包括由绝缘层间隔开的内电极元件和外电极元件,其中内电极元件在外电极元件内是同心的。电极组件适于将共模信号施加到内电极元件和外电极元件,以引起足以消融组织的射频功率的输送,并在内电极元件和外电极元件之间施加差模感测信号以生成组织接触感测测量值,该组织接触感测测量值将由适于基于组织接触感测测量值确定组织接触水平的处理设备接收。

组织接触感测测量值可以包括内电极构件和外电极构件之间的双极接触阻抗测量值,和/或由内电极构件内的一个或更多个热电偶引线获得的温度测量值。在一些实施例中,该系统包括处理设备,该处理设备被配置为接收组织接触感测测量值,并基于所接收的组织接触感测测量值确定接触是否存在或组织接触水平。处理设备可以被配置(例如,特别地编程)为生成指示组织接触水平的输出。在一些实施例中,共模信号具有在400kHz和650kHz之间的频率范围(例如,在400kHz和500kHz之间、在450kHz和600kHz之间、在550kHz和650kHz之间、其重叠范围或所述范围的任何值或在所述范围内的任何值)。在一些实施例中,差模感测信号具有在共模信号的频率范围之外的频率。例如,差模感测信号的频率在800kHz和20MHz之间(例如,在800kHz和1MHz之间、在1MHz和10MHz之间、在5MHz和15MHz之间、在10MHz和20MHz之间、其重叠范围或所述范围的任何值或在所述范围内的任何值)。在若干实施例中,外电极的接触表面积与内电极的接触表面积的比率在5:1和25:1之间(例如,在5:1和10:1之间、在10:1和25:1之间、在10:1和20:1之间、在15:1和25:1之间、其重叠范围或所述范围的任何值或在所述范围内的任何值)。

在本发明的若干实施例中,基于能量的输送系统包括冷却系统,其用于例如减少对靶区域周围的区的热损害。例如,冷却可以将组织温度降低(或维持)在特定阈值温度以下(例如,在40摄氏度至50摄氏度或40摄氏度至50摄氏度之间),从而防止或减少细胞坏死。在一些实施例中使用冷却球囊或其他可扩展冷却构件。在一个实施例中,消融电极定位在球囊上,使用冷却流体扩展该球囊。在一些实施例中,冷却流体循环通过输送系统(例如,导管系统)。在一些实施例中,冷却流体(诸如预冷盐水)可以从治疗区中的导管设备输送(例如,弹出)。在进一步的实施例中,冷却流体在导管设备内部连续或间歇地循环,以在没有足够血流的情况下冷却内皮壁。

本文描述的组织调节设备(例如,神经调节设备、消融导管)可有利地使一个或更多个电极在血管壁上施加足够的接触压力。在各种实施例中,足够的接触压力在约0.1g/mm

在一些实施例中,组织调节设备(例如,神经调节设备)包括沿伸长轴的远端部分(例如,最远侧电极的远侧)定位的一个或更多个损伤间隔指示器(例如,不透射线标记))以促进损伤区域的受控间隔。损伤间隔指示器可以定位在延伸超出形状设定部分的远侧延伸部上。在一个实施例中,该设备由两个间隔开的损伤指示器组成。在另一实施例中,电极中的一个用作间隔开的损伤间隔指示器中的一个。损伤间隔指示器可包括在荧光检查或其他成像技术下可见的不透射线标记。当形状设定部分处于部署配置时,损伤间隔指示器可以以与第一单极电极和第二单极电极之间的距离相等的距离间隔开,或当形状设定部分处于部署配置时,损伤间隔指示器可以以第一单极电极和第二单极电极之间的距离两倍的距离间隔开。可以根据期望和/或要求使用其他距离。

根据若干实施例,组织调节设备(例如,适于血管内肝神经调节的神经调节设备)包括伸长轴和球囊,该伸长轴包括近端部分和远端部分,该球囊定位在该远端部分,该球囊被配置为从非膨胀输送配置转换为膨胀部署配置。在该实施例中,球囊包括沿球囊的外表面定位的多个电极阵列,电极阵列中的每个包括多个间隔开的电极。在该实施例中,电极阵列中的每个被配置为通过单独的连接线连接到发生器,使得电极阵列中的每个可单独控制(例如,激活或去激活)。多个电极阵列布置成沿球囊的外表面形成螺旋图案。当处于膨胀部署配置时,多个电极阵列中的至少一个适于与血管壁(例如,肝总动脉、肝固有动脉、胃十二指肠动脉、脾动脉、腹腔动脉、肾动脉)接触。

在一些实施例中,在其最长方面中的多个电极阵列中的每个的大小小于或等于身体组织中的热传导的特性长度。在一些实施例中,每个电极阵列或组中的多个间隔开的电极紧密间隔,使得电极定位在具有不超过6mm的最长方面或尺寸的区或区域内(例如,当电极阵列由四个电极组成时)。在各种实施例中,每个电极阵列由两个和八个间隔开的电极(例如,两个、三个、四个、五个、六个、七个、八个电极)组成。每个电极阵列可以具有相同数量的电极,或者一些电极阵列可以具有与其他电极阵列不同数量的电极。在各种实施例中,电极阵列或组的数量范围从2到8(例如,两个、三个、四个、五个、六个、七个、八个阵列或组)。然而,在其他实施例中可以存在多于八个阵列或组。

在一些实施例中,电极阵列通过粘合剂耦接到球囊的外表面。在一些实施例中,电极阵列耦接到柔性衬底。球囊可包括涂层,其覆盖球囊的整个外表面(除了电极的有效电极区域),或覆盖球囊的外表面的大部分和/或除有效电极区域之外的电极。在一些实施例中,在多个电极阵列中的至少一个中从第一电极跨越到最后电极的连接线的一部分形成Z字形图案。设置在球囊的外表面上的电极阵列中的每个可以形成连接线的Z字形图案,以减小总间隔并避免球囊在非膨胀配置中折叠(例如,以减小整体轮廓)。在一些实施例中,该设备包括沿伸长轴的远端部分定位的一个或更多个损伤间隔指示器,以促进损伤区的受控间隔。一个或更多个损伤间隔指示器(例如,不透射线标记)可以定位在球囊远侧的远侧延伸部上、可以定位在球囊近侧,和/或可以定位在球囊内。

在一些实施例中,该方法包括向肝总动脉的一部分或向至少一个电极提供冷却,该部分正在被RF能靶向,或不是正在被RF能靶向。在一个实施例中,冷却包括在导管内或在邻近至少一个电极的血流内注入盐水。在一个实施例中,冷却包括阻塞至少一个电极上游的流动以增加通过该至少一个电极的动脉流速,从而由于血流增加而提供对流冷却。在一些实施例中,流动被转向或引向至少一个电极(例如,从血管中心朝向血管壁)。

根据若干实施例,提供了用于热诱导肝神经调节的设备。该设备包括具有近端和远端的导管主体以及从近端延伸到远端的管腔。在一个实施例中,导管主体被配置用于在肝动脉分支内的经皮、血管内放置。该设备可包括在导管主体远端的可致动部分和设置在可致动部分上的至少一个电极。在一些实施例中,可致动部分被配置为在肝动脉分支内提供导管的稳定并且促进至少一个电极与肝动脉分支的内动脉壁的接触。至少一个电极或换能器可以被配置为被激活以输送足以实现肝动脉分支的至少一部分(例如,肝总动脉的一段,其长度为30mm或更小、24mm或更小、20mm或更小,或20mm和30mm之间)的调节(例如,去神经、消融、刺激)的热能。至少一个电极或换能器可以沿肝动脉分支的周界长度和/或围绕肝动脉分支的周界在多个位置处重新安置和激活。至少一个电极或换能器可包括一个或更多个单极电极或一个或更多个双极电极对。在涉及多个电极或换能器的实施例中,可以同时或顺序地执行不同位置或方位处的调制。在一些实施例中,神经调节设备包括两个电极或换能器或基本上仅由两个电极或换能器组成。在一些实施例中,神经调节设备由四个电极或换能器组成或基本上仅由四个电极或换能器组成。在各种实施例中,电极或换能器有利地仅促进血管壁的两个象限或节段而不是所有四个象限的消融。在一些实施例中,电极或换能器被定位成在电极或换能器之间保持180度偏移,并根据期望或需要沿血管长度在电极或换能器之间提供间隔。在其他实施例中可以使用其他数量的电极或换能器(例如,三个电极、五个电极等)和其他周向偏移(例如,30度、45度、60度、72度、90度、120度)。在各种实施例中,电极或换能器可以周向(或径向)和/或轴向(或纵向)间隔开,并且可以独立地调整,以根据血管、患者或治疗参数调节电极(和治疗部位)的周向和/或轴向间隔。

本公开的一个方面涉及制造用于消融导管的医疗设备结构和组件的若干可替代设计、材料和方法。因此,一个说明性实施例是消融导管,其被配置为导航通过血管以消融组织,消融导管包括具有近端和远端的伸长轴。电极定位在伸长轴的远端附近,并被配置为将射频能量传输到血管壁中。电极内的基本上封闭的空间(例如,中空电极或空腔)促进从血管壁到血流中的热传递。在一些方面,提供搅动器或搅拌器以增加封闭的流体空间内的流体流动或循环。这些结构和组件可以结合到本文描述的消融导管中的任一个(例如,RF能输送设备或器械)中。

一些实施例涉及消融血管周围神经的方法,包括将消融导管穿过血管系统导航到血管的血管腔,该消融导管包括伸长轴,具有在伸长轴的远端附近的电极,以及电极内的基本上封闭的空间(例如,中空腔)。该方法进一步包括使基本上封闭的空间内的流体在封闭空间内流动,从而提供自由或强制的对流热传递,这促进从血管壁到血流中的热传递。该方法可以与本文描述的导管、设备、器械或系统中的任一个结合使用。

根据一个实施例,消融导管包括导管轴和电极,该导管轴具有近端和远端,该电极定位在导管轴的远端附近并且被配置为将射频能量传输到血管壁中。电极包括基本上封闭的空间,该基本上封闭的空间包括搅动器。基本上封闭的空间被配置为容纳流体以促进远离血管壁的热传递。在一些实施例中,导管包括适于接合所述搅动器的致动器。

在一些实施例中,基本上封闭的空间包括多个搅动器(例如,两个、三个、四个或更多个)。基本上封闭的空间可以是可扩展的和/或可以由球囊(例如,顺应性或半顺应性球囊)形成。在一些实施例中,基本上封闭的空间被配置为在使用期间填充有流体。在一些实施例中,基本上封闭的空间在制造期间预先填充有流体。基本上封闭的空间可以仅基本上封闭,因为它被配置为以相对慢的速率泄漏。例如,基本上封闭的空间可以被配置为以小于10ml/min的泄漏率泄漏流体。

在一些实施例中,被配置为导航通过血管以消融组织的消融导管包括具有近端和远端的伸长导管轴、定位在轴的远端附近的可扩展腔室,以及附连到可扩展腔室并被配置为将射频能量传输到血管壁中的又一个电极。可扩展腔室可包括或包含基本上封闭的流体空间,该基本上封闭的流体空间被配置为促进远离血管壁的热传递。在一些实施例中,基本上封闭的流体空间包括在制造期间填充或在使用时在血管内填充的流体(例如,在插入血管内的期望位置之后)。

在一些实施例中,导管包括具有近端和远端的伸长轴、定位在伸长轴的远端附近的可扩展腔室,以及可扩展腔室的带阀入口,该带阀入口在第一方向上提供受限制流动并且在第二方向上提供不受限制流动。在一个实施例中,带阀入口被配置为在可扩展腔室内提供流体的对流流动。在一个实施例中,带阀入口被配置为在可扩展腔室内夹带额外的流体。

根据一些实施例,消融导管包括具有近端和远端的伸长轴、流体输送管腔、定位在伸长轴的远端附近的可扩展腔室,以及提供通过可扩展腔室的流体的受限制流动的出口。出口可以是导管管腔中的孔口或消融导管的球囊的球囊腰部内的通道。

根据若干实施例,导管包括具有近端和远端的伸长轴、流体输送管腔、定位在伸长轴的远端附近的腔室,以及被配置为允许流体(例如,气体或液体)流入和流出腔室的顺应性体积。在一些实施例中,顺应性体积在腔室远侧。在其他实施例中,顺应性体积在腔室近侧。顺应性体积可以是气囊。在各种实施例中,顺应性体积可位于伸长轴内和/或腔室内。顺应性体积可包括顺应性球囊或弹性机械设备。

在一些实施例中,使用消融导管的方法,其中所述消融导管包括至少单个搅动器、基本上封闭的空间和导管轴,该导管轴包括近端、远端和位于导管轴远端的热元件,所述方法包括将导管轴插入患者的血管腔(例如,肝动脉、肾动脉、胃十二指肠动脉、脾动脉、肠系膜动脉、腹腔动脉分支的管腔)中、用热元件加热邻近患者血管腔的组织、用流体填充基本上封闭的空间,并通过接合搅动器从组织移除热量,以将热量传递到邻近热元件的整个基本上封闭的空间。

在一些实施例中,使用消融导管的方法,其中所述消融导管包括至少单个搅动器、基本上封闭的空间和导管轴,该导管轴包括近端、远端和位于导管轴远端的热元件,所述方法包括将导管轴插入患者的心脏结构中、用热元件加热邻近患者的心脏结构的组织、用流体填充基本上封闭的空间,并通过接合搅动器从组织移除热量,以将热量传递到邻近热元件的整个基本上封闭的空间。

在一些实施例中,用于消融邻近患者体内血管腔的组织的系统包括消融导管、被配置为调控到所述消融导管的功率输送的控制器、被配置为将功率从控制器传输到消融导管的第一电缆、被配置为与所述患者电接触地放置的第二电极;以及被配置为将功率从第二电极传输到控制器的第二电缆。消融导管可包括伸长导管轴、第一电极和在第一电极内的基本上封闭的空间,该伸长导管轴具有近端和远端,该第一电极定位在导管轴的远端附近并且被配置为将射频能量传输到血管壁中。基本上封闭的空间可包括一个或更多个搅动器。在一些实施例中,该系统包括与第一电极间隔开的第二电极,第二电极包括基本上封闭的空间和在基本上封闭的空间内的一个或更多个搅动器。

根据若干实施例,消融导管包括导管轴和电极,该导管轴具有近端和远端,该电极定位在导管轴的远端附近并且被配置为将射频能量传输到血管壁中。电极包括基本上封闭的空间,该基本上封闭的空间包括相变材料。基本上封闭的空间被配置为容纳流体以促进远离血管壁的热传递。在一些实施例中,相变材料用作热泵。

根据若干实施例,消融球囊导管适于将消融电极输送到治疗部位并将电极部署到治疗位置。在一些实施例中,具有附接的电导体的一个或更多个电极附连到安装在导管远端附近的扩展球囊组件。在一些情况下,保护电极和电导体在使用期间免受损坏并且保护患者免于由于与电极或电导体的相互作用而受伤是有益的。在一些实施例中,电极和电导体的至少一部分由柔性覆盖物或套管包围。在一些实施例中,柔性覆盖物或套管是柱形管。在其他实施例中,柔性覆盖物或套管是保形涂层。

根据若干实施例,适于消融组织的管腔内消融导管包括具有近端和远端的轴。多管腔球囊定位在轴的远端附近。多管腔球囊包括至少一个主管腔和至少一个辅助管腔。在一些实施例中,至少一个电极附连到多管腔球囊。该至少一个电极可包括电暴露于待消融或以其他方式处理的组织的表面。导管还包括从电极到电源的电导体。

在一些实施例中,至少一个电导体穿过至少一个辅助管腔。至少一个辅助管腔可以被配置为输送流体。在一个实施例中,至少一个辅助管腔被配置为在由至少一个电极输送能量时递送冷却流体经过球囊的热表面。在一些实施例中,冷却流体通过注入管腔输送到辅助管腔。冷却流体可以通过返回管腔从球囊中移除。在一些实施例中,电极组件的一部分包含在辅助管腔内。

根据若干实施例,球囊消融导管包括近侧歧管和具有多个管腔的伸长轴。多个管腔包括导丝管腔和流体注入管腔。导管还包括耦接到伸长轴的远端的可扩展构件(例如,球囊)。球囊包括与其耦接的多个电极。导管进一步包括从近端歧管的端口延伸到多个电极中的每个的多个电导体。在一些实施例中,导管不包括多于四个电极。在一些实施例中,两个电极是有利的,因为可以保持180度偏移并且可以调节具有短长度的血管(例如,具有约30mm长度的肝总动脉)。在其他实施例中,四个电极是有利的,因为具有以下益处中的一个或更多个:(i)可以在仍保持90度或180度偏移时处理增加的血管长度;(ii)在控制两个电极之间的径向或周向间隔时将多个电极放置在最短血管长度中的能力,(iii)在困难的解剖结构(例如,曲折、短长度、严重锥度)中调整电极放置特性的增加的能力;允许操作员在侧枝或病灶部位周围工作;(iv)允许操作员以2的倍数执行治疗;(v)减少由于不完全治疗(例如消融)周期而在血管中丢失的可治疗区域;和/或(vi)保持在多组治疗(例如,消融)之间径向和/或纵向偏移空间的能力。在使用四个电极的一些实施例中,与具有多于四个电极的设备相比,可以更好地控制治疗(例如,可以控制电极对之间的径向和/或长度间隔),并且可以减少治疗部位或导管放置的数量以执行四种治疗(例如,消融)。由于例如电极的效率和所使用的处理参数的增加,在若干实施例中仅使用两个电极或仅使用四个电极是可行的。如果使用两个电极,则两个电极可包括单极电极或双极电极对。如果使用四个电极,则四个电极可包括单极电极或两个双极电极对。可以打开和关闭电极以定制治疗(例如,基于所期望损伤区域的长度、血管长度等)。

导管可包括柔性外套管,其覆盖球囊的长度的至少一部分和多个电导体的至少一部分,以便包含多个电导体的一部分。柔性外套管可以可移除地连接到球囊,使得外套管可以在球囊扩展或膨胀之前从球囊移除。在一些实施例中,柔性外套管永久地连接(例如,联结、粘附或以其他方式不可移除地耦接)到球囊。在一些实施例中,柔性外套管包括与多个电极中的至少一些对齐的多个开窗(fenestration)。在一些实施例中,柔性外套管包括与开窗分离的不与任何电极对齐的一个或更多个开口、狭槽或孔。这些一个或更多个开口、狭槽或孔可有利地适于为球囊提供提高的柔性以促进折叠和/或减少热量。

在一些实施例中,多个电极直接联结(例如,焊接、熔焊、用粘合剂粘附)到球囊而不使用柔性电路。多个电导体中的相应一个可以联结(例如,焊接、熔焊、用粘合剂粘附)到多个电极中对应的一个或更多个。在一些实施例中,多个电极中的一个或更多个包括沿电极表面的长度的通道,其适于接收电导体,从而提供减小的外部轮廓。当处于膨胀配置时,电极中的一个或更多个可以弯曲以适形于球囊的外表面。球囊可包括多个凹穴或凹口,其适于接收多个电极中的相应一个,使得每个电极位置处的球囊的外直径不大于邻近每个电极的球囊的外直径。

在一些实施例中,导管包括耦接到可扩展构件(例如,球囊)的远端的远侧跟踪段。远侧跟踪段可以有利地适于改变导管从远侧到近侧或从近侧到远侧的柔性。在一些实施例中,远侧跟踪段的至少一部分(例如,远侧末端)包括不透射线的材料。远侧跟踪段可以具有预成形配置(例如,由于被预成形为特定形状的形状记忆材料),或远侧跟踪段可以被配置为由操作者成形以具有特定期望形状或几何形状(例如,与导管的远端部分必须穿过的血管系统的形状或几何形状对应的形状)。在一些实施例中,流体注入管腔包括至少一个孔口,其被取向以便将流体射流直接引导在多个电极中的一个的表面处。

导管还可以耦接到可移动外护套。可移动外护套可以沿导管的伸长轴的长度耦接,并且可以相对于伸长轴可移动。在一些实施例中,可移动外护套的平移移动调整导管的远端部分上的推力或调整导管的伸长轴的柔性。可移动外护套可包括捕获支撑轴或导引护套,其适于将流体或染料输送(例如,注入)到血管。护套可以小于6弗伦奇并且沿其长度可以具有可变的刚性。可移动外护套可以用编织物或线圈加强。可移动外护套可适于相对于导管轴移动大于5cm或大于10cm。在一些实施例中,柔性外套管整体地耦接到可移动外护套。例如,柔性外套管可以是可移动外护套的近侧部分,其可相对于伸长轴移动,使得外套管可以在球囊扩展或碰撞之前移除以免覆盖球囊(以及球囊的一个或更多个电极)。

根据若干实施例,提供了使用球囊导管向组织输送治疗能量的方法。该方法包括将球囊导管的球囊定位在要从其输送能量的受试者的血管(例如,肝总动脉)内的第一放置位置处,其中该球囊包括被配置为独立激活的一个或更多个能量输送构件(例如,电极、超声换能器或输送元件)。该方法进一步包括确定第一放置位置处的一个或更多个能量输送构件中的每个的位置和取向中的至少一个。该方法进一步包括基于至少一个能量输送构件的位置或取向中的至少一个,使得一个或更多个能量输送构件中的至少一个不在第一放置位置处被激活。

在一些实施例中,该方法进一步包括基于所确定的一个或更多个能量输送构件中的每个的位置和取向,确定由一个或更多个能量输送构件中的至少一个的能量输送可以影响非靶邻近结构(non-target adjacent structure)(例如,期望不受影响或期望不接收任何能量或热量的结构或组织),诸如胰腺、胆管、门静脉、淋巴结等。在一些实施例中,该方法包括基于所确定的一个或更多个能量输送构件的位置,确定能量输送构件中的至少一个定位在血管的边界(例如,近端或远端)之外,使得能量输送是根据血管长度定制的。例如,被确定为定位在血管边界之外(例如,在分叉处或在不同的分支或血管中或在血管的长度之外)的能量输送构件中的至少一个可能在其他能量输送构件被激活时不被激活,以便不将能量输送到超出血管边界的位置,从而促进基于血管长度的定制治疗。位置和/或取向的确定可以基于各种成像方法或机制(例如,荧光检查、计算机断层扫描(CT)、射线照相、血管造影、光学相干断层扫描(OCT)、血管内超声(IVUS)、多普勒、热成像、磁共振(MR)成像和/或类似方法或机制)。

根据若干实施例,使用球囊导管将治疗能量输送到组织的方法包括将球囊导管的球囊定位在受试者的血管内的第一放置位置。球囊可包括布置在由四个电极构成或组成的电极图案中的多个电极。该方法包括在第一放置位置(同时或独立)激活第一对多个电极,其中该第一对多个电极沿球囊周向和轴向间隔开。该方法还包括将球囊重新安置在受试者的血管内的第二放置位置,并且(同时或独立)激活第二对多个电极,在第二放置位置该第二对多个电极不同于第一对多个电极。第二对多个电极从第一对沿球囊周向和轴向间隔开。该方法产生与电极图案不同的损伤图案(例如,螺旋损伤图案)。在一些实施例中,第一对的电极彼此周向间隔开90度,并且第二对的电极彼此周向间隔开90度。第一对的第一电极和第二对的第一电极可以周向间隔开180度并沿垂直于血管的轴线(例如,纵向轴线)的平面对齐。第一对的第二电极和第二对的第二电极也可以周向间隔开180度并沿垂直于血管的轴线(例如,纵向轴线)的平面对齐。在一些实施例中,损伤图案适于增加血管周围的周向覆盖而不引起沿血管壁的横截面的周向覆盖。

根据若干实施例,提供了使用球囊导管向组织输送治疗能量的方法。该方法包括将球囊导管的球囊定位在受试者的血管(例如,肝总动脉)内的第一放置位置处。球囊可包括布置在由六个电极构成的电极图案中的多个电极。该方法包括在第一放置位置激活多个电极中的第一三元件组(triplet),其中多个电极中的第一三元件组沿球囊彼此周向和轴向间隔开。该方法还包括将球囊重新安置在受试者的血管内的第二放置位置,并且在第二放置位置激活与多个电极中的第一三元件组不同的多个电极中的第二三元件组。多个电极中的第二三元件组沿球囊彼此周向和轴向间隔开。通过激活电极的第一三元件组和电极的第二三元件组产生的损伤图案可以有利地与电极图案不同。在一些实施例中,多个电极中的第一三元件组彼此周向间隔开120度,并且多个电极中的第二三元件组彼此周向间隔开120度。

根据若干实施例,适于肝去神经的管腔内消融导管包括近侧歧管。近侧歧管可包括一个或更多个端口(例如,冷却剂流体注入端口、染料输送端口、导丝端口、球囊膨胀端口)。导管还可包括伸长轴,该伸长轴包括至少一个管腔。伸长轴包括沿其长度延伸的中心纵向轴线。导管还包括耦接到伸长轴的远端部分的可扩展构件(例如,可膨胀气囊)。可扩展构件适于在非扩展(例如,非膨胀、折叠)配置和扩展(例如,膨胀、非折叠)配置之间转换。可扩展构件包括四个电极或由四个电极组成。该四个电极中的第一电极和第二电极可以位于沿可扩展构件的第一周向横截面内,在距可扩展构件的远端的第一轴向距离处,并且可以在可扩展构件处于扩展配置时围绕伸长轴的中心纵向轴线位于彼此相对的象限中(例如,相隔180度或大约180度间隔开)。该四个电极中的第三电极和第四电极可以位于沿可扩展构件的第二周向横截面内,在距可扩展构件的远端的第二轴向距离处,并且可以在可扩展构件处于扩展配置时围绕伸长轴的中心纵向轴线位于彼此相对的象限中(例如,相隔180度或大约180度间隔开)。第二轴向距离不同于第一轴向距离。导管还包括用于冷却四个电极的装置。

在一些实施例中,第三电极和第四电极各自从第一电极和第二电极周向偏移,使得它们处于与第一电极和第二电极不同的象限中。例如,第三电极和第四电极可以从第一电极和第二电极偏移90度。在一些实施例中,第一电极和第二电极的中心点沿第一平面对齐,该第一平面基本上垂直于伸长轴的中心纵向轴线,并且第三电极和第四电极的中心点沿第二平面对齐,该第二平面基本上垂直于伸长轴的中心纵向轴线。伸长轴的至少一个管腔可包括适于跟踪导丝的第一中心导丝管腔,以及至少一个流体输送管腔,其与球囊的内部流体连通,并适于输送在球囊内的冷却剂和/或流体以使球囊膨胀/收缩,使球囊在扩展和非扩展配置之间转换。

用于冷却的装置可包括一个或更多个孔口,其适于朝四个电极中的至少一个引导流体射流。孔口可以沿球囊(在此类实施例中可以被称为外球囊)内的内球囊、沿流体输送管腔,或沿球囊内部的其他结构定位。在一些实施例中,至少一个孔口邻近四个电极中的每个定位,使得四个电极中的每个被直接冷却。一个或更多个喷嘴或喷射器可以邻近一个或更多个孔口定位,使得一个或更多个喷嘴或喷射器中的每个被配置为朝四个电极中的相应一个的至少一个表面引导流体射流。在一个实施例中,第二球囊(例如,内球囊)位于球囊(例如,外球囊)内,并且一个或更多个孔口沿第二球囊定位在邻近一个、一些或全部电极的位置。在一些实施例中,用于冷却的装置包括流体入口管腔,其具有位于球囊内并且邻近四个电极中的至少一个(例如,一个、一些或全部)的出口。

在一些实施例中,球囊包括开窗,四个电极中的每个位于相应的开窗内。在一些实施例中,四个电极中的每个直接联结到球囊的外表面而不使用柔性电路。在一些实施例中,导管包括沿伸长轴定位的一个或更多个损伤间隔指示器(例如,不透射线的标记),以促进损伤区域的受控间隔。一个或更多个损伤间隔指示器可定位在球囊远侧、球囊近侧和/或球囊内。

在一些实施例中,四个电极中的每个包括沿电极表面的长度的通道,其适于接收电导体。单独的电导体可耦接到每个电极,并且可从相应的电极延伸到近侧歧管。在一些实施例中,导管进一步包括远侧跟踪段,其耦接到可扩展构件(例如球囊)的远端或耦接到伸长轴或至少一个管腔的远端。远侧跟踪段适于改变导管从远侧到近侧的柔性。远侧跟踪段的远侧末端可包括不透射线的材料。远侧跟踪段可以具有预成形配置,或可以被配置为在插入之前或插入之后由操作者成形。

在一些实施例中,球囊包括多个凹穴,其中多个凹穴中的每个适于接收多个电极中的相应一个,使得每个电极位置处的球囊的外直径不大于邻近每个电极的球囊的外直径。导管还可包括可移动外护套(例如,捕获支撑套管),其沿伸长轴的长度耦接并且可相对于伸长轴移动,其中可移动外护套的平移移动调整导管的远端部分上的推力,或调整伸长轴的柔性。

在一些实施例中,当球囊处于扩展配置时,球囊适于基本上为柱形,使得当球囊处于扩展配置时,四个电极中的每个与其他四个电极中的每个基本上周向等距离。在一些实施例中,四个电极中的每个由两个电极元件的簇形成,该两个电极元件彼此邻近地周向定位并且适于充当单个单极电极。在一些实施例中,两个电极元件的簇的表面积范围在5mm

根据若干实施例,管腔内消融导管包括近侧歧管、包括至少一个管腔的伸长轴和耦接到伸长轴的远端部分的第一球囊,其中球囊适于在折叠配置和扩展、非折叠配置之间转换。球囊包括沿球囊定位的四个电极或由该四个电极组成,当球囊处于扩展、非折叠配置时,四个电极中的第一电极和第二电极位于沿球囊的第一周向横截面中,并且围绕球囊的周界位于彼此相对的象限中,并且当球囊处于扩展、非折叠配置时,四个电极中的第三电极和第四电极位于沿球囊的第二周向横截面内,并且围绕球囊的周界位于彼此相对的象限中。第二周向横截面从第一周向横截面轴向偏移。导管还包括用于冷却四个电极的装置。

在一些实施例中,当球囊处于扩展、非折叠配置时,第三电极和第四电极在周向上位于与第一电极和第二电极不同的象限中。第三电极和第四电极可以位于这样的象限中:当球囊处于扩展、非折叠配置时,该象限从第一电极和第二电极位于的象限周向偏移90度。第一电极和第二电极可以围绕伸长轴的中心纵向轴线彼此周向隔开180度定位。第三电极和第四电极可以围绕伸长轴的中心纵向轴线彼此周向隔开180度定位。在一些实施例中,当球囊处于扩展、非折叠配置时,第三电极和第四电极各自从第一电极和第二电极周向偏移90度。

在一些实施例中,至少一个管腔包括适于跟踪导丝的第一中心导丝管腔,以及至少一个流体输送管腔,该至少一个流体输送管腔与球囊内部流体连通并适于在球囊内输送冷却剂和/或其他流体。用于冷却的装置可包括一个或更多个孔口,其适于朝四个电极中的至少一个引导流体射流。孔口可以沿球囊(在此类实施例中可以被称为外球囊)内的内球囊、沿流体输送管腔,或沿球囊内部的其他结构定位。在一些实施例中,至少一个孔口邻近四个电极中的每个定位,使得四个电极中的每个被直接冷却。一个或更多个喷嘴或喷射器可以邻近一个或更多个孔口定位,使得一个或更多个喷嘴或喷射器中的每个被配置为朝四个电极中的相应一个的至少一个表面引导流体射流。在一个实施例中,第二球囊(例如,内球囊)位于球囊(例如,外球囊)内,并且一个或更多个孔口沿第二球囊定位在邻近一个、一些或全部电极的位置。在一些实施例中,用于冷却的装置包括流体入口管腔,其具有位于球囊内并且邻近四个电极中的至少一个(例如,一个、一些或全部)的出口。

在一些实施例中,球囊包括开窗,四个电极中的每个位于相应的开窗内。在一些实施例中,四个电极中的每个直接联结到球囊的外表面而不使用柔性电路。在一些实施例中,导管包括沿伸长轴定位的一个或更多个损伤间隔指示器(例如,不透射线的标记),以促进损伤区域的受控间隔。一个或更多个损伤间隔指示器可定位在球囊远侧、球囊近侧和/或球囊内。

在一些实施例中,四个电极中的每个包括沿电极表面的长度的通道,其适于接收电导体。单独的电导体可以耦接到每个电极,并且可以从相应的电极延伸到近侧歧管。在一些实施例中,导管进一步包括远侧跟踪段,其耦接到球囊的远端或耦接到伸长轴或至少一个管腔的远端。远侧跟踪段适于改变导管从远侧到近侧的柔性。远侧跟踪段的远侧末端可包括不透射线的材料。远侧跟踪段可以具有预成形配置,或可以被配置为在插入之前或插入之后由操作者成形。

在一些实施例中,球囊包括多个凹穴,其中多个凹穴中的每个适于接收多个电极中的相应一个,使得每个电极位置处的球囊的外直径不大于邻近每个电极的球囊的外直径。导管还可包括可移动外护套(例如,捕获支撑套管),其沿伸长轴的长度耦接并且可相对于伸长轴移动,其中可移动外护套的平移移动调整导管的远端部分上的推力,或调整伸长轴的柔性。

在一些实施例中,当球囊处于扩展配置时,球囊适于基本上为柱形,使得当球囊处于扩展配置时,四个电极中的每个与其他四个电极中的每个基本上周向等距离。在一些实施例中,四个电极中的每个由两个电极元件的簇形成,该两个电极元件彼此邻近地周向定位并且适于充当单个单极电极。在一些实施例中,两个电极元件的簇的表面积范围在5mm

根据若干实施例,管腔内消融导管包括近侧歧管、包括至少一个管腔的伸长轴,以及沿伸长轴耦接的第一球囊,其中球囊适于在折叠配置和扩展、非折叠配置之间转换。球囊可包括四个电极簇,每个电极簇包括两个电极构件,这两个电极构件彼此邻近地周向定位并沿球囊的长度轴向对齐。当处于扩展、非折叠配置时,四个簇中的每个可定位在球囊的不同周向象限中。在一些实施例中,四个簇中的每个与其他三个簇中的每个轴向间隔开。导管还包括用于直接冷却四个电极构件簇的装置。

在一些实施例中,四个电极构件簇被定位成使得簇沿球囊的长度共同形成螺旋图案。在一些实施例中,从球囊的远端移动到近端的每个连续簇从前一簇周向偏移90度或大约90度。在一些实施例中,四个簇中的前两个彼此周向偏移180度或大约180度,并且其中四个簇中的后两个彼此周向偏移180度或大约180度。

在一些实施例中,至少一个管腔包括适于跟踪导丝的第一中心导丝管腔,以及至少一个流体输送管腔,该至少一个流体输送管腔与球囊内部流体连通并适于在球囊内输送冷却剂和/或其他流体。在一些实施例中,用于冷却的装置包括一个或更多个孔口,其适于朝四个簇中的至少一个引导流体射流。孔口可以沿球囊(在此类实施例中可以被称为外球囊)内的内球囊、沿流体输送管腔,或沿球囊内部的其他结构定位。在一些实施例中,至少一个孔口邻近四个簇中的每个定位,使得四个簇中的每个被直接冷却。一个或更多个喷嘴或喷射器可以邻近一个或更多个孔口定位,使得一个或更多个喷嘴或喷射器中的每个被配置为朝四个簇中的至少一个引导流体射流。在一个实施例中,第二球囊(例如,内球囊)位于球囊(例如,外球囊)内,并且一个或更多个孔口沿第二球囊定位在邻近一个、一些或全部簇的位置。在一些实施例中,用于冷却的装置包括流体入口管腔,其具有位于球囊内并且邻近四个簇中的至少一个(例如,一个、一些或全部)的出口。

在一些实施例中,四个簇的电极构件直接联结到球囊的外表面而不使用柔性电路。在一些实施例中,导管包括沿伸长轴定位的一个或更多个损伤间隔指示器(例如,不透射线的标记),以促进损伤区域的受控间隔。一个或更多个损伤间隔指示器可定位在球囊远侧、球囊近侧和/或球囊内。

在一些实施例中,电极构件中的每个包括沿电极构件表面的长度的通道,其适于接收电导体。单独的电导体可耦接到每个电极构件,或单个电导体可耦接到电极簇的所有电极构件,并可从相应的电极延伸到近侧歧管。在一些实施例中,导管进一步包括远侧跟踪段,其耦接到球囊的远端或耦接到伸长轴或至少一个管腔的远端。远侧跟踪段适于改变导管从远侧到近侧的柔性。远侧跟踪段的远侧末端可包括不透射线的材料。远侧跟踪段可以具有预成形配置,或可以被配置为在插入之前或插入之后由操作者成形。

导管还可包括可移动外护套(例如,捕获支撑套管),其沿伸长轴的长度耦接并且可相对于伸长轴移动,其中可移动外护套的平移移动调整导管的远端部分上的推力,或调整伸长轴的柔性。在一些实施例中,当球囊处于扩展配置时,球囊适于基本上为柱形,使得当球囊处于扩展配置时,四个簇中的每个与其他四个簇中的每个基本上周向等距离。在一些实施例中,两个电极构件的簇的表面积范围在5mm

尽管上面概述的一些实施例是关于肝神经调节描述的,但本文的实施例还考虑了除肝脏或肝血管之外的区的神经调节或组织调节。例如,本文描述的导管、设备和系统还可用于肾去神经(例如,通过调节一个或两个肾动脉中的神经),用于通过调节支配胰腺、肾、十二指肠、空肠和/或胃的神经来进行葡萄糖或脂质调控,用于心脏消融,用于肺组织或血管消融或神经调节,以及本文描述的其他目标和适应症。上面概述的设备和系统可以在肝动脉以外的血管内使用,诸如肾动脉、胃十二指肠动脉、腹腔动脉或脾动脉。例如,设备和系统可以在一个或更多个肾动脉或静脉内使用,并且可以适用于治疗与肾血管周围神经的调节相关联的高血压或其他病症。作为另一示例,设备和系统可以在胃十二指肠动脉、腹腔动脉或支配胰腺的血管内使用,并且神经调节设备可以适用于治疗多尿症的一种或多种症状。作为另一示例,设备和系统可以在血管内使用,并且可以被配置为使血管周围神经的调节足以改变交感神经紧张。

出于概述本公开的目的,本文已经描述了本发明的实施例的某些方面、优点和新颖特征。应该理解,根据本文公开的本发明的任何特定实施例,不一定能够实现所有此类优点。因此,本文公开的实施例可以以实现或优化本文所教导或建议的一个优点或一组优点,而不一定实现本文可教导或建议的其他优点的方式实施或实行。上面概述并在下面进一步详细阐述的方法描述了从业者采取的某些动作;然而,应该理解的是,它们还可以包括另一方对那些行为的指令。因此,动作诸如“在肝动脉内输送神经调节导管”包括“指示在肝动脉内输送神经调节导管”。关于附图,来自一个图的要素可以与来自其他图的要素组合。

附图说明

图1A示出了根据本发明的实施例的包括肝脏和肝脏血液供应的靶治疗位置的解剖结构。

图1B示出了根据本发明的实施例的包括肝脏和肝脏血液供应的靶治疗位置的解剖结构。

图1C示出了向肝脏及其周围器官和组织供血的各种动脉,以及支配肝脏及其周围器官和组织的神经。

图2A和图2B示出了受到邻近致密结构的存在影响的肝动脉周围的神经分布的示例。

图3示出了肝丛的肝总动脉和神经的示意图。

图4示出了球囊导管的实施例的远端部分的透视局部穿视图。

图5A至图5E是示出电极形状的各种实施例的示意图。

图6A至图6D是示出电极边缘特征的各种实施例的示意图。

图6E是电极的实施例的侧视图,示出了其弯曲轮廓。

图6F示出了具有用于接收电线导体的通道的电极的实施例,并且示出了联结到电极的电线导体。

图6G包括具有适于接收电极的凹穴或凹槽的球囊的实施例的示意性透视图和剖视图。

图6H示出了导体线到电极的附接的实施例。

图7示出了电极组件的实施例。

图8A-1和图8A-2示出了具有窗口或开窗的套管的实施例的侧视图和透视图,该窗口或开窗适于与球囊导管上的电极对齐。

图8B至图8F示出了球囊导管的套管的实施例。

图9A至图9E示意性地示出了球囊折叠配置的各种实施例。

图10A至图10F示意性地示出了电极图案的各种实施例。

图11A和图11B示意性地示出了平移步进方法的实施例。

图12A是具有多对电极的消融设备的球囊的实施例的透视图。

图12B是图12A的球囊的侧截面图。

图13A是球囊消融设备的实施例的远端部分的局部剖视图。

图13B-1和图13B-2分别是球囊消融设备的另一个实施例的远端部分的透视图和局部剖面图。

图13C-1和图13C-2分别是球囊消融设备的另一个实施例的远端部分的局部剖视图和局部放大剖视图。

图14A是球囊消融装置的球囊内部的冷却组件的实施例的局部剖视图。

图14B-1和图14B-2分别示出了多管腔冷却组件的实施例的透视图和端视图。

图15A和图15B分别示出了球囊消融导管的远侧部分和近侧部分。

图16A-1至图16A-3示出了多管腔消融球囊组件的实施例的等轴视图、侧视图和截面视图。

图16B示出了穿过多管腔消融球囊组件的中心部分的截面视图。

图16C-1和图16C-2示出了适用于制造多管腔消融球囊部件的多管腔挤出件的实施例的截面视图。

图16D-1、图16D-2、图16E-1和图16E-2示出了穿过多管腔消融球囊部件的中心部分的截面视图。

图17A、图17B-1、图17B-2和图17C示出了复合多管腔球囊消融设备的实施例的各种视图。

图18A和图18B示出了远侧轴延伸段或单元的实施例,其适于耦接到治疗设备以促进通过曲折的血管系统进入。

图19A和图19B示出了可移动外护套的实施例,其适于耦接到治疗设备的伸长轴以促进通过曲折的血管系统进入。

图20A至图20E、图21和图22A至图22C示出了球囊消融设备的各种实施例。

图23是示出用于将消融能量输送到人体内的系统的实施例的示意图。

图24是消融导管的实施例的远端的示意图,其描绘了消融部位处的质量和热传递。

图25是具有基本上封闭的流体空间的热元件的实施例的示意表示。

图26是具有延伸的基本上封闭的流体空间的热元件的实施例的示意表示,该流体空间的一部分被电绝缘材料覆盖。

图27是示出位于热元件内的搅动器的实施例的示意图。

图28是示出位于热元件内的搅动器和相关联驱动元件的实施例的示意图。

图29A是示出在理想化热元件和组织的各个部分处的温度分布的曲线图。

图29B是示出在基本上固体的电极的热元件和邻近组织的各个部分处的温度分布的曲线图。

图29C是示出在基本上固体的电极的热元件和邻近组织的各个部分(但与图29B相比具有较低的热导率)处的温度分布的曲线图。

图29D是示出根据本公开的方面的流体填充电极的温度分布的曲线图。

图30A是具有近侧射流阀和远侧泄放孔的球囊导管的实施例的剖视图。

图30B是图30A的近侧射流阀的放大视图。

图31是具有远侧扩展腔室的球囊导管系统的实施例的图示。

图32是远侧泄放阀的实施例的剖视图。

图33A提供了球囊中的流体夹带元件的实施例的剖视图。

图33B示出了流体夹带元件的实施例的剖视图。

图33C示出了输送管腔上的流体夹带元件的实施例。

图33D示出了流体夹带元件的实施例的透视图。

图34A示出了具有射流装置的哨状导管的实施例,该射流装置被配置为用高速低流量射流夹带流体。

图34B示出了图34A的实施例的横截面图。

图35A提供了模拟结果,其示出了经受自由对流的消融球囊周围的温度分布。

图35B提供了模拟结果,其示出了具有足够内部对流以在球囊内实现基本上均匀的温度的消融球囊周围的温度分布。

图36、图37A和图37B示出了各种损伤区域或图案。

图38A和图38B示意性地示出了具有适于控制损伤间隔的损伤间隔指示器的消融导管的实施例。

图39示出了RF加热与距电极的距离的曲线图。

图40示出了用于促进将低轮廓神经调节导管输送到肝动脉分支的“伸缩”系统的实施例。

图41示出了使用图39的系统来接近肝动脉内的靶神经调节位置的实施例。

图42A和图42B示出了包括引导护套或系留套管的血管通路系统的实施例。

图43A和图43B示出了神经调节球囊导管的实施例,其被配置为在曲折的血管系统内或在呼吸期间经受移动的血管系统内提供导管稳定。

图44A至图44D示出了用于组织接触感测的分段电极组件的实施例。

具体实施方式

本文描述的本发明的实施例通常涉及靶向神经纤维的治疗性神经调节,以治疗各种代谢疾病、病症或失调或降低其发生或发展的风险,包括但不限于多尿症(diabetes)(例如,糖尿病(diabetes mellitus))。尽管该描述阐述了各种实施例中的具体细节,但是应当理解,该描述仅是例示性的,并且不应以任何方式解释为限制本公开。此外,本领域技术人员可以想到的所公开实施例的各种应用及其修改也包含在本文描述的一般概念中。尽管关于肝神经调节描述了下面阐述的若干附图,但本文的实施例还考虑了除肝脏或肝血管系统之外的区的神经调节或组织调节。例如,本文描述的导管、设备和系统还可用于肾去神经(例如,通过调节一个或两个肾动脉中的神经),用于通过调节支配胰腺、十二指肠、空肠和/或胃的神经来进行葡萄糖或脂质调控,用于心脏消融,用于肺组织或血管消融或神经调节,以及本文描述的其他目标和适应症。

自主神经系统包括交感神经和副交感神经系统。交感神经系统是自主神经系统的组成部分,其负责身体的“战斗或逃跑”反应,那些反应可以使身体为高压或剧烈体力消耗时期做好准备。因此,交感神经系统的功能中的一个是提高葡萄糖对在兴奋或压力期间的快速能量代谢的可用性,以及减少胰岛素分泌。

肝脏可以在维持正常血糖浓度中起重要作用。例如,肝脏可以通过形成糖原(一种大的葡萄糖聚合物)在其细胞内储存过量的葡萄糖。然后,如果血糖浓度开始过度降低,则葡萄糖分子可以与储存的糖原分离并返回血液以被其他细胞用作能量。肝脏是高度血管化的器官,由两个独立的血液供应进行供应,一个是门静脉(作为肝脏的主要血液供应),并且另一个是肝动脉(肝脏的次要血液供应)。

将糖原分解成葡萄糖的过程称为糖原分解,并且是交感神经系统可以增加全身葡萄糖的一种方式。为了发生糖原分解,必须首先激活酶磷酸化酶以引起磷酸化,这允许各个葡萄糖分子与糖原聚合物的分支分离。例如,一种激活磷酸化酶的方法是通过肾上腺髓质的交感神经刺激。通过刺激支配肾上腺髓质的交感神经,肾上腺素被释放。然后肾上腺素促进环AMP的形成,其继而引发激活磷酸化酶的化学反应。激活磷酸化酶的另一种方法是通过胰腺的交感神经刺激。例如,磷酸化酶可以通过胰腺的α细胞释放激素胰高血糖素而被激活。与肾上腺素类似,胰高血糖素刺激环AMP的形成,其继而开始化学反应以激活磷酸化酶。

肝功能维持正常血糖浓度的另一种方式是通过糖异生过程。当血糖浓度降至正常以下时,肝脏将从各种氨基酸和甘油合成葡萄糖,以维持正常的血糖浓度。已显示提高的交感神经活性增加糖异生,从而导致血糖浓度增加。

副交感神经系统是自主神经系统的第二组成部分,并且负责身体的“休息和消化”功能。这些“休息和消化”功能补充了交感神经系统的“战斗或逃跑”反应。副交感神经系统的刺激与血糖水平降低有关。例如,已显示刺激副交感神经系统增加胰腺β细胞的胰岛素分泌。因为通过胰岛素大大增强了通过细胞膜的葡萄糖转运速率,所以增加从胰腺分泌的胰岛素的量可以有助于降低血糖浓度。其他器官或组织(诸如胰腺、小肠、十二指肠和/或胃的部分)周围的交感神经和/或副交感神经的神经调节(例如,去神经、消融或刺激)也可以与调节支配肝脏的神经组合执行,以治疗多尿症或与多尿症相关联的症状(例如,高血糖水平、高甘油三酯水平、高胆固醇水平、低胰岛素分泌水平)。本文描述的若干实施例适于单独或与交感神经系统一起调节(例如,消融、刺激等)副交感神经系统。在一些实施例中,激活一个系统而停用另一个系统。可替代地,可以激活或停用两个系统。在一些实施例中,支配胰腺的副交感神经的刺激与支配肝脏的交感神经的去神经组合,以治疗多尿症或与多尿症相关联的症状(例如,高血糖水平、高甘油三酯水平、高胆固醇水平、低胰岛素分泌水平)。其他器官或组织(诸如胰腺、十二指肠和/或胃的部分)周围的交感神经和/或副交感神经的刺激和/或去神经也可以组合执行。

图1A示出了靶肝治疗位置100的肝脏101和血管系统。肝脏可以沿门脉三征(例如,肝动脉)的结构或与其相关联的结构被神经支配,交感神经和副交感神经纤维两者可以沿该结构行进。血管系统包括肝总动脉105、肝固有动脉110、右肝动脉115、左肝动脉120、右肝静脉125、左肝静脉130、中肝静脉135和下腔静脉140。在肝脏血液供应系统中,血液通过行进经过肝总动脉105、肝固有动脉110并然后通过左肝动脉120或右肝动脉115中的任一个进入肝脏。右肝动脉115和左肝动脉120(以及门静脉,未示出)向肝脏101提供血液供应,并直接供给肝脏101的肝组织内的毛细血管床。肝脏101使用由右肝动脉115和左肝动脉120提供的氧合血流提供的氧气。来自肝脏101的脱氧血液通过右肝静脉125、左肝静脉130和中肝静脉135离开肝脏101,所有这些都排空到下腔静脉140中。

图1B示出了用于治疗多尿症或与多尿症或葡萄糖产生相关联的症状的肝神经调节方法和系统的肝脏101和靶血管系统。靶血管系统可包括肝动脉105,其从源自腹主动脉205的腹腔动脉210分支。肝动脉105向肝脏供血。还示出了脾动脉235,其也从腹腔动脉210分支以向脾145提供血液。邻近肝动脉105定位的其他器官或致密结构可包括胰腺150、胃155和肠160的部分(包括小肠)。可以提供系统和方法以识别沿肝动脉105的紧邻可以影响葡萄糖产生的邻近结构(例如器官)的位置,并调节所识别位置处或附近的组织(例如,使用射频、超声或微波能输送设备输送能量,其足以调节支配肝脏和/或可能影响葡萄糖产生的其他邻近结构(例如胰腺150、胃155和/或小肠160)的神经)。所提供的调节可足以降低葡萄糖水平(例如,血糖水平)、脂质水平、胆固醇水平等。在各种实施例中,多个邻近结构(例如,器官)的部分可以被去神经或以其他方式调节(来自单个位置或沿肝动脉105或与肝动脉105连接或邻近的动脉的一部分的多个位置,该动脉诸如腹腔动脉210、脾动脉235和胃十二指肠动脉)。本发明的若干实施例是特别有利的,因为无关于受试者之间的解剖学变化,可以一致地执行支配影响葡萄糖产生和储存的器官的交感神经的破坏。

图1C示出了肝脏周围的各种动脉和支配肝脏及其周围器官和组织的各种神经系统200。动脉包括腹主动脉205、腹腔动脉210、肝总动脉215、肝固有动脉220、胃十二指肠动脉222、右肝动脉225、左肝动脉230和脾动脉235。所示的各种神经系统200包括腹腔丛240和肝丛245。将肝脏的血液供应从心脏泵入主动脉中,然后向下通过腹主动脉205并进入腹腔动脉210中。从腹腔动脉210,血液行进通过肝总动脉215,进入肝固有动脉220中,然后通过右肝动脉225和左肝动脉230进入肝脏中。肝总动脉215从腹腔干或动脉210分支出来。肝总动脉215产生胃和胃十二指肠动脉。支配肝脏的神经可包括腹腔丛240和肝丛245的部分。腹腔丛240环绕在腹腔动脉210周围并继续进入肝丛245中,肝丛245环绕在肝固有动脉220、肝总动脉215周围,并且可以继续到右肝动脉225和左肝动脉230。这些区中的神经解剖学的性质(例如,神经结构与动脉管腔的接近度)适于用于破坏交感神经活动的血管内方法,包括但不限于血管内消融。在一些解剖结构中,腹腔丛240和肝丛245紧密地粘附到为肝脏提供血液的动脉的壁(并且神经中的一些可以嵌入外膜中),从而使血管内到血管外神经调节对调节腹腔丛240和/或肝丛245的神经特别有利。在若干实施例中,血管(例如,肝动脉)的中膜厚度范围为约0.1cm至约0.25cm。在一些解剖结构中,肝动脉分支的神经纤维中的至少大部分位于距管腔壁0.5mm至1mm内,使得使用血管内方法的调节(例如,去神经)对于降低的功率或能量剂量要求是有效的。在使用射频能量的一些(但不是全部)实施例中,可以使用低功率或低能量(例如,输送到靶血管的内壁或靶神经的小于10W的功率输出和/或小于1kJ的能量)血管内能量递送,因为神经紧密地粘附到为肝脏提供血液的动脉(例如,肝动脉分支)的外壁或粘附在动脉的外壁内。

继续参考图1A、图1B和图1C,肝丛245是从腹腔丛240的最大偏移。认为肝丛245主要携带传入和传出的交感神经纤维,其刺激可通过许多机制提高血糖水平。例如,刺激肝丛245中的交感神经纤维可以通过增加肝葡萄糖产生来增加血糖水平。刺激肝丛245的交感神经纤维还可以通过减少肝葡萄糖摄取来提高血糖水平。因此,通过破坏(例如,阻断、终止、去神经、消融)肝丛245中的交感神经信号传导,可以减小或降低血糖、甘油三酯、去甲肾上腺素、脂质(例如,脂蛋白)和/或胆固醇水平。在一些实施例中,血糖水平从基线降低10%-80%(例如,10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%、30%-60%、40%-70%、20%-50%,或其重叠范围)。甘油三酯、去甲肾上腺素、脂质和/或胆固醇水平也可以降低类似的量。

在若干实施例中,可根据本文描述的实施例调节图1A、图1B和图1C中识别的区中的任一个(例如,动脉、神经)。可替代地,在一个实施例中,向肝丛提供局部疗法,同时使这些其他区中的一个或更多个不受影响。在一些实施例中,图1A、图1B和图1C所示的(例如,器官、动脉、神经系统的)多个区可以组合(同时或顺序地)调节,这可以提供一种或多种协同效果。例如,在一些实施例中,代谢神经调节治疗的方法涉及在肝总动脉以及腹腔动脉、脾动脉和/或肝动脉的其他部分或分支(例如,肝固有动脉、左肝动脉、右肝动脉)中形成消融损伤,以促进除了肝脏之外的补充代谢器官和结构(例如,胰腺、胃、十二指肠)的去神经,即使在缩短的肝总动脉和/或不寻常的分支血管解剖结构的情况下。在一些实施例中,如果受试者具有短的肝总动脉(例如,小于30mm),则可能期望和/或需要消融其他血管或肝动脉的部分以实现有效治疗。在其他实施例中,通过在腹腔动脉、脾动脉、胃十二指肠动脉和/或肝动脉的其他部分(例如,肝固有动脉、右肝动脉、左肝动脉)中递送能量来治疗互补的代谢器官和结构可以有利地提供一种或多种协同效果。尽管本文描述了若干种(例如,在形状、大小、柔性等上)被配置用于肝动脉的进入/输送设备,但是此类进入/输送设备也可用于其他动脉和血管,并且特别是其他曲折的血管系统。另外,尽管本文中可以将设备描述为神经调节导管或设备并且关于神经的调节(例如,消融)进行描述,但是导管或其他设备可以用于调节其他类型的组织(例如,内衬器官或血管的组织、肌肉组织、内皮组织、结缔组织、粘膜下组织)。

交感神经可以分布在肝动脉(或其他动脉,诸如腹腔动脉、脾动脉、胃十二指肠动脉)周围,并且本发明的若干实施例适于治疗这些血管。肝动脉经过许多邻近的结构,从腹腔动脉起始到肝脏终止。神经远离肝动脉的距离或神经密度可受到邻近致密结构(诸如肝脏、胰腺、胃、小肠)的接近度的影响。根据若干实施例,在沿肝动脉的位置处调节组织可能是有利的,该位置与邻近的致密结构(例如,肝脏、胰腺、胃、小肠、肌肉和/或结缔组织)足够紧密接近(例如,距离肝动脉的内壁小于1cm)。例如,沿肝动脉的靠近邻近结构的位置可以与高密度的神经浓度相关联,该神经的调节可以以有效且高效的方式降低葡萄糖水平或提供与多尿症治疗相关联的其他效果。图2A示出了肝动脉105周围的神经165的分布的示意表示,其具有受限的邻近结构170的影响(例如,邻近的致密结构170距离肝动脉105的内壁大于1cm),并且图2B示出了肝动脉105周围的神经165的分布的示意表示,其具有显著的邻近结构170的影响(例如,其中邻近的致密结构170距离肝动脉105的内壁小于1cm)。可以看出,由于肝动脉105和邻近结构170之间的有限空间,图2B中的神经165的分布在肝动脉105周围非常高度集中。图示的示例可以表示肝动脉105的通常由胰腺包封的区域。

腹腔丛远侧的血管分支的解剖结构在受试者之间可能是高度不同的。根据若干实施例,提供了系统和方法以识别沿肝动脉105的位置,其中肝动脉105与邻近的致密结构170紧密接近(例如,距离小于1cm、小于5mm),并且以破坏肝动脉105周围的神经165(例如,肝动脉105的中间层和邻近的致密结构170之间的神经165)的方式向所识别的位置提供能量。在一些实施例中,肝动脉105紧密接近邻近的致密结构170的位置与被确定为神经调节的理想候选者的位置匹配(例如,具有适当血管直径、足够治疗长度而没有太多弯曲度等的位置)。在一些实施例中,可以基于邻近结构(例如,胰腺、门静脉、胆管、淋巴结)的确定位置来调整治疗。例如,如果确定邻近结构是热汇(heat sink),则可以调整治疗参数以在血管内的特定位置处输送额外的能量或剂量,以适应将吸收由能量输送产生的热量中的一部分的邻近结构的存在。作为另一示例,如果确定邻近结构是反射性的,则可以调整治疗参数以在血管内的特定位置输送额外的或更少的能量或剂量。在另一示例中,可以调整治疗,使得在血管内的特定位置处根本不提供治疗性治疗(例如,能量)(例如,位于邻近期望避开的结构的位置之处的特定电极未被激活)。

关于治疗调整的额外详细信息

在一些异常但相当常见的患者解剖结构中,右肝动脉225和/或左肝动脉230(从紧邻肝脏的主动脉205的腹腔分支向肝脏供应血液的动脉)可能不会从肝固有动脉220分支,如图1C所示。相反,患者可能具有“替换的”右侧和/或左侧动脉,该动脉从源于不在肝总动脉215下游的腹腔动脉的不同动脉分支。对于此类患者解剖结构,肝总动脉215的消融或去神经可能不会引起期望的治疗结果,因为不是所有支配肝脏的神经都会被消融或以其他方式去神经或调节。在其他异常但相当常见的患者解剖结构中,患者可具有一个或更多个辅助动脉,其充当额外的右肝动脉或左肝动脉。一个或更多个辅助动脉也可以被支配肝脏的神经围绕。因此,对于具有替换的和/或附属的右和/或左肝动脉的此类患者解剖结构,可能需要在多个位置(例如,在肝总动脉和一个或更多个其他血管位置)实现去神经或其他调节,使得支配肝脏的神经的完全去神经受到影响(例如,消融或以其他方式调节)。关于基于邻近结构的治疗调整的其他细节将在下面提供。

图3是肝丛300的神经纤维的示意图。示出了肝总动脉305的一部分(或者,可选地,肝固有动脉),其中肝丛300环绕动脉。肝丛的神经纤维中的一些可以嵌入肝总动脉305(或肝固有动脉)的血管周围空间(例如,外膜)内,或者至少紧密地粘附到外血管壁或粘附在内血管壁内。如图所示,存在沿动脉管腔中心的血管腔轴线。肝丛300由副交感神经310和交感神经315组成。在一些解剖结构中,副交感神经310趋向于沿动脉周界(circumference)的一半向下行进,并且交感神经315趋向于沿动脉的另一半向下行进。

如图3所示,肝总动脉305的部分大致为圆柱形,其中副交感神经310支配大约180°的圆柱形弧,并且肝丛315的交感神经支配相对的大约180°的圆柱形弧。在一些解剖结构中,肝丛的副交感神经310和交感神经315之间几乎没有重叠(如果有的话)。在仅调节肝丛的交感神经315或副交感神经310的实施例中,此种离散化可能是有利的。在一些实施例中,可能期望调节肝丛的交感神经315,同时可能不期望调节肝丛的副交感神经310(反之亦然)。

在一些实施例中,仅调节靶血管系统的血管周围空间(例如,外膜层)的选择性区。在一些受试者中,副交感神经和交感神经可以明显地分布在血管外膜层上或内部。例如,使用由血管腔产生的轴线,肝丛的副交感神经可位于外膜的一个180度弧中,而交感神经可位于外膜的另一个180度弧中,诸如图3所示。通常,交感神经纤维趋向于沿肝动脉的前表面延伸,而副交感神经纤维定位朝向肝动脉的后表面。在这些情况下,通过分别调节前部区或后部区中的神经来选择性地破坏交感神经或副交感神经可能是有利的。

在一些受试者中,交感神经纤维可以沿显著长度的肝动脉延伸,而副交感神经纤维可以朝向肝动脉的远侧范围联接。研究表明,迷走神经与肝实质(liver parenchyma)附近的肝门联接(例如,在比肝动脉树周围的神经更远侧的位置)。由于迷走神经是副交感神经,因此在近侧围绕肝动脉的神经可能主要是交感神经。根据若干实施例,当期望破坏肝丛中的交感神经时,执行肝固有动脉朝向其近侧范围(例如,腹腔动脉的第一分支和肝总动脉的第一分支之间的中途)的调节(例如,消融)。根据本发明的一个实施例,消融肝动脉的近端范围可以有利地提供避开这种关键结构诸如胆管、胰腺和门静脉(其在朝向肝脏向远侧行进时接近肝动脉)的伴随益处。

在一个实施例中,仅选择性地调节(例如,消融)肝动脉的前部区。在一个实施例中,消融大约180度的动脉周界(其可包括对应的外膜层)。在一些实施例中,期望在约60°至约240°、约80°至约220°、约100°至约200°、约120°至约180°、约140°至约160°的范围内或其重叠范围内的消融。在一些实施例中,在调节程序期间主动冷却与靶向血管壁部分相对的不被靶向的血管壁部分。

在仅要治疗血管壁的选择性部分的实施例中,可以使用Z字形、重叠半圆形、螺旋形、套索形或其他消融图案来仅治疗外膜或其他血管周围空间中的神经组织的选择性区。根据一个实施例的螺旋形烧蚀图案Z的示例在图3中示出。在一些实施例中,使用具有固有Z字形、螺旋形或其他图案的一个或更多个消融电极。在一些实施例中,单点消融电极(无关于电极图案)绕大致180度的血管周界纵向和周向推进,来以Z字形、螺旋形或其他图案消融,从而选择性地仅消融大约180度的血管壁和伴随的神经组织。在一些实施例中,使用电极配置的其他图案。在一些实施例中,使用其他消融电极移动图案(无关于固有形态)。在一些实施例中,创建不彼此重叠的损伤区域。在各种实施例中,损伤区域轴向和/或径向(周向)间隔开。

在一些实施例中,其中仅血管壁的选择区将被调节(例如,消融或刺激),具有高度的设备(例如,导管)控制、稳定性和/或精确度可能是有帮助的。为了实现高精确度所需的控制,可以使用导引导管来接合附近分支的门孔(osteum)(例如,从腹腔动脉或腹腔干的肝总动脉的分支)以提供从中定位能量输送(例如,消融)导管的恒定参考点。可替代地,导管(例如,探针)也可以单独或同时锚定在其他分支中,以进一步改善控制和/或稳定性。可以通过顺应性的可膨胀球囊(例如,具有被配置为匹配门孔或特定血管的另一部分的形状和大小)来实现同时锚定,该可膨胀球囊可以基本上闭塞血管腔(例如,门孔),从而锚定导管并提供提高的稳定性。此种方法可以避免血管造影需要绘制治疗过程,包括伴随的有害造影剂和X射线暴露,因为治疗引导可以关于参考血管造影照片执行,其中神经调节导管与导引导管的距离在患者体外测量。在一些实施例中,可膨胀球囊可具有被配置为接合多个门孔或将被锚定在多个分支中(同时或顺序地)的大小和形状。在一些实施例中,血管闭塞引起靶位置处的动脉血流增加,从而提供更有效的对流冷却。在一个实施例中,球囊导管被配置为在动脉壁的限定区内输送受控量的能量,而无关于动脉(例如,肝动脉)内的低流量和/或可变流量。

腹腔丛远侧的血管分支的解剖结构可能在受试者之间高度不同,并且交感神经和副交感神经过程中的变化趋向于主要与腹腔丛远侧的分支相关联,而不是与在远侧上沿肝动脉的任何特定距离相关联。在一些实施例中,基于相对于分支解剖结构的位置而不是沿肝动脉的任何固定距离来选择神经调节位置,以便靶向交感神经纤维;例如,在肝总动脉内和从腹腔轴线分支约1cm-6cm(例如,约2cm-3cm,或大体上在肝总动脉中点),或从脾动脉分支或从胃十二指肠动脉分支1mm-1cm(例如,1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、1cm)。

副交感神经和交感神经纤维趋向于具有相反的生理效果,并因此,在一些实施例中,仅交感神经纤维而非副交感神经纤维被破坏(例如,去神经、消融),以便实现减少内源性葡萄糖产生与增加肝和外围葡萄糖储存的效果。在一些实施例中,仅刺激副交感神经纤维而不刺激交感神经纤维,以便实现减少内源性葡萄糖产生与增加肝和外围葡萄糖储存的效果。在一些实施例中,交感神经纤维被去神经,同时刺激副交感神经纤维,以便实现减少内源性葡萄糖产生与增加肝和外围葡萄糖储存的效果。在一些实施例中,顺序地执行交感神经纤维的去神经和副交感神经纤维的刺激。

根据若干实施例,用于预防或治疗失调(诸如糖尿病)的治疗性神经调节的方法包括调节神经纤维(例如,肝丛的交感神经纤维)。在一个实施例中,神经调节减少肝葡萄糖产生和/或增加肝葡萄糖摄取,这继而可引起血糖水平、甘油三酯水平、脂质水平、去甲肾上腺素水平和/或胆固醇水平的降低。神经纤维的破坏可以通过消融、去神经、切断、毁坏、移除、脱敏、失能、减少、压碎或压迫,或通过阻断或以其他方式调节(永久或暂时)神经纤维或周围区来抑制神经活动而实现。在一些实施例中,使用一种或多种能量形态进行破坏,该能量形态例如从体外位置在血管内、血管外或非侵入性(例如,经皮)递送。能量形态包括但不限于声音能或声能,诸如超声能、未聚焦超声、聚焦超声诸如高强度或低强度聚焦超声、微波能、射频(RF)能、热能(例如,冷能(cryoenergy)、由热流体或气体(诸如蒸汽)提供的热量)、电能、红外能、激光能、光疗法或光动力疗法(例如,与一种或多种活化剂组合)、等离子体能、电离能输送(诸如X射线、质子束、伽马射线、电子束和α射线)、通过切割或研磨元件输送的机械能、冷冻消融和化学能或调节(例如,化学消融),或其任何组合。在一些实施例中,交感神经纤维的破坏通过化学品或治疗剂(例如,经由药物输送)单独或与能量形态组合进行。在各种实施例中,可以组合使用不同的能量形态(同时或顺序地)。

在一些实施例中,导管系统被配置为在血管外和选择性地破坏靶神经。在一些实施例中,导管通过心血管系统推进到靶部位。导管可以经腔到血管外空间,或者可以在血管中膜和血管外膜之间产生虚拟空间。在一些实施例中,导管一旦定位在所期望位置就被激活,以选择性地调节或破坏一个或更多个靶神经。选择性破坏可以通过化学破坏来完成或执行,诸如供应任何类型的神经毁坏剂,包括但不限于神经毒素或对神经生存力有害的其他药物。在一些实施例中,通过能量诱导的破坏执行选择性破坏,诸如热消融或光消融(例如,射频消融、超声消融或激光消融)。在一个实施例中,相机或其他可视化设备(例如,光纤镜)设置在导管的远端上,以确保神经而不是周围组织被靶向。如果靶位置邻近肝总动脉和肝固有动脉之间的分支,则由于肝总动脉和肝固有动脉的分叉之间的角度,可能需要较不尖锐的导管弯曲。在一些实施例中,导管包括侧端口、开口或窗口,从而允许输送流体或能量以使神经去神经或消融神经,其中导管的纵向轴线平行于或大体上平行于靶血管部分对齐。在一些实施例中,经皮插入导管或探针并推进至靶位置用于血管外输送能量或流体。

根据本文公开的若干实施例,本发明包括调节代替肝丛中的神经纤维的神经纤维或者除了肝丛中的神经纤维之外的神经纤维,以治疗多尿症或其他代谢病症、失调或其他疾病。例如,根据本文公开的实施例,可以调节以下神经:在肝固有动脉或肝动脉的其他分支近侧的肝总动脉周围(例如,在内膜、中膜、血管周围空间(例如外膜)内)的交感神经纤维,在腹腔动脉(例如,腹腔神经节或腹腔丛,其为包括胰腺、胃和小肠的多个器官供应神经纤维)周围的交感神经纤维,支配胰腺的交感神经纤维,支配肾上腺的交感神经纤维(例如,肾丛或肾上丛),支配肠道、肠、胃或小肠(例如,十二指肠或空肠)的交感神经纤维,支配棕色脂肪组织的交感神经纤维,支配骨骼肌的交感神经纤维,迷走神经,膈丛或膈神经节,胃丛,脾丛,内脏神经,精索丛,肠系膜上神经节,腰神经节,上肠系膜丛或下肠系膜丛,主动脉丛或其交感神经纤维的任何组合。在一些实施例中,代替治疗,在肝丛的局部神经调节期间保护这些其他组织免于毁坏(例如消融或去神经)。在一些实施例中,可以移除一个或更多个交感神经纤维(例如,神经节)(例如,胰腺交感神经切除术)。上述各种器官周围的神经(交感神经或副交感神经)可以在组合治疗程序中(同时或顺序地)调节,这可以提供一种或多种协同效果。

在一些实施例中,支配胃的神经的调节(例如,交感神经去神经)引起胃饥饿素分泌(ghrelin secretion)减少和更大的饱腹感,交感神经紧张降低,引起运动性增加和/或食物通过时间更快,从而实现“神经胃旁路术”。在一些实施例中,支配幽门的神经的调节(例如交感神经去神经)引起传出交感神经紧张降低,引起更快的传输时间并实现“神经胃旁路术”。在一些实施例中,支配十二指肠的神经的调节(例如,交感神经去神经)引起传入的交感神经活动被破坏,引起各种受体和激素(例如,肠激素、GLP-1、胃抑制肽(GIP)、缩胆囊素(CCK)、肽YY(PYY)、5-羟色胺(5-HT))的信号传导改变),从而引起胰岛素分泌和胰岛素敏感性增加,和/或传出交感神经紧张降低,引起更快的传输时间,从而实现“神经十二指肠旁路术”。

在一些实施例中,支配胰腺的神经的调节(例如,交感神经去神经)引起传出交感神经紧张降低,从而引起β细胞功能的改善(例如,增加的β细胞胰岛素产生和β细胞量),胰岛素分泌的改善和/或减少的α细胞胰高血糖素产生。在一些实施例中,支配肝脏的传入交感神经的调节引起β细胞中交感神经紧张的降低和/或对胰腺的交感神经紧张的反射性降低(从而增加胰岛素分泌)、对胃肠道(例如,十二指肠)的交感神经紧张的反射性降低,从而引起胰腺β细胞功能的继发性激素或神经改善(由于传入神经破坏和涉及胰腺的反射环引起的肝交感神经紧张降低的间接结果、引起增加β细胞功能的中枢神经系统反应的肝糖原积累增加的间接结果,或引起β细胞毒性降低的系统葡萄糖水平降低),和/或对肌肉的交感神经紧张的反射性降低。在一些实施例中,支配肝脏的传入交感神经的调节引起具有全身效果的肝激素(hepatokine hormone)(例如,肝胰岛素致敏物质)的增加。在一些实施例中,迷走神经的肝总分支的刺激可引起类似的效果。

根据若干实施例,肝总动脉、肝固有动脉和胃十二指肠动脉之间的分岔的分支有利地同时或顺序地被靶向(例如,用RF能量),因为供应肝脏和胰腺的交感神经通常紧密地粘附到这些动脉的壁或粘附在该壁内。其他动脉或血管之间的分岔可以类似地同时或顺序地被靶向(例如,利用RF能量)。在一些实施例中,使用与动脉壁相对的盘绕电极。

本发明的若干实施例是特别有利的,因为它们包括以下益处中的一个、若干或全部:(i)使得能够在靶血管中进行有效的电极冷却(ii)与血管壁一致并保持接触,同时保持足够的电极冷却表面积;(iii)由于功效提高,治疗位置更少;(iv)有效治疗短血管长度诸如肝总动脉的能力;(v)交感神经紧张、血糖、胆固醇和/或甘油三酯水平的降低,(vi)肝脏、胰腺和/或十二指肠中脂质和/或去甲肾上腺素水平的降低;(vii)确认治疗功效;(viii)从单个位置对多个器官或组织结构进行去神经;(ix)血管周围区中神经的有效去神经,同时保持对内血管壁的最小加热或热创伤;(x)由于调节高神经密度或浓度的区域而成功进行神经调节的可能性较高;(xi)在减小轴向血管长度覆盖的情况下提高周向血管覆盖率,(xii)减少血管壁上(一个或更多个)电极的接触压力;和/或(xiii)剂量反应率提高。

在一些实施例中,导管系统包括耦接到发生器(例如,脉冲生成设备或发电机)的消融设备。例如,消融设备可以是消融导管。消融导管可具有近端部分和远端部分。在一些实施例中,消融导管的远端部分(例如,治疗部分)包括一个或更多个电极(例如,一个电极、两个电极、三个电极、四个电极、五个电极、六个电极、多于六个电极)。在一些实施例中,消融导管仅由两个电极组成。在其他实施例中,消融导管仅由四个电极组成。一个或更多个电极可以定位在消融导管的外表面上,或者可以延伸出消融导管的远端部分。在一些实施例中,电极全部作为单极电极被激活。在一些实施例中,电极包括一个或更多个有源电极和一个或更多个返回电极,它们协作以形成双极电极对。在一些实施例中,消融导管的远端部分包括至少一个双极电极对和至少一个单极电极。一根或多根导电导线(例如,热电偶线)可以将位于消融导管远端的一个或更多个电极连接到发生器(例如,脉冲生成设备)。在一些实施例中,多个电极可以从可扩展构件(例如,球囊)上的消融导管延伸,以在血管(例如,肝动脉、肾动脉)或其他体腔内或在器官(例如胰腺、胃、小肠)内提供多个能量输送位置或点。

在一些实施例中,发生器(例如,脉冲生成设备)向位于消融导管的远端部分处或附近的电极施加功率或输送电(例如,射频(RF))信号或脉冲。电极可以被定位成在肝丛中的交感神经纤维的方向上输送RF能量,以由于热能引起消融。在一些实施例中,电极定位在反射层或涂层的顶部上,以促进RF能远离消融导管的方向性。在各种实施例中,电极是弯曲的或平坦的。电极可以是干电极或湿电极。在一些实施例中,导管系统包括具有一个或更多个电极的一个或更多个探针。例如,第一探针可包括有源电极,并且第二探针可包括返回电极。在一些实施例中,一个或更多个探针的远端是柔性的。消融导管可包括柔性远端部分。在一些实施例中提供了沿导管长度的柔性或刚性的可变区。在各种实施例中,第一柔性部分被致动以具有被配置为适形于第一解剖学弯曲(例如,肝动脉分支的第一弯曲)的第一弯曲形状,并且第二柔性部分被致动以具有被配置为适形于第二解剖弯曲(例如,肝动脉分支的第二弯曲)的第二弯曲形状。

在一些实施例中,多个电极相对于消融导管的中心轴线纵向间隔开(例如,沿消融导管的长度)。在一些实施例中,多个电极围绕消融导管的远端的周界(circumference)径向间隔开。在一些实施例中,多个电极沿消融导管的纵向轴线彼此纵向间隔开,并且围绕消融导管的周界彼此径向间隔开。在各种实施例中,电极以各种其他图案(例如,螺旋图案、方格图案、Z字形图案、线性图案、随机图案)定位。在一些实施例中,沿长度的各种电极(例如,根据单极激活方案)被打开或关闭以定制治疗长度。

可以定位一个或更多个电极,以便在邻近要被破坏或调节的自主神经的一个或更多个靶消融部位处与血管(例如,肝总动脉或肝固有动脉)的内壁(例如,内膜)接触,从而提供血管内能量输送。在一些实施例中,电极耦接到可扩展和可收缩结构(例如,可自扩展或可机械扩展的),以促进与内血管壁接触。可扩展结构可包括线圈、弹簧、尖头、尖齿、脚手架、线、支架、球囊、笼子、篮子和/或诸如此类。可扩展电极可以从导管的远端或从导管的外周表面部署。导管还可包括邻近电极或主动冷却元件的绝缘层。在一些实施例中,不需要冷却元件。在一些实施例中,电极可以是针电极,其被配置为穿透血管(例如肝动脉)的壁以在血管外输送能量以破坏交感神经纤维(例如肝丛)。例如,导管可以采用血管内到血管外方法,该方法使用具有刺穿元件的可扩展针电极。电极可以是一次性的或可重复使用的。

在一些实施例中,导管包括电极(单独电极或有效地用作单个电极的多个电极(例如,一对或簇)),其表面积为约1mm

根据若干实施例,肝去神经的方法以比肾去神经程序更短的程序和能量施加时间执行。在若干实施例中,执行肝去神经而不会在治疗期间引起疼痛或减轻受试者的疼痛。根据若干实施例,执行神经调节(例如去神经或消融)而不导致靶血管(例如肝动脉)内的狭窄或血栓形成。在涉及热治疗的实施例中,与现有的去神经系统和方法相比,可以防止或减少对血流的热损失,引起更低的功率和更短的治疗时间。在各种实施例中,神经调节的方法在对靶血管很少或没有内皮损害(例如,小于20%的靶血管消融)的情况下执行。在若干实施例中,能量输送在所有方向上基本相等地输送(例如,全向输送)。在神经调节系统(例如,本文描述的基于导管的能量输送系统)的各种实施例中,保持与靶血管壁的足够电极接触,从而降低功率水平、电压水平、血管壁或组织热创伤和治疗时间。

具有多个电极的球囊消融导管可用于实现肝去神经。在一些实施例中,较低功率和较长持续时间的消融用于涉及肝动脉内的闭塞的消融程序,而不是用于其他动脉诸如肾动脉中的消融程序。由于肝脏的双源血液供应,此种治疗可能是唯一可能的。肝血管(例如,肝总动脉)的球囊消融可以在相当长的一段时期内采用完全闭塞,出于安全原因(例如,为了避免由于局部缺血引起的潜在中风)先前不可能或先前未在其他位置尝试过。在一些实施例中,球囊可以膨胀并用于消融的范围为约1至约10分钟、约10分钟至约20分钟、约20分钟至约60分钟、约15分钟至约45分钟、约10分钟至约40分钟、约15分钟、约20分钟、约25分钟、约30分钟、约35分钟、约40分钟、约45分钟、约50分钟、约55分钟、约60分钟。根据若干实施例,较长的消融时间可具有若干优点。首先,较长的暴露时间意味着可以使用较低的治疗温度,因为组织和神经死亡是温度和时间两者的函数。在一些实施例中,使用温度的范围为约30℃至约80℃、约40℃至约70℃,或约50℃至约60℃。在一个实施例中,使用大于45℃且小于60℃的温度。本文使用的术语“球囊”描述了可扩展的完全或部分封闭的结构。提供了由单个或多个部件组成的若干球囊结构的示例。当描述球囊组件的配置时,为了清楚起见,使用“内”、“外”、“近侧”、“远侧”和其他术语的描述,但不旨在限制。

在一些实施例中,通过在将RF能和热加热集中在外膜或血管周围空间(靶神经位于其中)的水平时将低温冷却剂注入穿过球囊腔室(从而保持内膜冷却),来同时保护血管(例如,动脉)管腔。球囊闭塞可以促进设置在球囊外侧上的电极和动脉壁之间的改善的接触和接触压力。球囊闭塞可以有利地压缩血管壁的组织,并从而减少从(一个或更多个)电极到靶神经的距离,这改善了到靶神经的热能输送的效率。在一些实施例中,通过使用球囊导管可能需要较少的造影剂/成像剂,因为闭塞设备可靠且准确地定位(并且一旦就位就保持该位置),并且用作设备和疗法放置的可靠标记。另外,当球囊接合血管壁时,完全避免血液加热(因为能量直接从一个或更多个电极传递到血管壁而不直接接触血液),从而降低了蒸汽泡形成或血栓形成(例如,凝块形成)的风险。

在一些实施例中,如果期望,本文描述的神经调节导管(例如,消融导管)设计有利地提供支配肝动脉或其他血管的分支的神经的有效调节,而不引起或至少最小化内皮损害。例如,本文描述的导管可以闭塞肝动脉(例如,使用球囊),并然后在消融区(例如,在球囊的管腔内)循环冷却剂。在一些实施例中,导管提供通过较大电极表面积提供的较高功率净能量(其可通过可在球囊上制造的较大电极大小实现)和增加的沉积时间(其可由持续较长时期的闭塞到肝动脉的流动的能力来允许)两者的独特优点。根据若干实施例,通过较高功率的能量密度的增加减轻了球囊内的冷却剂流动对内皮壁造成损害的风险。

根据若干实施例,提供了具有一个或更多个改善电极冷却特征的导管,诸如肝神经调节导管。尽管本文在肝进入的背景下描述了各种实施例,但本文描述的导管还可用于进入患者体内的其他位置和/或用于其他目的(例如,肾去神经程序)。一些实施例旨在用于心脏消融。各种心脏消融实施例提供焦点的、线性的、基本上直线或弯曲的损伤。各种消融靶包括左心房或右心房、左心室或右心室、心脏隔膜、瓣膜环、肺静脉和/或肺静脉的门孔。一些实施例是可操纵的。其他实施例可用于治疗病症,包括:子宫肌瘤、良性前列腺增生、前列腺癌、食道损伤或病症,和/或肺或支气管病症。

能量输送导管可包括被配置为调节神经或其他组织的球囊导管。在一些实施例中,球囊导管包括导管主体和至少一个远侧球囊。导管主体可包括管腔,该管腔被配置为将盐水或其他流体连续注入球囊中。在一些实施例中,远侧球囊包括围绕远侧球囊的周界(circumference)间隔开的一个或更多个水凝胶部分。在一个实施例中,如果使用盐水,则从远侧球囊表面蒸发的任何水通过从球囊管腔的扩散被补充,从而防止或抑制游离盐水进入血管分界面中并减少盐水注入的任何不期望的效果。

在一些实施例中,在治疗(例如,消融)之前预冷靶消融区。例如,可以使用冷注入技术(例如,直接注入血管中的冰盐水)或使用冷冻球囊(例如,通过泵从流体贮存器输送的冷却剂)进行预冷却。在一些实施例中,还可以在预冷却期间限制血流以增加停留时间并实现期望的热传递。消融区的预冷却可以有利地降低消融的初始温度并允许更多的功率局部地输送,从而实现更陡的温度梯度和更深、更紧密的损伤。预冷却还可以引起冷却区中的导电率降低,进一步将功率集中到局部加热区中。在一个实施例中,将具有一个或更多个电极的球囊插入血管或器官内的靶消融部位(例如,在肝总动脉内)。在经由一个或更多个电极开始消融之前,冷却剂可以循环通过球囊一段时间(例如,20秒-60秒、30秒-50秒、20秒-40秒、30秒)。冷却剂的温度(例如,在注射器、IV袋或其他流体贮存器中)的温度范围可以从低于冻结温度到室温(例如,0摄氏度至25摄氏度、-20摄氏度至10摄氏度、-10摄氏度至30摄氏度、其重叠范围或所述范围内的任何值)。在一些实施例中,靶消融部位的预冷却可以有利地允许以比靶消融部位未预冷却的情况下更高的功率水平输送消融能量,从而能够形成更深和/或更窄的损伤。此种冷却可以减小不旨在用于治疗的神经纤维的附带创伤。在许多实施例中,不使用冷却。

用于在消融程序期间增加损伤深度的一些策略集中于主动冷却电极的表面(例如,使用注入的盐水、内部循环和/或冷冻的流体)。在一些实施例中,电极冷却允许形成更深的损伤而不蒸发邻近电极的组织。在一些应用中,当冷却时,难以具有关于组织达到的峰值温度的反馈,因为将热电偶放置在电极内的典型实践将测量由冷却本身偏离的温度,并因此可能不表示更远的组织达到的峰值温度。

用于测量肝动脉的血管内消融中的外膜峰值组织温度的一个实施例如下。热电偶、热敏电阻器或其他温度测量设备可放置在肝动脉内的位置,并用于针对直径在1mm和2mm之间的电极大小测量距电极表面约5mm(作为最短路径)的距离处的壁温。研究表明,在此距离测量壁温是在外膜内达到的峰值温度的公平近似值。

在电极冷却的情况下,电极内的热电偶测量由冷却本身驱动的温度,该温度可远低于更远侧组织所达到的温度。因此,对于温度控制的消融,该测量可能不可用于指示神经位于的外膜达到的温度。因此,在一个实施例中,如果所提供的热量不足以在一定时间段内引起消融,则神经可能无法消融,或者如果热量过多则可能存在附带损害。根据若干实施例,期望温度控制的神经调节(例如,消融),如同人控制电输出(例如,电压、电流或功率),传递到组织的热量取决于有限数量的变量诸如接触力和阻抗,从而降低治疗效果的可变性。放置在靶组织内的离散位置处以解决冷却电极策略的任何缺点的远程探针的放置在若干实施例中可能是不合期望的,因为它们需要经血管放置,从而提高了程序的风险。

根据若干实施例,管腔内或血管内导管适于通过设置在可扩展构件(例如,非顺应性的可膨胀气囊)上或可扩展构件内的多个电极输送消融射频能量,该导管进一步包括用于冷却电极以在电极表面提供增强的热传递的装置。消融导管有利地适于产生具有离散占地面积的连续周向“圆环”、棋盘或“螺旋”损伤,使得发生周向的血管周围消融而不引起血管壁(例如,肝总动脉的动脉壁)的周向消融)。

在一些实施例中,多个电极由在球囊上以2和2图案或配置进行布置的四个电极组成,其中第一对电极在第一周向横截面(例如,具有等于或刚好大于电极长度的宽度的横截面)中定位在球囊周界的相对或基本上相对的侧面上(例如,围绕球囊的周界彼此间隔180度或大约180度),并且第二对电极在第二周向(circumferential)横截面(例如,具有等于或刚好大于电极长度的宽度的横截面)中定位在球囊周界的相对或基本上相对的侧面上(例如,围绕球囊的周界彼此间隔180度或大约180度),该第二周向横截面从第一对电极的第一周向横截面轴向和/或周向(circumferential)偏移(例如,90度或大约90度周向偏移、180度,120度,45度或另一周向偏移)。在一些实施例中,第一对的电极围绕球囊的中心纵向轴线在彼此相对的象限中但大体上沿球囊的长度轴向对齐,并且第一对的电极围绕球囊的中心纵向轴线在彼此相对的象限中但大体上沿球囊的长度轴向对齐。

本发明的若干实施例提供从球囊、(一个或更多个)电极和周围组织到循环通过球囊组件(例如,由环形间隙分开的内球囊和外球囊)的冷却剂流体的有效热传递。这有利地降低了消融程序期间的峰值组织温度。表面处的对流热传递可以通过热传递系数来描述。对流热传递系数定义为H=Nu*K/D,其中H是热传递系数(W/mm

用于冷却的装置可有利地引起增强的热传递,或由湍流引起的电极的热传递表面处的高速梯度。用于冷却的装置可以包括(但不限于以下中的一个):经由朝每个电极的表面引导的一个或更多个喷口进行引导流体冷却、机械搅拌(例如,桨叶、流体振荡器、挡板、机电振荡器、惯性搅动器)、热泵、集成到没有喷口的球囊壁中的管道、复合管(例如,弹性体基质)和多管腔挤出件。在一些实施例中,用于冷却的装置包括可扩展歧管(例如,球囊)或流体管腔中的一个或更多个孔口或开口,其中孔口或开口被定位成引导冲击在电极表面上的流体的射流。喷口可包括适于夹带流体的喷嘴或喷射器。(一个或更多个)喷口可以朝向一个或更多个电极表面被引导。可以为每个电极提供多个喷口。在一些实施例中,用于冷却的装置包括具有相对小的水力直径的窄通道,该窄通道接近或邻近电极排放。在一些实施例中,用于冷却的装置在同轴管腔之间或在以球囊内球囊方式布置的球囊之间提供环形流动。

根据若干实施例,多个电极直接安装到球囊。球囊导管可包括以同轴方式(球囊内球囊)布置的外球囊和内球囊,其中多个电极设置在外球囊上(例如,直接在外表面上或在外表面内形成的凹坑内),或在穿过外球囊壁延伸的通孔或开口内。球囊可包括单个完整的内球囊,其具有内球囊周围的部分外球囊套管或保形涂层,其中电极设置在外套管或保形涂层上或内部。

在一些实施例中,外球囊适于支撑四个电极(四个单独电极或适于充当四个单独电极的四对电极)。外球囊的壁厚度范围可以为约0.01mm至约0.03mm(例如,0.013mm至0.025mm、0.02mm至0.03mm、其重叠范围,或所述范围内的任何值)。外球囊的长度范围可以为约10mm至约50mm(例如,20mm至50mm、10mm至30mm、其重叠范围,或所述范围内的任何值),并且直径可以为约3mm至约8mm。在一个实施例中,外球囊厚0.02mm,直径5mm,并且长20mm。外球囊可设置有近侧锥体和近侧腰部以促进附接到导管轴。外球囊的近侧腰部的内直径可以在约1mm和约2.5mm之间(例如,在1mm和2mm之间、在1mm和1.5mm之间、在1.5mm和2mm之间、在1.5mm和2.5mm之间、其重叠范围、1.6mm,或所述范围内的任何值)。在一些实施例中,外球囊设置有用于附接到远侧导管轴的远侧锥体和远侧腰部。在其他实施例中,外球囊的远侧边缘联结到内球囊的主体。外球囊可设置有开口以允许电极引线进入消融导管中。电线可包括双股、多股或单独的引线。可在外球囊中提供额外的开口以用于将冷却流体排放到球囊组件的近侧和/或远侧的血管系统中。用于外球囊的合适材料包括例如PET(聚对苯二甲酸酯)、尼龙、PEBA(聚醚嵌段酰胺)、聚烯烃、聚氨酯及其共聚物。(一个或更多个)电极的内表面可以可选地是电绝缘的。

在一些实施例中,内球囊设置在外球囊内并且适于提供接近多个电极的流体输送孔口或喷口。用于内球囊的合适材料包括例如PET、尼龙、PEBA、聚烯烃、聚氨酯及其共聚物。内球囊的壁厚度范围可以为约0.01mm至约0.05mm(例如,0.013mm至0.025mm、0.01mm至0.03mm、0.02mm至0.05mm、其重叠范围,或所述范围内的任何值)。内球囊的长度范围可以为约5mm至约50mm(例如,20mm至50mm、10mm至30mm、其重叠范围,或所述范围内的任何值),并且直径范围可以为约2mm至约7.5mm。在一个实施例中,内球囊厚0.02mm,直径4.5mm,并且长15mm。在一些实施例中,内球囊直径比外球囊小0.5mm。内球囊可设置有近侧锥体和近侧腰部以及远侧锥体和远侧腰部以用于附接到导管轴。内球囊的近侧腰部和远侧腰部的内直径范围可以为约0.5mm至约2.5mm(例如,在1mm和2mm之间、在0.5mm和1.5mm之间、在1.5mm和2mm之间、在1.5mm和2.5mm之间,其重叠范围或所述范围内的任何值)。在一个实施例中,内球囊近侧腰部的内直径与外球囊腰部的内直径基本上相同。内球囊可设置有辅助孔口或喷口以提供流过内球囊和外球囊之间的间隙的流体。在一些实施例中,提供间隔件以保持内球囊和外球囊之间的最小间隙。在一些实施例中,该最小间隙范围为从约0.05mm至约0.5mm(例如,0.05mm、0.10mm、0.15mm、0.20mm、0.25mm、0.30mm、0.35mm、0.40mm、0.45mm、0.50mm,或者所述整个范围内的任何子范围)。

根据若干实施例,在内球囊中提供多个孔口以将流体引导朝向外球囊上或外球囊内的电极的内表面。在一些实施例中,流体作为高速射流离开孔口。孔口直径范围可以为约0.025mm至约0.20mm(0.025mm至0.075mm、0.050mm至0.10mm、0.075mm至0.15mm、0.10mm至0.20mm、其重叠范围,或所述范围内的任何值)。射流的流速可小于12mL/min/电极。在一个实施例中,冷却剂流体通过孔口的流速为约0.1mL/s,并且跨孔口的压降为约500kPa。射流速度范围可以为约5m/s至约50m/s(例如,5m/s至30m/s、15m/s至30m/s、15m/s至40m/s、20m/s至40m/s、35m/s至50m/s、其重叠范围、22m/s,或所述范围内的任何值)。在一些实施例中,每个电极有两个或更多个孔口。从孔口到电极的距离范围可以为约0.10mm至约2.0mm(例如,在0.10mm和0.50mm之间、在0.50mm和1.0mm之间、在0.50mm和1.5mm之间、在1.0mm和2.0mm之间、在0.10mm和1.0mm之间、其重叠范围,或所述范围内的任何值)。内球囊可进一步包括辅助孔口或喷口以提供流过内球囊和外球囊之间的间隙的流体。通过辅助孔口的总流速可以是直接电极冷却射流的流速的小部分(例如,小于总电极流量的10%(0.1*4*0.1ml/s=0.04ml/s))。在一个实施例中,在外球囊的远端处提供单个辅助孔口。该辅助孔口的直径可为约0.05mm,而跨辅助孔口的压降基本上等于直接电极冷却孔口的压降。

在一些实施例中,消融导管设置有长度大约1米的轴。轴可以由多个管腔构成。一些管腔提供电极线的通过。其他管腔可以提供冷却流体的输送和排放。另一管腔可以提供导丝的通过。导丝管腔的直径范围可为约0.2mm至约1.0mm(例如,0.2mm至0.5mm、0.3mm至0.6mm、0.4mm至0.8mm、0.5mm至1.0mm、其重叠范围、0.43mm,或所述范围内的任何值)。用于导丝管腔的合适材料可包括但不限于PTFE(聚四氟乙烯)、HDPE(高密度聚乙烯)、PTFE和聚酰亚胺的混合物以及其他材料。在一些实施例中,提供一个或更多个(例如,一个、两个、三个、四个)流体入口管腔和一个或更多个流体排放管腔(例如,一个、两个、三个、四个)。在一个实施例中,导丝管腔包括PEEK(聚醚醚酮)纤维编织增强聚酰亚胺管,其具有PTFE/聚酰亚胺复合内层和PEBA外层。导丝管腔的壁厚度可小于0.076mm。在一些实施例中,入口管腔和排放管腔的内直径范围为约0.3mm至约0.8mm。在一个实施例中,入口管腔和排放管腔的内直径为约0.6mm。用于入口管腔和排放管腔的合适材料包括但不限于聚酰亚胺、聚烯烃、尼龙、聚酯、PEBA、聚乙烯、PTFE、聚氨酯等。在一些实施例中,提供一个或更多个管腔以用于电极线的通过。在一个实施例中,电极线管腔由壁厚度0.025mm的聚酰亚胺管构成。多于一根的电极线可以穿过单个电极线管腔。在一个实施例中,一对双股电极线穿过两个电极线管腔中的每个。在一些实施例中,在电极线和管腔的至少一部分之间提供气隙以减小电容耦合。

在一些实施例中,提供导管流体路径,其从入口端口通过入口管腔进入内球囊中,通过孔口进入内球囊和外球囊之间的空间中,通过内球囊和外球囊的锥体之间的近侧流体空间,通过排放管腔,通过出口端口离开。在一些实施例中,外部控制系统提供并控制通过导管流体路径的流体流动。在一些实施例中,轴的外端终止于歧管组件,其包括入口端口、出口端口、导丝端口和电极线延伸电缆。

用于消融导管系统的合适冷却剂包括但不限于水、盐水、生理盐溶液、非离子胶体诸如葡聚糖或葡萄糖等。在一个实施例中,冷却剂是生理盐水(例如,0.9%氯化钠)。

多个电极可以具有附连到外球囊的暴露的导电表面。如上所述,在一个实施例中,四个电极呈2对提供。第一对电极可以沿外球囊在第一轴向位置处每个电极直径方向(diametrically)相对地定位,第二对电极可以沿外球囊在第二轴向位置处每个电极直径方向相对地定位,其中第一对电极和第二对电极相对于彼此偏移90度。在另一实施例中,电极被定位成使得4个电极中的每个与其他电极中的每个等距。在一些实施例中,电极宽1mm至2mm并且长3mm至8mm。在一个实施例中,电极宽1.5mm并且长6mm。在一些实施例中,电极宽度被选择为球囊直径的比率,使得电极宽度=(球囊周长/N)-A,其中N是包裹的球囊上的折叠面的数量,并且A是球囊折叠的余量。在一个实施例中,电极宽度=(5mm*π/8)–0.5mm=1.5mm。

在一些实施例中,管腔内消融导管设置有多个电极簇。在特定实施例中,四个电极簇沿外球囊的轴线轴向和周向间隔开。每个簇由沿外球囊在横向平面中并排放置的一对电极构成。在一些实施例中,该对中的每个电极元件长4mm并且宽1.5mm。簇可以沿球囊的长度在中心上分布5mm,在每个簇之间留下1mm的间隙。簇的元件之间的间隙范围可以为约0.1mm至0.5mm(例如,0.1mm、0.2mm、0.3mm、0.4mm、0.5mm)。在一些实施例中,簇的总表面积在约4mm

可以提供电极线以将电极元件连接到RF发生器。电极线可以由40规格的双股型T热电偶线构成。在一些实施例中,热电偶线用多层聚合物绝缘,该多层聚合物选自包括但不限于特氟龙、PTFE、聚酰亚胺、PET聚酯、尼龙聚氨酯、布特伐尔(Butvar)、PVDF(聚偏二氟乙烯)、PFA(可溶性聚四氟乙烯)、聚乙烯、TFE(四氟乙烯)共聚物等的组)。在一些实施例中,40规格热电偶线具有0.0031英寸(0.079mm)的导体直径。绝缘线的总尺寸可以是0.1mm×0.2mm。T型热电偶线由铜导体和康铜/铜镍合金(constantan)导体构成。在这种情况下,铜线承载大部分RF电流,而在铜和康铜导体之间测量的差分电势指示接近电极的热电偶结处的温度。其他温度测量和导体组件包括铜、金、银、锡和其他合金,并且连接到热敏电阻器的电线可以接近电极中的一个或更多个定位。

在一些实施例中,电极间隔标记(例如,如下面更详细描述的损伤间隔指示器)可以放置在导管轴上,以在消融程序期间导引导管的放置。这些标记可以放置在电极近侧的导管轴上或者放置在远离电极的远侧轴延伸部上。在一个实施例中,标记放置在远侧轴延伸部上,其具有与电极相同的中心到中心间隔(例如,6mm-8mm)。远侧轴延伸部可以是1cm至5cm长(例如,3cm)并且可以包括不透射线的标记,该标记由1.5mm长的铂10%铱合金管的区段构成,并且具有大约0.04mm的壁厚度。标记的直径可以选择为与轴延伸部的外表面齐平或几乎齐平(例如,直径约1mm)。

在一些实施例中,远侧轴延伸部被配置为沿其长度提供逐渐增加的抗弯刚度,以促进通过曲折血管解剖结构跟踪球囊消融导管。在一个实施例中,轴直径沿其长度从0.7mm增加到1.5mm,从而提供从大约10gmf*cm

根据若干实施例,管腔内消融导管包括可滑动地耦接的辅助近侧轴(例如,捕获滑动套管)。在一些实施例中,辅助近侧轴有利地为进入曲折的解剖结构和尖锐的血管侧分支提供增强的支撑。在一些实施例中,辅助近侧轴有利地提供血管造影染料到侧支上游的血管的输送,以提供侧支的血管造影可视化以促进血管进入。在一些具体实施中,套管是壁厚度范围为0.075mm至0.25mm的增强聚合物管。在近侧辅助轴和导管轴之间可以设置0.25mm至0.5mm的环形间隙。在一个实施例中,近侧辅助轴具有2mm的外直径,并且近侧辅助轴由PEEK纤维增强的聚酰亚胺管构成,该聚酰亚胺管具有PTFE/聚酰亚胺复合材料内表面和涂覆有PEBA的外表面,壁厚度为0.1mm,引起内直径为1.8mm。组合1.25mm的导管轴外直径,这提供0.75mm的环形空隙以提供染料输送。在一些实施例中,辅助轴的远侧部分是弯曲的。

根据若干实施例,提供了管腔内消融导管系统,其包括具有多个电极的管腔内消融导管、连接电缆、适于向多个电极输送功率的RF发生器、温度测量系统、流体输送系统、流体压力监测系统和用户界面。在一些实施例中,该系统提供到多个电极的独立功率输送。在另一实施例中,该系统被配置为基于流体输送压力或流量和电极温度测量值来中断或调整功率输送。

图4示出了球囊导管400的远测部分的实施例。尽管球囊导管400有利地设计成实现肝动脉(例如,肝总动脉)内的去神经,但是球囊导管400和与其相关地公开的特征也可以适用于其他动脉、静脉、血管系统、管腔、器官或组织的去神经或其他治疗。图4所示的球囊导管400的远侧部分包括导管的一部分,其涉及在受试者体内(例如,在肝总动脉内)的特定位置进行治疗(例如,去神经)和/或诊断。球囊导管400包括球囊401、多个电线导体402、多个电极403、一个或更多个管腔404和伸长轴405(仅示出其远端)。球囊导管400可选地包括球囊401远侧的远侧跟踪段406。伸长轴405从球囊401的近端延伸到近侧歧管(未示出)。伸长轴405的长度可以确定大小以使得当通过桡动脉或股动脉中的进入位置插入时,球囊401可以定位在肝动脉(例如,肝总动脉、肝固有动脉、左肝动脉、右肝动脉)、胃十二指肠动脉、肠系膜上动脉或脾动脉中。球囊导管400可以结合本节中或本公开中别处公开的任何实施例的结构或特征。

一个或更多个管腔404可包括导丝管腔404A,其从近侧歧管延伸通过伸长轴405,穿过球囊401并且如果远侧跟踪段406存在则穿过远侧跟踪段406。在一些实施例中,导丝管腔404A居中地位于伸长轴405和/或球囊401内(例如,沿中心纵向轴线对齐)。导丝管腔404A适于接收导丝,使得球囊导管400可以在导丝上推进到受试者体内的期望位置(例如,肝总动脉内的位置)。导丝管腔404A可以被确定大小以便跟踪0.014”导丝。在一个实施例中,球囊导管400被确定大小以便通过7弗伦奇(French)导引导管输送。例如,伸长轴405可以被确定大小以具有5弗伦奇的外直径,并且球囊401可以被确定大小以具有6弗伦奇的轮廓。一个或更多个管腔404还可包括适于促进球囊401膨胀或扩展的膨胀管腔404B。通过膨胀管腔404B输送的流体也可以适于促进或提供冷却(例如,以在球囊表面获得期望的对流热传递)。膨胀管腔404B可以从近侧歧管的端口延伸到球囊401内的位置。伸长轴405还可包括一个或更多个另外的流入或流出管腔以调控流速和/或促进冷却和/或注入染料。在各种实施例中,第一流入管腔将流体(例如,气体或液体)注入球囊401中,并且第二流出管腔将流体从球囊401中移出并返回到近侧歧管。本文描述的冷却机构、结构或特征中的任一个可以在球囊导管400中实施。例如,球囊401可以通过由驱动机构激活的机械搅拌器或通过由一个或更多个冷却管腔中的一个或更多个孔口生成的射流来冷却。可以在孔口中的一个或更多个周围提供护罩以改善效率。在各种实施例中,流体注入或冷却系统包括开路,使得流体缓慢地从球囊401漏出(例如,经由通过一个或更多个排放端口或开口渗出),或包括闭路,使得流体再循环并且不通过球囊401退出。

如图4所示,球囊导管400可以由以2×2图案布置的两对两个电极组成,其中两个电极沿球囊的长度定位在相同或大致相同的第一轴向距离处,并且在球囊的相对或基本上相对的侧面上(例如,当球囊处于扩展配置时,围绕球囊的周界彼此间隔开180度或约180度),并且另外两个电极沿球囊的长度定位在相同或大致相同的第二轴向距离处,并且在球囊的相对或基本上相对的侧面上(例如,当球囊处于扩展配置时,围绕球囊的周界彼此间隔开180度或约180度)。如图所示,第二轴向距离处的第二对电极可以被定位成从第一对电极中的每个周向偏移90度或约90度。球囊导管400可以由围绕球囊401的周界间隔开的四个电极403组成,其中每个电极从每个邻近电极周向间隔开90度,并且每个电极也从每个邻近电极纵向间隔开以便形成整体螺旋配置。将在本文中进一步描述可结合球囊导管400或任何其他球囊导管实施例实施的各种电极形状、电极图案、电极制造和处理特征和方法、电极安装特征和方法、电线布线方法以及球囊材料和折叠。

电极403可以由包括不锈钢、金(例如,22克拉或24克拉金)、铂、铂合金、铂铱合金(例如,Pt10Ir)或其组合的材料构成。根据期望和/或需要也可以使用其他金属或合金。根据若干实施例,电极403可以有利地成形和确定大小以便最大化表面积,同时不超过允许球囊折叠所需的尺寸。例如,对于给定的球囊直径,单独电极的宽度可以被球囊的折叠需求(例如,四折、三折、双折)约束。对于设计成具有6弗伦奇轮廓的球囊导管,每个电极的宽度(例如,径向尺寸)范围可以为0.5mm至2.5mm(例如,0.5mm至1.5mm、1.0mm至2.0mm、1.5mm至2.5mm、0.5mm至2.0mm、其重叠范围,或者在所述范围内的任何值)。作为一个示例,对于5mm直径球囊,每个电极的宽度(例如,径向尺寸)可以约束为约1.5mm-1.6mm。在一些实施例中,每个电极具有椭圆形、大致卵形形状(例如,如图4所示),以便不超过期望的宽度以允许球囊折叠。根据若干实施例,每个电极的长度(例如,纵向尺寸)范围可以为2mm至10mm(例如,2mm至4mm、3mm至5mm、2mm至6mm、3mm至5mm、3mm至6mm、4mm至6mm、4mm至8mm、6mm至10mm、其重叠范围,或所述范围内的任何值)。长度可能受到组织电导率变化性约束,并且期望跨电极的合理均匀的电流密度。尽管在图4中电极403被示出为大致平坦且呈卵形,但是电极403可以具有适于产生更均匀或最佳的电流密度分布的其他形状,以便避免电极403的边缘或中心处的热点。更均匀的电流密度提供了由组织观察到的改善的热能分布或热传导。

根据若干实施例,电极403被成形为使得能量输送最大化同时使峰值组织温度最小化。各种电极形状在图5A至图5E中示出。图5A示出了圆环形或环形电极(类似于垫圈)。图5B示出了狗骨形电极。图5C示出了哑铃形电极。图5D示出了三角形电极,并且图5E示出了蜂窝形电极。尽管示出为允许粘附到表面的二维电极,但是狗骨形和哑铃形电极可以延伸到第三维。在各种实施例中,电极厚度范围为0.0005英寸至0.0020英寸(例如,0.0005英寸至0.0010英寸、0.0010至0.0015英寸、0.0005英寸至0.0015英寸、0.0010英寸至0.0020英寸、其重叠范围,或所述范围内的任何值)。

参考图5A,电极的直径D1范围可以为0.1英寸至0.2英寸(例如,0.10英寸、0.11英寸、0.12英寸、0.13英寸、0.14英寸、0.15英寸、0.16英寸、0.17英寸、0.18英寸、0.20英寸、0.10英寸至0.16英寸,或所述范围内的任何其他值)。半径R1范围可以为0.05英寸至0.10英寸(例如,0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸,或所述范围内的任何其他值)。参考图5B,长度L1范围可以为0.05英寸至0.15英寸(例如,0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.13英寸、0.14英寸、0.15英寸、0.06英寸至0.11英寸,或所述范围内的任何其他值),长度L2范围可以为0.10英寸至0.25英寸(0.10英寸至0.20英寸、0.15英寸至0.25英寸、0.12英寸至0.235英寸、其重叠范围、0.21英寸,或所述范围内的任何值),半径R2范围可以为0.05英寸至0.15英寸(例如,0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.13英寸、0.14英寸、0.15英寸,或所述范围内的任何其他值),并且曲率半径R3可以根据其他尺寸的值而变化(对于L1=0.10”,L2=0.21”和R2=0.10”,R3可以为0.002”)。参考图5C,长度L3范围可以为0.02英寸至0.12英寸(例如,0.02英寸、0.03英寸、0.04英寸、0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.04英寸至0.08英寸,或所述范围内的任何其他值),长度L4范围可以为0.10英寸至0.25英寸(0.10英寸至0.20英寸、0.15英寸至0.25英寸、0.13英寸至0.20英寸、其重叠范围、0.13英寸,或所述范围内的任何值),并且半径R4范围可以为0.03英寸至0.12英寸(例如,0.03英寸、0.04英寸、0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.04英寸至0.08英寸,或所述范围内的任何其他值)。参考图5D,长度L5范围可以为0.05英寸至0.25英寸(例如,0.08英寸至0.20英寸,0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.13英寸、0.14英寸、0.15英寸、0.16英寸、0.17英寸、0.18英寸、0.19英寸、0.20英寸、0.21英寸、0.22英寸、0.23英寸、0.24英寸、0.25英寸,或所述范围内的任何其他值)。长度L6可以是与L5相同的尺寸,或者可以是不同的但在与L5相同的范围内。半径R5范围可以为0.005英寸至0.04英寸(例如,0.010英寸至0.035英寸、0.005英寸至0.010英寸、0.015英寸至0.025英寸、0.020英寸至0.040英寸、其重叠范围、0.015英寸,或所述范围内的其他任何值),并且曲率半径R6可以等于L5除以4。参考图5E,长度L7范围可以为0.05英寸至0.25英寸(例如,0.09英寸至0.20英寸、0.06英寸至0.12英寸、0.05英寸、0.06英寸、0.07英寸、0.08英寸、0.09英寸、0.10英寸、0.11英寸、0.12英寸、0.13英寸、0.14英寸、0.15英寸、0.16英寸、0.17英寸、0.18英寸、0.19英寸、0.20英寸、0.21英寸、0.22英寸、0.23英寸、0.24英寸、0.25英寸,或所述范围内的任何其他值)。长度L8可以是与L7相同的尺寸,或者可以是不同的但在与L7相同的范围内。半径R7范围可以为0.005英寸至0.10英寸(0.005英寸至0.08英寸、0.015英寸至0.025英寸、0.02英寸至0.04英寸、0.03英寸至0.06英寸、0.04英寸至0.07英寸、0.05英寸至0.10英寸、其重叠范围、0.01英寸,或所述范围内的任何其他值),并且曲率半径R8可以等于L8除以4。

在一些实施例中,伸长电极的中心区的掩蔽、绝缘或切断可以有利地降低局部电流密度。尽管峰值电流密度经常发生在伸长电极的端部附近,但峰值组织温度仍然可以发生在电极的中心区附近。电流朝向电极端部的进一步位移可以有利地降低最热区中的局部电流密度并提供更温和的温度分布。电极403可以具有圆形端部以提供更均一和均匀的电流分布。

电极403可以包括促进附接到球囊的安全性的特征(例如,改善联结强度、允许粘合剂回填),以促进应变消除、提供覆盖重叠、提供从球囊的平滑过渡,和/或提高柔性。此类特征可以包括锚定突片622(诸如,例如图6A所示),边缘特征诸如孔、狭槽、扇形凹口、锯齿和狭缝(例如,如图6B和6C所示)、锥形边缘或凸缘(诸如图6D所示)和/或凸形轮廓。边缘特征(例如,孔、狭槽、扇形凹口、锯齿和狭缝)也可以允许电线进入。

根据若干实施例,制造和安装电极403以便减少或消除任何凸起的轮廓,从而降低在输送、取回或其他使用期间移除电极403的可能性。在各种实施例中,电极是弯曲的以便在膨胀时适形于球囊的弯曲外表面,诸如图6E所示。通过将电极装配到球囊的半径,边缘轮廓显著减小。电极403还可以沿一个或更多个边缘用合适材料如粘合剂被倒圆角(fillet)、成斜坡(ramp)和/或流线化,以减小边缘轮廓,尤其是可能在球囊的抽出或取回期间由于球囊401或伸长轴405的误用或扭结而遇到阻力、摩擦的近侧边缘。根据若干实施例,在一个或更多个电极下面设置的粘合剂产生圆角。如图6F所示,可以沿每个电极的整个下侧产生或形成通道615以接收电线导体,而不是使电线导体仅沿电极的下侧延伸,从而减小电极的外部轮廓和厚度。可选的远侧跟踪段406可包括在球囊401的一部分上延伸的漏斗。

参考图6G,在一些实施例中,球囊导管的球囊401可包括形成到球囊壁中的受体凹坑616,从而产生凹口或阱,电极403可在球囊401的法向外表面下面附接到该凹口或阱,从而减小或最小化球囊401在电极403的位置处的外部轮廓。凹坑或阱616可有利地保护现在凹陷在球囊外表面下面的电极的边缘,从而在折叠和血管内输送期间保护电极免受机械力。根据若干实施例,每个电极联结到阱的底部而不联结到阱的外边缘,从而允许电极在球囊部署和扩展期间从凹坑或阱中上升。额外益处是电极在其上升时会更靠近血管壁。在该应用中,电极越靠近血管壁,治疗潜力越好。在球囊减压时,电极将返回其凹陷位置,允许平稳取回。在各种实施例中,电线导体可以在球囊表面之上或在形成通道中布线,并然后在适当位置联结。在可替代实施例中,电线导体或导线402穿过在阱底部的球囊表面布线以用于球囊间电路取向。

电极403可以通过冲压、锻造和/或模锻方法由线、棒、箔、片或管形成。电极403可以例如通过从薄片材料冲孔所期望形状或通过3D打印几何形状来制造。在一些实施例中,使用激光切割方法形成电极403。电极403的边缘可以通过二次冲压操作形成。例如,使用顺应性的模具材料可以提供锥形边缘。用于接收导线的通道615可以例如通过将电线/电极组件压在顺应性模具基座上而形成,从而在电线和电极部件之间提供精确的适形并置。根据若干实施例,电极403有利地应用和/或安装到球囊401而不使用柔性电路或印刷技术。通过不使用柔性电路,与柔性电路构造相比,可以有利地减小电极/电线组件的占地面积。

电极403可以通过各种方式附接到导线或传输线,包括熔焊(solder)、焊接(weld)(例如,激光、电子束、电阻、点焊)和/或导电环氧树脂。参考图6H,在一个实施例中,(一根或多根)导线402可以在形成或模锻到电极403中之前插入电极坯料或管中的孔618中。在形成期间施加的适度热可促进扩散或金属联结。在附接到电极403之前,可以将导线402剥离和/或用焊料镀锡。电极和/或导线可以在一侧上纹理化以促进联结。可以例如通过冲压、蚀刻、压花或其他方法施加纹理。在一些实施例中,导线402在附接之前被压制、冲压、扭曲、折叠、卷起或以其他方式形成以减小厚度并增大强度。在一些实施例中,仅将导线402的短部分(例如,小于电极长度的整个长度的一部分)剥离并附接到电极403(例如,如图6F所示),从而对于沿电极表面的电线的大部分长度保留沿导线402的绝缘材料。导线402和/或电极403可以被额外涂覆以便提供更宽、更清洁的联结区域。

导线402可以是电极403的组成部分。整体结构的电极和电线段可以从基本上均一的电线、膜或坯料切割、冲压、压制、锻造或机械加工或蚀刻。电极403的暴露部分可以镀有金、铂或其他贵重或生物相容的金属。电线/电极基材可以是铜、康铜、金、铂、不锈钢或其他合金或金属。

参考图7,在一些实施例中,电极403可以部分是铜并且部分是康铜。在一些实施例中,可以存在铜和康铜层。这些层可以由金属箔形成。在一些实施例中,铜和康铜层相对于电极表面形成顶侧和底侧。在其他实施例中,铜和康铜导体732基本上并排并与公共表面重合。在一些实施例中,电极/电线组件包括终止区734,其提供用于连接延伸线的位点735。在一些实施例中,电极403由柔性电路构成。

导线、电线导体或传输线402可以从电极403延伸到近侧歧管的端口。导线402适于激活电极403并为其供电。导线402可以由联结到临时载体膜的金属箔构造并蚀刻成所期望的图案。临时载体膜可具有施加到两侧的金属箔。至少一侧可以是高导电材料,诸如铜、金、银或其合金。另一层金属可以由不同的热电性质制成。

在一些实施例中,将电极和导线组件联结到球囊的过程包括将电极/导线组件中的一个或更多个施加到载体膜、将粘合剂施加到电极/导线组件、联结电极/导线组件到球囊、移除载体膜,并将保形涂层施加到球囊和电极/导线组件。临时载体膜本身可包含以下材料中的一种或多种:聚乙二醇(PEG)、聚环氧乙烷(PEO)、聚乙烯醇(PVOH)、聚乙酸乙烯酯(PVAc)及其共混物和共聚物。用于导线的临时和/或可移除粘合剂可包括丙烯酸树脂、PVAc、PVOH和/或类似物。

导线402可以包括热电偶线(例如,T型热电偶由铜正极线和负极康铜线构成)。在一些实施例中,导线402被配置为分离的、单独绝缘的电线。在一些实施例中,导线402被配置为包封、联接在一起并彼此电绝缘的双股或多股线。密封剂和绝缘体材料可包括聚酰亚胺、尼龙、聚氨酯或其他聚合物材料。密封剂可用于通过使用溶剂或热量将电线联结到基底。可以选择密封剂以具有与下面的电线绝缘层不同的熔点或耐溶剂性,以便保持电线的电绝缘。多股线可以在导管的远端附近分离以布线到分离的电极。

在一些实施例中,一个或更多个电极和一个或更多个电导体或导线至少部分地定位在球囊和柔性套管之间。返回参考图4,根据若干实施例,球囊导管400包括在球囊401的至少一部分上延伸的套管或覆盖物414。在一些实施例中,套管414有利地保护电极403中的一个或更多个以及一个或更多个电导体402中的至少一部分在使用期间免受损坏,并且保护患者免于由于与电极或电导体的相互作用而受伤。套管414的内直径可以被确定大小以匹配或基本上靠近球囊401的外直径。套管产生中使用的方法和材料可取决于设备性能要求。用于套管414的材料可包括聚氨酯、尼龙、聚对苯二甲酸乙二醇酯(PET)或其他材料。套管414可以是沿球囊401的主体的全部或一部分延伸的柱体,或可以形成有沿球囊401的近侧腰部或远侧腰部延伸的球囊匹配腰部。图4所示实施例中的套管414包括近侧球囊匹配腰部并且延伸到球囊401的远侧锥体的起点。在一些实施例中,套管414被确定大小并适于在球囊401的整个长度上延伸。在一些实施例中,套管414被确定大小并适于在球囊401的部分长度上延伸(诸如恰好在球囊的近侧锥体或腰部之上),以便捕获和容纳导线402。在一些实施例中,球囊401和套管414包括重叠或伸缩的嵌套球囊段或部分,其中一个与另一个重叠。例如,尽管图4所示的球囊401从伸长轴405延伸到远侧跟踪器406,但是球囊401可以替代地仅从远侧跟踪器406延伸到与套管414的远侧边缘重叠的位置。在另一实施例中,球囊401是近侧区段或部分,并且套管414是远侧区段或部分。球囊401和套管414可以联结在一起,使得保持球囊401内的膨胀压力。在一些实施例中,套管414不永久地联结或附接到球囊401,使得套管414可以在球囊401扩展或膨胀之前从球囊401移除。

参考图8A-1和图8A-2,在一些实施例中,套管414包括定位在球囊401的电极403中的一个或更多个的期望位置处的窗口或开窗860。窗口或开窗860可以在组装之前基于期望的电极图案精确地安装和对齐。在一些实施例中,窗口或开窗860被确定大小为大于电极,这可以允许间隙用弹性体粘合剂材料填充,以便提供增大的固定和应变消除。在其他实施例中,窗口或开窗860被确定大小为小于电极,这也可以提供增强的应变消除和牢固附接。在一些实施例中,球囊401包括用于对齐窗口中的电极的临时支撑件,诸如粘合剂、可剥离的管/膜、包裹物、PVOH和/或管。套管414可包括另外的额外孔或开槽窗口,以有助于柔性、折叠,减小体积等。

在一些实施例中,柔性覆盖物或套管414是柱形管。在其他实施例中,柔性覆盖物或套管414是保形涂层。在一些实施例中,保形涂层是聚合物涂层。用于聚合物涂层的合适材料的示例包括:聚氨酯、硅氧烷(例如PDMS(聚二甲基硅氧烷))、丙烯酸酯、环氧树脂、尼龙、PEBA、聚甲基丙烯酸甲酯、异丁二烯苯乙烯嵌段共聚物(Stryrene IsobutadieneStyrene block copolymer)、UV(紫外线)固化粘合剂、热熔粘合剂、其组合和/或类似物。一些合适的保形涂料作为溶液在溶剂中施加。其他合适的保形涂料作为液体提供,并在施加后在适当位置固化。其他合适的保形涂料作为粉末或薄膜施加。在一些实施例中,施加的保形涂层通过喷涂、浸涂、涂漆、擦拭、滚动静电喷涂或粉末涂覆和诸如此类施加。在一些实施例中,在施加涂层之前,将连结层(tie layer)或底漆施加到球囊和/或电极和电导体。

图8B示出了具有至少一个电极403和至少一个电导体402的球囊401。提供基本上圆柱形的柔性套管414以包围一个或更多个电导体402的至少一部分。开口、窗口或开窗860设置在套管414中以使电极403暴露于邻近组织。在一些实施例中,提供多个电极403和开窗860,如图8C至图8F所示。如图8C所示,套管414可以是无腰的。

图8C示出了可扩展消融球囊401的实施例,其具有至少一个电极403和至少一个电导体402。在一些实施例中,提供包括腰部808、锥体812和短体813的短的柔性外套管414以覆盖电导体402的近侧部分。在一些实施例中,套管414的远侧边缘815在最近侧电极的近侧。

图8D示出了球囊导管的实施例,其中外套管414具有扇形或波纹形边缘821,其被配置为覆盖多个电导体402和/或电极403中的全部或基本上全部。

图8E示出了消融球囊组件的实施例,该消融球囊组件由近侧套管或外套管414A和远侧套管或内套管414B构成。在一些实施例中,近侧套管414A和远侧套管414B重叠以形成基本上封闭的球囊空间。在其他实施例中,近侧套管414A和远侧套管414B通过联结件807联接在一起。外套管414A可以具有开窗860以提供电极(未示出)暴露于周围组织。在一些实施例中,近侧套管414A具有近侧锥体870和近侧腰部872,并且远侧套管414B具有远侧腰部879和远侧锥体880。在若干实施例中,电导体(未示出)在外套管和内套管之间通过。在一些实施例中,外套管414A具有远侧边缘并且内套管414B具有近侧边缘。在一些实施例中,外套管414A具有近侧边缘并且内套管414B具有远侧边缘。

图8F示出了球囊导管的实施例,其具有球囊401和带有多个开窗860和电极403的外套管414。在一些实施例中、外套管414设置有狭槽823、孔825和/或不与电极相关联的不规则成形的开窗824,以便减小体积、改善柔性和/或便于制造。

用于球囊和套管的合适材料包括例如:PET、PEBA、尼龙、聚烯烃、聚酯、聚氨酯和类似物。合适的联结材料包括环氧树脂、聚氨酯粘合剂、丙烯酸粘合剂、硅氧烷,室温硫化(RTV)、热熔和紫外(UV)固化材料。在一些实施例中,通过对球囊加压以将内球囊或套管联结到外套管以在内层和外层之间获得所期望的配合是有利的。在其他实施例中,由热收缩或可以使得被松弛到内层上的类似材料形成外套管是有利的。

套管414可以使用以下方法或机制中的一种或多种直接联结到球囊401:(i)自动分配和定位;(ii)分配、喷涂、压延(calendar)、涂漆、浸涂、印制;(iii)按压到球囊上并固化;(iv)再吹制并固化,(v)高粘性、高粘度(范围)压敏粘合剂(PSA)以及(vi)回填。套管414可以粘附或溶剂联结到球囊401。在一些实施例中,将套管414形成或联结到球囊401的方法可包括将热收缩施加到适当大小的心轴或在类似心轴上喷雾形成。套管414可以附接到球囊,其具有表面安装的电极403和在套管414上内部布线的线导体402。套管414可以在球囊上滑动并通过粘合剂或溶剂联结来附接到球囊表面,然后线导体402布线穿过伸长轴。电极403可以直接联结到套管414。在一些实施例中,将套管414压到球囊401上并固化。将套管414层压到球囊40可包括完全或部分层压。

返回参考图4,导线402定位在套管414和球囊401之间。如图4所示,导线402的远侧终点或远端可以延伸到与其连接的电极403的远侧,从而提供增加的保持力或斜坡。在一些实施例中,导线402中的一个、一些或全部延伸通过电极下方的球囊表面中的孔径或邻近它们所连接的电极403的边缘,并然后在球囊401内朝向伸长轴405内部延伸。该内部配线实施例提供了球囊柔性和球囊401内电线的隐藏从而保护它们免受机械损坏的优点。作为提供导线内部布线的方法的一个示例,在血管球囊中制成小孔,然后将导线穿过孔插入并穿过球囊腰部离开。然后可以将粘合剂施加到电极403的底部(面向球囊的下侧)。接下来,然后拉动插入的线端,直到电极的基座与球囊的表面相遇。任何多余的粘合剂从电极下流出,从而形成圆角,并然后粘合剂固化,从而将电极403固定在适当位置并将线孔密封在球囊401中。

在一些实施例中,导线402沿球囊401的外表面从电极向近侧延伸,并且当球囊朝向伸长轴405的外直径逐渐变细时通过球囊的近侧锥体的表面进入。进入位置可以在锥体的顶部或远端(具有最大横截面尺寸的端部)、在锥体的底部或近端(具有最小横截面尺寸的端部)或沿锥体的任何位置。在一些实施例中,导线402沿球囊401的外表面从相应的电极403向近侧延伸,并且在球囊腰部内或在近侧联结的位置处进入伸长轴405,其中伸长轴405恰好在球囊腰部近侧。外部配线实施例提供了球囊保持完整并且球囊能够在向电极施加功率期间膨胀(从而改善定位)的优点。可以在该过程中调整导线402以确保它们直线延伸并且导线上的粘合剂产生正折叠偏置。导线402的外部布线和附接可以通过在可以升高的夹具中拉紧导线来实现。在电极基座向上的情况下,可以将粘合剂施加到电极403的底部(下侧面向球囊),然后将电极403提升到球囊401,该球囊401正确地定位在电极403上方。在一些实施例中,然后固化粘合剂并从电线释放张力。然后电线可以在球囊上以直线延伸并用粘合剂覆盖,然后粘合剂固化。

在一些实施例中,使用柔性电路电极设计。柔性电路电极设计可包括第一聚合物层、热电偶层、第二聚合物层、导电层和第三聚合物层。在将其他层层压在一起之后,可以对暴露的导电层施加镀金。

在各种实施例中,球囊401包括非顺应性球囊。球囊401的材料可包括低顺应性材料,诸如PET、尼龙、聚氨酯(50D-72D)、聚烯烃共聚物、沙林树脂、离聚物、聚醚嵌段酰胺(PEBA)、聚酰亚胺,或更高顺应性材料,诸如聚氯乙烯(PVC)、较低硬度聚氨酯(30A-50D)、硅氧烷、科腾、EVA或低硬度PEBA。球囊401可以使用双折、三折、四折或蘑菇折叠配置进行折叠,诸如分别在图9A至图9D中示出。对于使用组合套管和球囊的实施例,球囊可包括比较非顺应性的基底,如PET,并且外套管可包括非常薄且柔性的更顺应性的材料(例如,Bionate55D或Bionate 80A)。

各种电极图案可以用于球囊导管(例如,球囊导管400)上的电极。在一些实施例中,电极沿两个、三个或四个轴线对齐以促进折叠(例如,双折、三折、四折)。在一些实施例中,球囊包括并联连接的周向分布的邻近电极对。电极可有利地定位在球囊上以便促进折叠,如图9E中示意性地示出。当处于折叠配置时,尽可能多的电极位于折叠的外表面上可能是特别有利的。

在一些实施例中(诸如图10A和图10B中示意性地示出),球囊401包括由四个电极组成的电极图案,每个电极沿周向间隔开90度或约90度。如图10A和图10B中示意性地示出,彼此间隔开180度的电极(A和C、B和D)可以沿球囊或套管的长度轴向对齐,使得存在间隔开180度的多行成对的电极。两个近侧电极(A和C)以间隔距离h与两个远侧电极(B和D)轴向间隔开。间隔距离h可根据期望和/或需要而变化。如图10A和图10B所示,电极可以被定位成具有等边配置,以便有利地在所有电极对(AB、BC、CD、DA、AC、BD)之间提供相等的间隔。当从质心或近侧边缘测量时,电极间隔可以由等式h=π*Dtan(60°)/4决定。电极间隔可以适于促进电极对之间的均匀功率输送。在一些实施例中,近侧电极(A和C)的远侧边缘和远侧电极(B和D)的近侧边缘不重叠,并且间隔开的距离在0.1mm和5mm之间(例如,在0.1mm和1mm之间、在0.5mm和1.5mm之间、在1mm和2mm之间、在1.5mm和3mm之间、在2.5mm和4mm之间、在3mm和5mm之间、在1mm和2.5mm之间、其重叠范围,或所述范围内的任何值)。

如图10C中示意性地示出,每个电极可以用线接在一起的电极簇代替以便充当单个电极。该实施例促进比轴向电极尺寸更长的径向电极尺寸,这继而可以有利地引起增加的血管周围周向消融,同时仍然保持在组装期间根据期望沿折叠线折叠球囊的能力。如图10C所示,导线402可以耦接(例如,联结)到电极簇的第一电极E1,并然后可以延伸超出第一电极E1的边缘并且环回并耦接(例如,联结)到电极簇的第二电极E2。可以针对其他电极簇重复该布线配置。每个簇可包括两个、三个、四个或更多个电极。

在一些实施例中,电极图案包括布置在球囊上的3×3电极矩阵(例如,如图10D的示意图所示),而不是2×2矩阵(例如,多行三元件组而不是成对)。每个电极可以与每个邻近的周向电极周向间隔开60度或约60度。近侧电极中的每个可以围绕球囊或套管的周界彼此周向间隔开大约120度,并且每个远侧电极可以围绕球囊或套管的周界彼此周向间隔开大约120度。近侧电极和远侧电极可以彼此轴向间隔开,类似于上面关于2×2矩阵图案所描述的。

在其他实施例中,电极图案可以由沿周向间隔开120度或约120度的三个电极的平面图案(如图10E所示),或周向间隔开90度或约90度的四个电极的平面图案(如图10F所示)构成。当然,也可以使用其他数量的电极、图案或布置或间隔,如本文别处所述。

在一些实施例中,电极被同时供电或激活,使得损伤图案对应于电极图案。在其他实施例中,电极被独立供电或激活(和去激活)。球囊导管可以平移到单个动脉或其他血管分支内的多个位置,并且电极可以在多个位置被激活(同时或独立地)。可以同时激活所有电极,或者可以同时激活电极的组合。电极的独立激活(和去激活)可以有利地促进使用单个电极图案实现不同的损伤图案。例如,参考图11A和图11B,电极A和B可以在血管(例如,肝总动脉)内的第一放置位置被激活(同时或单独地),并然后球囊可以被平移到第二放置位置并且电极C和D可以在第二位置被激活(同时或单独地),从而实现“螺旋”损伤图案,其中每个连续的损伤部位在轴向和周向上都是间隔开的。这种平移步进方法可有利地在血管长度上提供增加的血管周围周向治疗(例如,消融),同时限制任何横截面中的内侧壁(medialwall)或血管壁创伤的占地面积。平移步进方法还可以有利地提供改进的定位准确度,因为球囊导管不需要旋转。根据若干实施例,可以在不需要“螺旋”电极图案和使用单平面成像的情况下执行平移步进方法。

各个电极的独立激活(和去激活)还可以促进基于血管长度或基于血管位置和/或电极放置位置以某种方式进行定制以避开期望避开的邻近结构的疗法。例如,如果特定电极定位在超出期望治疗的血管的端部或太靠近期望治疗的血管的端部的位置,则该电极可能不被激活。另外,如果确定电极处于在血管内面向不期望受影响的邻近结构或组织的位置,则该电极可能不会在该治疗位置被激活,或可以调整由该电极输送的能量的治疗参数(例如,较低功率水平、较短持续时间)。当在血管内输送疗法时,可以不激活电极中的一个或更多个以避免损害非靶血管周围器官或结构(例如,胰腺、门静脉、胆管、淋巴结)。作为一个示例,当球囊导管定位在肝总动脉中时,当球囊导管定位在肝总动脉的远侧段中时,被确定为尾部取向(在胰腺的方向上)的一个或更多个电极可能不被激活,但当球囊导管定位在肝总动脉的近侧段中时,可以激活该一个或更多个电极。还可以独立地感测电极以提供反馈。

根据若干实施例,激活疗法输送构件(例如,电极、换能器)的方法可包括确定期望不被疗法靶向的邻近结构或组织的位置。该方法还可以包括确定疗法输送构件中的每个在血管内的特定治疗位置处的位置和取向。该方法还可以包括确定疗法输送构件中的任一个是否可能在特定治疗位置处被激活的情况下影响邻近结构或组织。如果确定疗法输送构件中的一个或更多个可能影响邻近结构或组织,则该方法可以包括不激活在特定治疗位置处的一个或更多个疗法输送构件,或调整在特定治疗位置处的一个或更多个疗法输送构件的治疗参数(例如,限制施加到该一个或更多个疗法输送构件的功率)。

根据若干实施例,可能特别有利的是,适于血管周围去神经的球囊导管上的电极具有大的表面积,以优化损伤深度和损伤宽度,同时限制峰值组织温度以防止蒸汽爆裂。当组织中的水沸腾时,会发生蒸汽爆裂,可能引起动脉或其他血管的机械破坏。然而,电极宽度受到球囊折叠或恢复需求的约束,而电极长度受到柔性需求以及可用血管长度和具有有限重叠的所期望损伤数量的约束。如关于图10C所示的图案所指示,电极可以在周向方向上并排成对或成组(例如,簇)。在一些具体实施中,通过以单极方式同时(例如,并行)激活电极,每对或每组内的电极适于有效地充当具有较大表面积的单个单极电极。每对电极可以单独或并行地驱动和控制。在一些实施例中,多个电极组沿图12A所示的球囊轴向和周向分开定位,使得没有一对或一组电极沿长度定位在相同的轴向位置,从而促进球囊折叠并减小球囊折叠时的整体外部周向尺寸。该对中每个电极之间的小间隙也可有利地促进球囊折叠。根据若干实施例,由电极对布置产生的基本上正方形的纵横比提供了有效的组织加热。

图12A示出了球囊导管的电绝缘电极支撑结构(例如,球囊)1200的实施例,其包括多个电极构件或元件1203A-1203D的簇。可以激活电极构件或元件1203的每个簇以有效地充当单个电极。如图所示,从近侧到远侧移动的每个连续的轴向邻近的电极构件簇或分组与前一个电极构件簇或分组周向间隔约90度,使得集体簇围绕球囊的周界形成螺旋图案,并且以便促进折叠并减小折叠球囊的整体周向尺寸。图12B示出了图12A的球囊导管的支撑结构1200的横截面视图。如图12B中最佳所示,可选的导丝管腔1204A延伸通过球囊导管的球囊1200,使得球囊导管可以在导丝上推进。电极1203的每个簇中的邻近电极之间的间隔范围可以为约0.1mm至约1mm(例如,0.2mm至0.5mm、0.3mm至0.6mm、0.5mm至1mm,其重叠范围,或所述范围内的任何值)。邻近的轴向电极簇之间(例如,簇1203A和1203B之间)的中心距范围可以为约3mm至8mm(例如,4mm至6mm、3mm至5mm、4mm至8mm、其重叠范围,或所述范围内的任何值)。每个簇中每个电极的轴向长度范围可以为约3mm至约8mm(例如,4mm至6mm、3mm至5mm、4mm至8mm、其重叠范围,或所述范围内的任何值),并且每对中每个电极的周向宽度范围可以为约0.5mm至约3mm(例如,0.5mm至1.5mm、1mm至2mm、1mm至3mm、其重叠范围,或所述范围内的任何值)。最近侧簇1203D的近侧边缘与最远侧簇1203A的远侧边缘之间的距离范围可以为约10mm至约50mm、(例如,10mm至30mm、15mm至25mm、20mm至50mm、25mm至45mm)。每个电极簇覆盖的表面积范围可以为约5mm

如关于本文中的其他球囊导管实施例所描述的,本文描述的球囊导管(例如,球囊导管400)可以结合冷却系统。在一些实施例中,冷却系统利用导管输送系统内的球囊膨胀管腔。例如,球囊膨胀管腔可用于使球囊膨胀,并且球囊中的泄水孔或泄漏可允许流体以受控方式(例如,约10mL/min(毫升/分钟))离开球囊,以便控制球囊压力和流体流速(如别处更详细描述的)。在各种实施例中,泄水孔的位置处于球囊上的位置以产生进入的流体与电极升温流体的最大混合,并且还处于其中不能阻塞流出的位置。产生的升温流体可以向下游排放到血管系统中。在一些实施例中,球囊膨胀管腔将冷却流体(例如,盐水或水)直接排放到球囊的远侧部分中,其中返回管腔位于球囊的近端。该冷却系统适于通过控制在近侧歧管组件处的排放流速来维持适当的膨胀压力。在一些实施例中,定向端口沿球囊内的球囊膨胀管腔定位。这些定向端口可以被引导以优化冷却和温热的流体混合,或者它们可以被定位成直接喷射在每个电极的后侧。这些实施例还可以利用近侧歧管组件处的流出控制的排放。对于其中喷射射流被引导在(一个或更多个)电极的实施例,冷却流体可以在高压下通过球囊膨胀管腔或另一输送管腔输送。冷却流体可以从球囊膨胀管腔或其他输送管腔通过孔口以高速引向相应的消融电极的内表面进行排放。在若干实施例中,(一个或更多个)射流将在球囊内夹带额外的流体。(一个或更多个)射流可以有利地撞击在电极的内表面上,从而提供高速度梯度和从电极到表面的有效对流热传递。电极的管腔表面近侧的组织具有最高的RF加热强度,并因此受益于更有效的热传递。整个球囊内部的流体的额外循环可以向其他组织区提供额外的冷却。冷却剂流体(例如,盐水或水)可以从球囊排放到血管中或经由导管轴中的管腔移除。

根据若干实施例,冷却系统或技术可使用两个球囊(例如,如本文描述和所示,外球囊套管和内球囊或外球囊和内球囊)来实施。图13A是消融设备的远侧部分的局部剖视图,其具有基本上在第二球囊1300内部的第一球囊1301。在一些实施例中,电极1303安装在第二外球囊1300上或由第二外球囊1300支撑,并且第一内球囊1301适于经由内球囊1301中的一个或更多个开口或端口(例如,喷射孔口)1312供应冷却。(一个或更多个)冷却端口1312可以有利地与每个电极1303对齐(例如,位于其正下方)。例如,每个电极可以具有一个或更多个冷却端口1312,其定位并适于引导特定电极的冷却流体。冷却端口(例如,喷射孔口)1312与冷却的电极表面的接近有利地确保准确对齐并允许更大的孔口直径与更低的压力和流速。多个冷却端口或喷口1312可用于冷却较大的电极1303。金属电极表面和焊点可以直接暴露于冷却喷口以用于更好地热传递。冷却端口(例如,喷射孔口)1302的直径可以在约0.05mm和约0.25mm之间(例如,在0.05mm和0.10mm之间、在0.07mm和0.15mm之间、在0.10mm和0.20mm之间、在0.15mm和0.25mm之间、其重叠范围,或所述范围内的任何值)。

冷却流体可以通过流体入口1309进入内球囊1301中,并且以足够的流速定向喷射或渗出,以向外球囊1300和电极1303提供期望的冷却效果。例如,每个电极的流速范围可以为0.1ml/sec(毫升/秒)至1.0ml/sec。在一些具体实施中,从内球囊1301供应的流体被引导在每个电极1303并且在连续流动环路中从外球囊1300排出。内球囊1301可以有利地适于充当膨胀设备和压力储存器。在一些实施例中,内球囊1301具有比外球囊1300中的压力更高的压力。外球囊压力可以是流速、孔口阻力、出口阻力和/或外部施加的背压的函数。

在一些实施例中,内球囊1300和外球囊1301之间的间隙在约0.05mm和约1.5mm之间(例如,在0.05mm和0.50mm之间、在0.10mm和0.60mm之间、在0.25mm和0.75mm之间、在0.2mm和0.3mm之间、在0.5mm和1.0mm之间、在0.75mm和1.5mm之间、其重叠范围、约0.25mm,或所述范围内的任何值)。根据若干实施例,小的球囊间的间隙(inter balloon gaps)、薄的电绝缘涂层(例如,聚对二甲苯)和低导电率的溶液有利地限制了通道之间的串扰。球囊的间隙与近侧和远侧锥体可以充当用于收集或分配冷却剂流体的歧管。例如,图13A的实施例包括在内球囊1301的远端和外球囊1300的远端之间的远侧流体空间1315,以及在内球囊1301的近端和外球囊1300的近端之间的近侧流体空间1318。

在一些实施例中,在内球囊1301的近端或远端处的一个或更多个辅助孔口1344防止流体停滞,该流体停滞将允许外球囊1300的部分加热。(一个或更多个)辅助孔口1344可以提供穿过内球囊1301和外球囊1300之间的基本上环形空间的流体循环。冷却剂可以在远端和/或近端处从外球囊1300排放,或在沿外球囊1300的任何其他位置(例如,中间)排放。在一些实施例中,导线1302可以延伸到内球囊1301和外球囊1300之间的电极1303。内球囊1301和外球囊1300可以由一种或多种聚合物材料构成,诸如聚乙烯、PET、尼龙Pebax(改性尼龙)、PEBA、聚烯烃、聚氨酯和/或类似物。

在各种实施例中,内球囊1301部分地或完全地包含在外球囊1300内。在一些实施例中,内球囊的近侧和/或远侧腰部位于外球囊的锥体或体区内。在一些实施例中,内球囊和外球囊可附接到消融设备(例如,消融导管)的共同轴。球囊导管可包括在轴内延伸的导丝管腔1304A以促进线上输送。

图13B-1和图13B-2示出了消融设备的远侧部分的透视图和剖视图,该消融设备由内球囊1301和外球囊套管1314构成。外球囊套管1314沿内球囊1301的长度的一部分延伸并与内球囊1301形成环形空间。在一些实施例中,在外球囊套管1314的近端和/或远端处的一个或更多个冲洗或排放孔口1332A、1332B防止流体停滞,该流体停滞将允许外球囊套管1314的部分加热。(一个或更多个)孔口1332可以提供通过内球囊1301和外球囊套管1314之间的基本上环形空间的流体循环。冷却剂可以在远端和/或近端处(例如,通过排放孔口口1332A、1332B)从外球囊套管1314排放,或沿外球囊套管1314在任何其他位置(例如,中间)排放。在一些实施例中,导线1302延伸到内球囊1301和外球囊套管1314之间的电极1303。内球囊1301包括近侧锥体1316和远侧锥体1320。外球囊套管1314可以在其近端和远端处和/或在沿外球囊套管1314的其他位置处联结到内球囊1301。与图13A所示的实施例一样,内球囊包括一个或更多个开口或端口(例如,喷射孔口)1312,其适于朝电极1303的表面引导冷却剂流体的射流。开口或端口1312可以邻近电极1303中的每个定位。

图13C-1和图13C-2示出了消融设备的远侧部分的局部剖视图,该消融设备包括由部分外球囊1300’部分地包围的内球囊1301。内球囊1300包括远侧辅助孔口1344并且可沿其长度包括其他辅助孔口。内球囊包括近侧锥体和远侧锥体1320。消融设备包括中心导丝管腔1304A。内球囊1301的近侧腰部和外球囊1300’的近侧腰部1336可以联结或以其他方式耦接到消融设备的轴1305。内球囊1301的远侧腰部1337也可以联结到轴1305,并且外球囊1300’的远端(例如,边缘)可以在内球囊1301的远侧锥体1320近侧的位置处结联结到内球囊1301。内球囊1301包括一个或更多个冲洗或冷却孔口1312,其适于朝沿外球囊1300’定位的电极1303中的每个引导流体射流。如图13C-1所示,导管的轴1305可具有多个管腔1304。一些管腔1304可以有利地被闭塞和/或设置有侧窗以在期望的方向上引导流体。在一些实施例中,轴1305是多管腔挤出件。在其他实施例中,轴1305是一束单独管腔。在一些实施例中,该束单独管腔被封闭在套管中。例如,该束单独管腔可以被包裹在已经部分熔化(回流)或溶剂浇铸或涂覆到束上的套管中。在一些实施例中,套管穿透束。在一些实施例中,轴1305在球囊内具有过渡区域。

图13C-2是图13C-1的消融设备的放大局部剖视图。如图所示,轴1305包括入口管腔1343和排放管腔1346,冷却流体通过入口管腔1343引入内球囊中,流体通过排放管腔1346离开消融设备进入血流中。轴1305包括一个或更多个开口1348,电极线1302通过该开口1348延伸并沿内球囊和外球囊之间的环形空间延伸到相应的电极1303。如图所示,消融设备可包括在内球囊和外球囊的近侧锥体之间的近侧流体空间或间隙1349。在各种实施例中,在外球囊1300’中提供扩大的开口,以允许电极线1302接合以穿透到球囊间的间隙中。这在电极1303和外球囊1300’之间提供了更好的配合。可以提供间隔件以确保在每个电极1303处的适当的流体流动和间隙。

根据若干实施例,消融设备的中心导丝管腔可能妨碍中心冷却孔口或端口对于周向间隔开的电极的最佳放置。因此,可以替代地提供基本上同轴的冷却孔口或端口阵列。图14A是消融球囊1400内部的环形射流组件1440的实施例的局部剖视图,环形射流组件1440包括多个冲洗孔口或开口1412,其适于提供被引向多个电极而不被导丝管腔1404A阻挡或中断的多个流体射流。环形射流组件1440包括远端帽1443和近端帽1445,远端帽1443和近端帽1445与导丝管腔1404A同轴对齐并且围绕导丝管腔1404A的周界延伸。圆柱形覆盖物或表面1441在远侧端盖1443和近侧端盖1445之间延伸。冷却孔口或端口设置在圆柱形覆盖物或表面1441中的不同位置处,以便朝消融设备的一个或更多个电极(未示出)引导流体射流。可以经由同轴(未示出)或偏心放置(如图14A所示)的入口管腔1404B提供冷却剂流体。冷却剂流体可以分布在围绕导丝管腔1404A的环形腔室中。

在一些实施例中,消融设备的导管轴1405包括多个部分环形腔室。图14B-1和图14B-2分别示出了多管腔轴1405的端视图和斜视图,该多管腔轴1405包括中心导丝管腔1404A和偏心流体入口管腔1404B,该偏心流体入口管腔1404B包括围绕流体入口管腔1404B的周界布置的多个射流排放孔口或开口1412,其适于在多个方向上输送流体射流。在一些实施例中,流体输送管腔1404B围绕导丝管腔1404A环绕或盘绕(未示出),以在每个电极的方向上呈现孔口或端口。

图15A示出了球囊导管1500的实施例,其具有叶轮或桨叶16060以通过在球囊1501内混合流体来引起电极1503的冷却。叶轮1560可以由合适的材料构造,并使用粘合剂或机械附接装置附接到足够长的驱动轴。叶轮1560的轴可以由每个球囊腰部处的衬套1562支撑,从而确保用于流体位移和电极冷却的稳定叶轮旋转。球囊1501可以附接到输送轴,其具有电绝缘电路系统1563、膨胀歧管1564和叶轮驱动系统1565,诸如图15B所示。叶轮或桨叶1560可以由用户手指驱动或机械驱动。叶轮或桨叶1560可以可旋转地和/或平移地驱动。

图16A-1至图16A-3示出了多管腔球囊消融导管1600的远侧治疗部分的实施例的各种视图。多管腔球囊消融导管1600包括在伸长轴(未示出)的远端处或附近的多管腔球囊1601。多管腔球囊1601被构造有放置在球囊壁内或邻近球囊壁放置的至少一个辅助管腔16116。至少一个电极1603定位在多管腔球囊1601上,使得在部署状态下,电极1603的面电暴露于周围组织。电导体(未示出)从电极1603延伸通过辅助管腔1616的至少一部分,经由球囊消融导管1600的伸长轴连接到RF发生器。

在一些实施例中,基本上非顺应性的球囊可具有不同的区,包括近侧腰部1614、近侧锥体1617、主体1613、远侧锥体1618和远侧腰部1619。在一些实施例中,主管腔1615延伸通过球囊1601的中心。在其他实施例中,主管腔1615可以偏离结构的中心。在其他实施例中,可以提供多于一个的主管腔1615。

在一些实施例中,至少一个辅助管腔1616连续延伸通过球囊的长度。在一些实施例中,至少一个辅助管腔16116被闭塞、融合或从球囊1601的一部分移除。在一些实施例中,穿过辅助管腔1616的侧壁形成开口。此类开口可以允许流体或电导体通过。在一些实施例中,辅助管腔1616可以分成近侧辅助管腔1616A和远侧辅助管腔1616B。在一些实施例中,近侧辅助管腔1618可以包围电导体,并且远侧辅助管腔1619可以允许流体流动。

图16B示出了穿过处于其部署状态的多管腔消融球囊导管的实施例的中心部分的横截面图。主管腔1651被加压以使球囊1601膨胀并使电极表面1653相对于生物组织到达其预期位置。在一些实施例中,使一个或更多个电极1603与组织直接接触。在其他实施例中,电极1603可以定位在距组织一定距离处。在一个实施例中,通过粘合剂联结1657将电极附连到消融球囊的外表面1654。在另一实施例中,电极1603的一部分包含和/或联结在辅助管腔1652(例如,辅助管腔1616)内。在另一实施例中,从电极延伸的电导体联结到辅助管腔(例如,辅助管腔1616)中。

在一些实施例中,第一电导体1655从第一电极穿过辅助管腔到达第一电源。在一些实施例中,第二电导体1656从第一电极或第二电极到达传感器或第二电源。在一些实施例中,第一电导体1655和第二电导体1656形成热电偶。在一些实施例中,(一个或更多个)电导体通过附件管腔1652的外壁中接近电极的开口进入附件管腔1652。在其他实施例中,(一个或更多个)电导体通过电极下方的开口进入辅助管腔1652。在一些实施例中,移除辅助管腔的外壁的一部分以允许插入电极或电导体的近侧部分和远侧部分。在一些实施例中,辅助管腔中存在多个开口。例如,可以提供端口以允许流体进出(一个或更多个)辅助管腔。

在一些实施例中,辅助管腔具有基本上开放的管腔。在其他实施例中,辅助管腔被压平或压缩。在一些实施例中,辅助管腔围绕电导体适形。在一些实施例中,辅助管腔被压缩和/或联结到其自身和/或电导体。在一些实施例中,仅在端部或沿其长度的选定位置提供联结。

在热消融程序期间,组织的一些区可能不期望地变热。已经发现,最热的组织区经常发生在电极附近。根据若干实施例,多管腔球囊导管1600被配置为从周围组织吸收热量并将其运输到身体的较冷区或将其从身体完全移除。在一个此种实施例中,辅助管腔的至少一部分被配置为递送冷却流体(例如,盐水或水)经过球囊的热表面。在另一实施例中,冷却流体经由伸长轴中的注入管腔输送到辅助球囊管腔。在一些实施例中,冷却流体被输送到主球囊管腔中,从主球囊管腔进入辅助管腔。在一些实施例中,冷却流体进入远侧辅助管腔并被递送经过热内球囊表面区,从而为一个或更多个电极提供对流冷却。在其他实施例中,冷却流体进入接近热内部球囊表面区的辅助管腔,并通过近侧或远侧辅助管腔排放到血管中。

多管腔消融球囊1601可以由挤出的热塑性管材形成。用于多管腔消融球囊的合适材料可选自列表,该列表包括但不限于聚对苯二甲酸酯(PET)、聚乙烯、高密度聚乙烯、尼龙、聚醚嵌段酰胺(PEBA)聚氨酯和其他材料。可以制备挤出的管材用于模制加热和拉伸管的区段。吹塑可以通过加热和加压模具内部的管材来完成。在一些实施例中,在从模具中移除之前冷却模制的球囊。使用热固性聚合物材料和增强复合材料也可以实现多管腔球囊的模制。可以调整模制参数(例如压力、温度、张力、时间和其他参数)以实现期望的球囊尺寸和性质。

在一些实施例中,在形成期间仅球囊的主管腔被加压。在其他实施例中,主管腔和辅助管腔相等地被加压。在其他实施例中,主管腔和辅助管腔被加压到不同的压力。在一个实施例中,流体可以经过一个或更多个管腔以在形成期间影响邻近材料的温度。

图16C-1示出了适于制造多管腔消融球囊部件的多管腔挤出件的横截面视图。挤出件包括主管腔1628和至少一个辅助管腔1620。本领域技术人员将认识到,适用于吹塑的管材将在拓扑学上与所期望的最终产品类似,但与最终产品相比通常具有更小的直径和更大的壁厚度。图16C-1中所示的管材实施例具有伸长纵横比的辅助管腔,并且基本上位于外表面1621和内表面1622之间的主管材的壁内,从而引起与主管腔1628相比的辅助管腔1620中的较薄壁。图16C-2中所示的另一管材实施例具有大致圆形横截面和壁厚度与主管腔1628的壁厚度可比较的辅助管腔1626,从而引起来自内表面1627的突出部1625和/或来自外表面1624的突出部1623。球囊管材的其他实施例具有朝向或远离主管腔1628的中心位移的辅助管腔1620。在一些实施例中,多个辅助管腔沿主管腔的周边规则地间隔开。在其他实施例中,多个辅助管腔沿主管腔的周边不均匀地分布。在一些实施例中,存在多个主管腔。

图16D-1示出了穿过多管腔消融球囊部件的中心部分的横截面视图,其中通过对主管腔1638和(一个或更多个)辅助管腔1630两者加压来完成吹塑。图16D-2示出了穿过另一个多管腔消融球囊部件的中心部分的横截面视图,其中通过对主管腔1638加压使得(一个或更多个)辅助管腔1630变得伸长来完成吹塑。图16E-1示出了当主管腔1643处于压力下时穿过多管腔消融球囊部件的中心部分的横截面图。图16E-2示出了当主管腔1643处于压力下时穿过多管腔消融球囊部件的中心部分的详细横截面视图。辅助管腔1641可以在其长度的至少一部分中基本上被压平。在一些实施例中,辅助管腔1641可以与电导体(未示出)接触。在一些实施例中,辅助管腔1641可以联结到电导体。适于消融的主球囊管腔的一些实施例的壁厚度1642在0.0001英寸至0.010英寸的范围内(例如,0.0005英寸至0.002英寸、0.0002英寸至0.005英寸、0.0001英寸至0.001英寸、0.001英寸至0.008英寸、0.005英寸至0.010英寸、其重叠范围,或所述范围内的任何值)。在各种实施例中,辅助球囊管腔直径的合适范围为0.1mm至3.5mm(例如,0.5mm至2.0mm、0.5mm至2.5mm、1.0mm至2.5mm、1.0mm至1.5mm、1.0mm至3.0mm、1.5mm至2.5mm、1.5mm至3.0mm、2.5mm至3.5mm、其重叠范围,或所述范围内的任何值)。在一些实施例中,内辅助管腔壁1644的厚度与外部辅助管腔壁1640的厚度基本相同。在其他实施例中,内辅助管腔壁1644与外辅助管腔壁1640不同。在各种实施例中,主球囊直径的合适范围为1mm至25mm(例如,1mm至5mm、1.5mm至6mm、2mm至8mm、4mm至10mm、5mm至15mm、8mm至20mm、10mm至15mm、10mm至20mm、15mm至20mm、其重叠范围,或所述范围内的任何值)。根据期望或需要,辅助管腔的数量可以是一个、两个、三个、四个、五个、六个、七个、八个、九个、十个或多于十个。

在一些实施例中,多管腔消融球囊可以是顺应性的,使得其在部署和恢复期间拉伸和伸长。顺应性球囊虽然缺乏针对非顺应性球囊描述的明确定义的特征,但仍然表现出本文描述的功能行为。适用于制造顺应性多管腔消融球囊的材料包括硅氧烷、聚二甲基硅氧烷、低硬度聚氨酯、科腾和类似物。

图17A、图17B-1、图17B-2和图17C分别示出了多管腔消融导管17100的实施例的近端的透视图、端视图、横向剖视图和放大透视图。在所描绘的实施例中,导管17100是复合结构,其由适于冲洗并用作用于电极线的管路的多个单独管腔17116构成。多个单独管腔17116基本上被包裹在弹性体材料中,该弹性体材料适于保持单独管腔的形状和取向。弹性体密封物结构可以形成球囊17101。如图所示,多个单独管腔17116包括围绕中心导丝管腔17104等距间隔开的四个管腔。电极17103设置在沿每个管腔17116的长度的位置处,使得每个管腔17116可以向沿其长度定位的电极提供冷却。球囊17101包括远侧外部球囊排放孔口17194和近侧外部球囊排放孔口17198。图17C示出了复合多管腔球囊消融导管17100的近端的放大斜视图。如图所示,电极线17102在相应的管腔17116中的每个内并沿相应的管腔17116中的每个延伸,以将每个相应的电极电耦接到能量源(例如,发生器)。每个管腔17116包括将管腔与球囊17101分开的管腔壁。可以吹塑单独管腔17116以提供可变直径和壁厚度。管腔17116中的一个、一些或全部可包括外部管腔排放孔口17192。图17A至图17C可以结合图16A至图16E-2的多管腔球囊部件的结构或功能特征中的任一个,除了导管17100是复合结构而不是单独挤出的管腔。

在一些实施例中,单独管腔17116中的一个或更多个可终止于球囊17101的远端近侧的点处。例如,单独管腔可以终止于电极17103的刚好远侧或球囊的远侧锥体的顶部,或终止于电极17103和远侧锥体之间的点。在一些实施例中,电极17103可以附连到单独管腔17116的外表面。在其他实施例中,电极17103可以放置在单独管腔17116的内部,其中设置在单独管腔中的开口或开窗提供电极和组织之间的电接触。在一些实施例中,分配腔室或歧管设置在球囊17101的近端处,以在多个单独球囊管腔17116和(一个或更多个)导管轴流体输送管腔之间提供流体连通。在一些实施例中,单独管腔与导管轴流体输送管腔直接流体连通。在另一实施例中,单独球囊管腔是导管轴流体输送管腔的延续部分。

由于腹腔动脉的几何形状/曲折性,用治疗设备和/或附件进入肝总动脉可能是困难的。在大比例的人中,腹腔动脉在向下的方向(尾部)上从主动脉分支。出发的角度可能非常陡峭,导致腹腔动脉看起来与主动脉平行。腹腔动脉供给肝总动脉和脾动脉,它们通常位于腹腔动脉/主动脉接合处的上方(头部)。因此,在存在向下行进的腹腔动脉的情况下,在腹腔动脉朝向肝脏上升时,需要腹腔动脉陡峭地改变从尾部到头部的方向。该血管通过形成约180度的急剧弯曲来实现这一点,将血液朝向肝总动脉/脾动脉分叉处向上和向头部重定向。从腹腔动脉到肝总动脉的出发通常还需要将血管方向改变到患者的右侧以到达肝脏。在从股动脉进入主动脉的情况下,几何形状和曲折性可能需要多次陡峭的“U形转弯”,并且要穿过弯曲以沿肝总动脉进入治疗部位。

根据本文描述的发明的若干实施例,当因为传统设备或进入工具不能穿过腹腔动脉并且推进到肝总动脉中,所以传统治疗设备和进入装备可能导致程序性失败时,上述解剖学挑战可以得到克服并且可以提供程序成功。例如,本文描述的实施例包括可以添加到治疗设备(例如,球囊导管400或本文描述的任何其他导管或治疗设备)的改善,以增强治疗设备陡峭地改变方向并穿过“U形转弯”或急剧弯曲,而不会丢失定位在腹腔动脉的门孔或主体中的导引导管或导引护套的能力。根据若干实施例,所描述的系统和方法适于从桡动脉进入主动脉。从桡动脉进入消除了第一个U形转弯,因为在腹腔动脉出发上面从头部方向接近主动脉,而不是与使用股动脉入路时的情况一样在腹腔动脉出发下面从尾部方向接近主动脉。

本文描述的实施例可以有利地提供以下优点或益处中的一个或更多个:(i)使操作者能够遍历患者的曲折的解剖结构,并为慢性疾病或急性疾病危机提供疗法;(ii)使操作者能够穿过患者的曲折的解剖结构并在减小的(例如,最小的)时间量中提供预期的疗法;使操作者能够穿过患者的曲折的解剖结构并提供预期的疗法,同时减少(例如,最小化)附加设备和附件的使用,从而减少(例如,最小化)整个程序的成本;以及(iv)使得操作者能够穿过患者的曲折的解剖结构,并且提供以下能力:当流动条件防止染料从导引导管或导引护套流动以填充预期的血管以进行可视化时,可视化远侧解剖结构的分支。

图18A和图18B示出了治疗设备1800的实施例的远侧部分,其包括远侧轴延伸段或单元1806。图示的治疗设备1800是球囊消融导管,其具有近侧伸长轴1805和球囊1801,球囊1801具有多个电极1803,该多个电极1803耦接到近侧伸长轴1805。轴延伸单元1806定位在球囊1801的远侧球囊腰部的远侧。轴延伸段1806适于逐渐改变治疗设备1800从远侧到近侧的柔性,从而当设备1800穿过陡峭转弯(例如,90度转弯或甚至U形转弯时或180度转弯)时能够实现平滑的柔性过渡。在一些实施例中,治疗设备1800是适于通过导丝1811输送的线上设备,并因此导丝1811延伸通过轴延伸单元1806的导丝管腔。在一些实施例中,治疗设备1800适于具有可操纵的远端部分,并且可以不是线上设备。在此类实施例中,轴延伸段1806可以不具有导丝管腔。

在一些实施例中,远侧轴延伸单元1806被构造成可由操作者成形。例如,轴延伸单元1806可包括具有形状记忆材料的开槽海波管,该形状记忆材料允许操作者定制患者解剖结构的期望形状。在一些实施例中,远侧轴延伸单元1806包括形状记忆材料,并且当处于预成形(例如,不受约束)条件时,其被预成形为具有特定形状或几何形状。例如,远侧轴延伸段1806的形状或配置可以预先成形为对应于特定的已知解剖学转弯,从而引导治疗设备通过解剖学转弯。可以通过导丝1811改变预成形条件或配置。例如,如果导丝1811在远侧轴延伸段1806内,则远侧轴延伸段1806可以是直的或基本上直的(诸如图18A所示)。如果导丝不在远侧轴延伸段1806内,则远侧轴延伸段1806可具有期望的预成形几何形状(诸如图18B所示)。

在一些实施例中,远侧轴延伸段1806的远侧末端1812是不透射线的。不透射线的远侧末端1812可以是由铂、铂铱合金、金、金合金或其他材料制成的金属带或线圈或结构,其附接到远侧轴延伸段1806的远端。在一些实施例中,不透射线的远侧末端1812由聚合物(例如,Pebax

根据若干实施例,提供可移动外轴(例如,捕获支撑件和流体输送轴),其可耦接到治疗设备诸如球囊导管400或本文描述的其他消融导管或治疗设备的伸长轴。图19A示出了沿治疗设备的伸长轴1905耦接的可移动外轴1910的实施例。可移动外轴1910可适于沿治疗设备的伸长轴1905向远侧和/或向近侧移动。当可移动外轴1910移动时,治疗设备的柔性改变和/或该设备将推力传输到设备的远侧段或端部部分(例如,具有球囊或其他治疗构件的部分)的能力。例如,当可移动外轴1910朝向治疗设备的远端移动时,远侧段的柔性降低和/或设备的推动能力增加。

可移动外轴1910可以以其抗扭结的方式构造。在一些实施例中,外轴1910包括多层聚合物管与聚合物和/或金属编织物以及线圈以形成复合管。图19B是示出可移动外轴1910的层的横截面视图。可移动外轴1910可包括内润滑层1915,其由诸如聚四氟乙烯(PTFE)、氟化乙烯丙烯(FEP)或高密度聚乙烯(HDPE)的材料构成。可移动外轴1910还可包括抗扭结中间层1916,其由不锈钢、镍钛诺、钨、芳纶(Kevlar)、液晶聚合物和/或类似物构成。可移动外轴1910的外层1917可包括例如Pebax

在若干实施例中,可移动外轴1910的至少远侧末端或区段1912是不透射线的。不透射线的远侧末端1912可以是由铂、铂铱合金、金、金合金或其他材料制成的金属带或线圈或结构,其附接到可移动外轴1910的远端。在一些实施例中,不透射线的远侧末端1912由聚合物(例如,Pebax

根据若干实施例,可移动外轴1910可有利地用于提供从身体外部到可移动外轴的远端和/或治疗设备的管腔的流体连通。例如,可移动外轴1910可以附接到海波管的端部,该海波管实现到轴管腔的流体连通。在一些实施例中,流体连通端口利用移动可调阀(例如Tuohy-Borst阀或适配器)以同心方式附接到轴管腔。

在一些实施例中,可移动外轴1910结合可扩展结构诸如球囊,使得其可将治疗设备锚定到动脉和/或导引导管或导引护套,同时仍然使治疗设备的远侧末端能够进一步推进到血管系统。可扩展结构可以形成从导引导管或导引护套的内直径到可移动外护套结构的内直径的流体连通路径。在一些实施例中,可移动外轴1910耦接到套管或护套(例如,套管414、1314)或与套管或护套整合,该套管或护套适于在球囊(例如,球囊401)扩展或膨胀之前从球囊上的覆盖电极移除。

图20A示出了包括球囊2005的射频能量输送设备2000的实施例的示意表示。球囊2005适于部分或基本上闭塞并且包括多个电极2010,多个电极2010定位在沿球囊2005的外表面的一个或更多个位置处。球囊2005可以确定大小以覆盖待治疗(例如,消融或去神经)的血管(例如,肝总动脉)的整个长度,或者可以更短以便治疗血管的一部分。在一个实施例中,球囊2005的直径为5mm、长度为20mm;然而基于血管长度,根据期望或需要,其他球囊的直径范围可以为3mm至8mm(例如,3mm、3.5mm、4mm、4.5mm、5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm),并且长度范围可以为10mm至40mm(例如,10mm至20mm、15mm至25mm、20mm至30mm、25mm至35mm、30mm至40mm)。电极2010可以由单个电极元件或构件构成,或可以由多个单独电极元件(例如,四个电极的簇或组)的一个或更多个阵列构成。例如,至少一个电极元件阵列可以接近热连通中的组织区域,使得经由电极2010输送的RF功率用于加热基本上连续的组织体积。如果大体上是圆形的,则电极2010的直径可以为0.5mm至3mm(例如,0.5mm至1mm、1mm至1.5mm、1.5mm至2mm、2mm至2.5mm、2.5mm至3mm、其重叠范围,或所述范围的任何值或在所述范围内的任何值)。至少一个电极阵列可以是线性的、Z字形的、弯曲的、矩形的、多边形的或圆形的。根据期望或需要也可以使用其他形状和图案。包括阵列的单独电极2010在其最窄方面中可以为0.1mm至2mm(例如,0.1mm至0.5mm、0.3mm至1mm、0.5mm至1.5mm、0.8mm至2mm、其重叠范围,或所述范围的任何值或在所述范围内的任何值),并且在其最长方面中可以为0.5mm至10mm(例如,0.5mm至2.5mm、2mm至4mm、3mm至5mm、0.5mm至5mm、3mm至6mm、4mm至8mm、5mm至10mm、其重叠范围,或所述范围的任何值或在所述范围内的任何值)。在一些实施例中,电极元件的最长方面可以为5mm至20mm。在一些实施例中,可以通过一个或更多个电极输送0.5W-3W(例如,0.5W、1W、1.5W、2W、2.5W、3W)的RF功率。(被激活以用作单个电极的单独电极或电极对或电极阵列)的电极表面积范围可以为1mm

在各种实施例中,电极或电极阵列可以与一根或多根连接线2015一起附连到球囊2005。具有连接线的电极阵列的两个实施例在图20B和图20C中示出。根据各种实施例,连接线2015将RF电流供应到(一个或更多个)电极2010。在一些实施例中,连接线2015承载用于测量温度的信号。在一些实施例中,连接线2015承载用于消融或其他治疗的RF电流和用于测量温度的信号两者。在一些实施例中,连接线2015形成热电偶(例如,双股热电偶)。球囊2005可以由两个、三个、四个、五个、六个或多于六个电极阵列组成。每个阵列可以由两个、三个、四个、五个、六个、七个、八个或多于八个电极组成。

在一些实施例中,电极2010连同它们的一根或多根连接线2015用粘合剂诸如环氧树脂、氰基丙烯酸酯、硅氧烷、丙烯酸树脂、聚酰胺、聚氨酯、压敏粘合剂和热熔粘合剂附连到球囊。在一个实施例中,除了有源电极区域之外,整个球囊和电极组件可以包封在涂层中。在另一实施例中,涂层仅覆盖球囊和电极组件的部分。图20B示出了包括粘合剂主体2020的电极阵列2002的实施例,该粘合剂主体2020适于粘附到球囊2005。在其他实施例中,电极可以直接附接到球囊2005。图20C示出了具有Z字形布置的电极阵列,其中连接线2015耦接在每个单独电极之间。Z字形布置可以有利地减小电极之间的间隔并减小电极阵列占据的整体大小或阵列,同时保持大致螺旋图案。在一些实施例中,电极阵列的电极附连到柔性基底。在一些实施例中,电极、连接线和柔性基底一起包括柔性电路。图20D示出了具有多个电极阵列2002的球囊导管2000的实施例,该多个电极阵列2002包括围绕球囊2005的外表面以螺旋图案布置的电极2010和连接线2015。连接线2015可以耦接到RF功率源或能量源(诸如发生器)。每个电极阵列或电极组可以具有单独的连接线,使得每个电极阵列或组可以由RF功率源单独控制。

根据若干实施例,球囊电极导管的球囊包括至少一组对角线或周向取向的电极,该电极由并联连接的多个电极元件形成,其中电极组在其最长方面中的大小小于或等于组织中热传导或扩散的特性长度。更大的损伤需要更多的功率,因此需要更大的电极表面积以将电流密度保持在可接受的水平内(例如,>3mm

图20E示出了球囊导管2000的球囊2005的实施例,其包括彼此偏移180度并沿球囊2005的表面纵向间隔开的四个单独电极构件,以便提供期望的消融或治疗模式,该消融或治疗模式被设计成提供增加的血管周围治疗,同时减少血管壁创伤或损害。在一些实施例中,电极2005表现出周向纵横比。在一些实施例中,电极阵列相对于动脉或其他体腔的轴线在对角线方向上取向,从而增加损伤的周界范围,同时当球囊2005处于塌缩、收缩配置时避免电极2010之间的干扰。消融组织的更高频率和范围提高了神经调节或其他组织调节(例如,消融、去神经)的程度。通过由电极生成的加热产生的损伤的形状反映了电极阵列的电极的周向取向度。交错的、倾斜的损伤可以有利地沿血管紧密地包裹(例如,间隔开2mm和8mm之间,例如,2mm、3mm、4mm、5mm、6mm、7mm、8mm)以增加损伤的周向覆盖而不重叠损伤。

球囊导管(例如,球囊导管400、2000)的电极可以是圆形、矩形或椭圆形的。在一些实施例中,电极可以是盘形的。在一个实施例中,电极可以由选自列表的金属构成,该列表包括但不限于金、铂、不锈钢、金或铂的层状复合物、镀金或铂的基础金属,基础金属诸如铜、不锈钢、镍。在一些实施例中,连接线2015与一个或更多个电极2010连续。在其他实施例中,连接线2015可以通过诸如熔焊、焊接、卷边或型锻的方式附接到(一个或更多个)电极2010。

在一些实施例中,球囊材料是选自材料列表的低顺应性材料,包括但不限于:PET、聚酯、聚烯烃、尼龙、高硬度聚氨酯和聚醚嵌段酰胺。在一些实施例中,球囊材料由顺应性材料构成,诸如低硬度聚氨酯、科腾、乳胶、硅氧烷和/或热塑性弹性体。

球囊消融导管系统可以有利于肝动脉分支周围(例如,在肝动脉分支的壁内,诸如在内膜、中膜或外膜内)进行去神经,因为肝动脉分支(例如,肝总动脉)可以被一个或更多个球囊闭塞,并然后冷却剂可以在消融区中循环(例如,通过球囊的管腔)。在各种实施例中,球囊消融导管有利地促进通过较大的电极表面积(例如,通过可以包括在球囊上的大电极大小实现)的较高功率净能量和增加的沉积时间(其可以由闭塞到肝动脉的流动更长时间段的能力所允许)两者。在一些实施例中,即使通过较高的功率增加能量密度,通过冷却剂的流动也减轻内皮壁损害的风险。因此,可以使用比用于去神经其他血管或器官的去神经系统更高的功率能量输送(例如,高约40%至50%的功率),而没有损害肝动脉内皮区的风险,因为保持低于高温的温度距肝动脉管腔至多1mm。

在一些实施例中,主动冷却的球囊导管用于消融靶血管系统。足以将高流量冷却剂输送到冷却元件的泵可用于促进主动冷却。在若干实施例中,将适当流速(例如,在约100mL/min和500mL/min之间)的冷却剂输送到4Fr至6Fr的球囊导管中以保持适当温度的驱动压力范围在约25psi和约150psi之间。可以基于球囊内的实际温度来调整流速。在一些实施例中,球囊中所期望的冷却剂温度在约5℃和约10℃之间。在一些实施例中,温度测量设备(例如,热电偶)包括在球囊内以持续监测冷却剂温度。可以基于冷却剂的期望温度和实际温度之间的差来增加或减少泵输出。

图21示出了主动冷却的球囊导管2100的实施例。球囊导管包括具有管腔的主轴2102、耦接到主轴2102的远端并与管腔流体连通的球囊2105、围绕球囊2105的周界设置的多个电极2110、耦接到电极2110并延伸到主轴2102的近端的电极引线2112,以及出口管2115。可以通过泵(未示出)将不导电冷却剂溶液泵送到球囊2105的入口中,并且不导电冷却剂溶液可以通过出口管2115离开球囊2105。主轴2102可包括绝缘护套或罩盖2120以防止或抑制热传递。不导电冷却剂溶液可有利地为球囊2105上的电极2110提供冷却,同时还使邻近组织免受RF能量的影响。球囊导管2100的结构和功能特征中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图22A至图22C示出了球囊导管2200的另一实施例的远端部分,其被配置为向球囊导管2200的电极2210提供冷却。在所示实施例中,球囊导管2200是包括球囊2212的管,球囊2212在注入冷却剂时扩展,拉紧内部隔膜2215,该内部隔膜2215将来自至少一个入口的冷却剂的流动2214(由箭头示出)引导至少一个出口。以电极2210为中心的圆形表面可以包括热传导表面2220,而导管2200的其余部分可以包括隔热材料,该隔热材料被配置为在行进到靶消融区域时防止或抑制冷却剂2214的升温。当冷却球囊2212注入冷却剂时,球囊2212扩展,从而将电极2210和冷却球囊2212压靠在血管壁上。在一个实施例中,冷却剂在靶消融区域处冷却血管壁,从而防止或减少过度血管壁损害的可能性。球囊导管2200的结构和功能特征中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

如图23所示,本公开提供了通过调节(例如,消融)邻近血管腔23901的组织来治疗患者23900的方法和系统。所示治疗系统的实施例包括消融导管23902,该消融导管23902在其远端承载一个或更多个电极23903以通过将射频能量传递到组织中来消融组织。消融导管23902包括具有近端和远端的伸长导管轴。第一电极23903可以定位在伸长导管轴的远端处或附近,并且被配置为将射频能量传输到邻近血管腔23901的组织中。第一电极23903可包括适于用流体(例如,液体或气体)填充的基本上封闭的中空空间。治疗系统进一步包括被配置为调控向消融导管23902的功率输送的控制器23904(例如,具有一个或更多个处理设备的RF发生器)、被配置为将功率从控制器23904传输到消融导管23902的第一电缆23905、被配置为放置成与患者23900电接触的第二电极23906,以及被配置为在使用时将功率从第二电极23906传输到控制器23904的第二电缆23907。

在一些实施例中,该系统包括连接器23908和23909以将一根或多根电缆23905耦接到消融导管23902。在该系统的一些实施例中,第二电极23906可以沿第一电极23903的近侧或远侧的消融导管23902的轴定位并且安装在该轴上。在这种情况下,第一电缆23905和第二电缆23907可以组合成单根电缆。虽然在肾血管内示出,但是消融导管23902可以适于被输送到与肝脏、胰腺、脾脏、小肠、心脏结构(诸如左心室或右心室、左心房或右心房、心耳、肺静脉、肺动脉、瓣膜环或心脏隔膜)和/或其他器官或组织(诸如肝总动脉、胃十二指肠动脉、肠系膜上动脉、脾动脉或腹腔动脉分支)相关联的血管,并定位在该血管内。

在各种实施例中,通过内部冷却实现促进从组织到血流的热传递和降低电极内部温度的手段。在一些实施例中,射频能量输送设备(例如,RF消融导管)包括多个电极,其中每个电极具有适于填充有流体的中空腔以促进冷却(例如,对流冷却)。在图24所示的实施例中,被配置为被导航以用于插入身体空间(诸如血管)中的消融导管24002可包括具有近端和远端的伸长轴。定位在伸长轴的远端附近的电极24003可以被配置为将射频能量24001传输到血管壁24000中。电极24003内的基本上封闭的空间24004被配置为填充有流体以促进从血管壁到血流的热传递。在另一实施例中,热量被传递到其他较冷的组织区。在一个实施例中,基本上封闭的空间24004的延伸部可以提供增加的面积以进一步促进冷却。基本上封闭的空间24004可以包括电极24003内的中空腔。

电极24003的冷表面(即,与正在流动的血液接触的表面)可以被配置为大于和远离电极24003的热表面(即,与组织接触的导电表面)。冷表面和热表面通常可以是电极24003的径向相对表面。冷表面也可沿导管24002轴向位移以沿血液环境24006提供更大的表面积。基本上封闭的空间24004可以在制造期间预先填充流体,或在使用期间由临床专业人员填充。基本上封闭的空间24004内的流体可以被配置为接触热表面和冷表面两者,以允许流体在热表面和冷表面之间循环(如循环箭头24007所示),从而提供通过电极24003的对流热传递。

在使用中,消融导管24002可以推进到血管(例如,肝动脉或腹腔动脉的其他分支)中,其中电极24003邻近有待被消融或以其他方式调节的靶组织24000定位。射频能量24001可以通过电极24003传输并且在邻近电极24003的组织24000中消散。然后,组织24000可以经受增加的电流密度并且经历加热的增加。然后可以将在组织24000中生成的热量24008中的一部分热传导回到电极24003中。热量24008传导通过电极24003的热表面。通过对流将热量24008从电极壁传递到空间24004内的内部流体。基本上封闭的空间24004内的流体通过在基本上封闭的空间24004内循环而提供对流热传递,从而将热量从热表面承载到冷表面。继而,流体将热量传递到冷表面。然后,所产生的热量24005通过传导传递穿过冷表面,并最终通过对流传递到血液24006中。消融导管24002的结构和功能特征(例如,流体填充电极)中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图25示出了根据本发明的实施例的电极配置的各方面。例如,电极2500的壁被配置为薄的并且流体腔室被配置为大的。在一些实施例中,电极2500的壁厚度小于0.020英寸厚(例如,小于0.020英寸厚、小于0.015英寸厚、小于0.010英寸厚、0.001英寸-0.002英寸厚、0.005英寸-0.010英寸厚、0.010英寸-0.020英寸厚、0.015英寸至0.020英寸厚、其重叠范围,或所述范围内的任何值)。在一些实施例中,壁的至少一些部分可以大于0.020英寸厚。电极2500的直径可以在1mm-2mm的范围内。在一些实施例中,直径在2mm-4mm之间。在其他实施例中,直径大于4mm。可以选择电极2500的材料以提供高导热性和导电性、生物相容性和耐腐蚀性。合适的材料包括但不限于:铂、铂-铱合金、金、不锈钢、钴合金、铬镍铁合金、MP35N、埃尔吉洛伊合金(Elgiloy)、钯和/或其他金属和合金。可以高度抛光电极2500的外表面以减少蛋白质污垢。内表面可以是平滑的或有纹理的以便增加热传递。

在一些实施例中,电极2500包括填充孔2501,流体可通过填充孔2501引入基本上封闭的空间2502中。在一些实施例中,预填充空间或腔室并然后密封填充孔2501。在一些实施例中,提供小的加注管或喷嘴以用于在使用时填充基本上封闭的空间2502。填充孔2501可以保持敞开,只要它足够小以防止流体的大量损失或血液与流体的混合。在一些实施例中,存在第二孔以允许气体在填充过程期间逸出。在一些具体实施中,在真空下引入流体以促进完全填充。在一些具体实施中,填充可以通过导管轴内的通道或空间来完成。

在一些实施例中,基本上封闭的空间2502对应于电极2500的长度。在一些实施例中,基本上封闭的空间2502包括超出电极2500的导电部分的延伸部2503,其被配置为提供增加的冷表面积以促进冷却。图26示出了安装在消融导管轴2601的远端部分上的电极2600的示例。电极2600具有基本上封闭的空间2602和延伸部2603。基本上封闭的空间2602可以通过绝缘体2604与身体电绝缘,以减少或消除接近加热组织的延伸部2603的加热。这提供了额外的冷表面积以用于增加向血液的热传递。

电极内的流体可以是任何合适的流体。可根据粘度、热容量、热稳定性、缺乏腐蚀性、灭菌相容性和生物相容性来选择流体。在各种实施例中,流体的粘度小于100cP(厘泊)。在一些实施例中,流体的粘度小于10cP。在一些实施例中,流体的粘度小于2cP。流体的热容量可以大于约4J/gm(焦耳/克分子)。在一些实施例中,流体的热容量可以大于约1J/gm。流体可以是热稳定的、可消毒的、无腐蚀性的和/或无毒的。合适流体的示例包括但不限于水、盐水、醇、二甲基亚砜和甘油。可以使用流体的混合物。颗粒或其他流体的分散体可用于进一步增加热传递。颗粒的示例包括胶体银、油、盐、糖和/或类似物。

在各种实施例中,流体的运动可以是被动的(例如,自由对流)。为了提供对流热传递,流体流过热表面和冷表面。由于流体的热扩展而发生自由对流。在重力的影响下,热的、密度较小的流体趋向于上升,而冷的、密度较大的材料趋向于下降。这可以有利地通过自由对流使循环模式发展而不需要主动循环机制。电极2500、2600的结构和功能特征中的任一个可以结合到本文描述的其他球囊导管或消融设备的电极中。

在一些实施例中,通过使用装置诸如机械搅拌元件或搅动器2700来强制流体的运动。图27详细描述了消融导管的实施例,该消融导管包括定位在基本上封闭的空间2701内的搅动器2700,以促进电极2702内的对流热传递超过仅由自由对流提供的热传递。搅动器2700可以被配置为在内表面处提供高速度梯度,从而提高对流系数并增加热表面和冷表面之间的电极2702内的流体循环。循环模式通常可以沿电极2702的轴线旋转。在一些实施例中,电极2702或搅动器2700的内表面可以以在轴向方向上提供循环分量的方式成形。可以包括基本上封闭的空间2701的延伸部2703以提供更大的表面用于热传递。

在各种实施例中,搅动器2700是隔离搅拌器,其被配置为相对于基本上封闭的空间2701移动。搅动器2700可具有翅片、叶片或凹槽或其他纹理特征以提高流体速度。可以存在流体空间的延伸或远程储存器或延伸部2703,以提供更大的表面用于热传递。搅动器2700通常可以是球体的(spherical)或球形的(ball shaped)。在一些具体实施中,搅动器2700可以是伸长的。图27的消融导管的结构和功能特征(例如,搅动器2700)中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图28示出了消融导管的实施例,其中搅动器2800是隔离搅动器,其被配置为相对于电极2802内的基本上封闭的空间2801移动。隔离搅动器2800的各方面的示例包括:

a)搅动器2800可以是具有与位于基本上封闭的空间2801内的流体不同密度的预定形状的球,由此由于搅动器2800的惯性,通过自然生理运动或通过一些主动装置移动储存器将使球在基本上封闭的空间2801内移动,从而使流体流动。

b)球可以是气泡。

c)气泡可以是不混溶的流体,其示例包括:油、水、脂肪、甘油三酸酯、液体铟合金、镓、气体等。

d)与周围流体相比,不混溶流体可以是更高密度的溶液或悬浮液。溶质或分散体的示例包括盐、糖、螯合的碘盐诸如射线照相造影剂、玻璃,金属聚合物或陶瓷纳米颗粒等。

e)搅动器2800可以由在身体内部或外部生成的电磁场驱动的磁性材料构成。磁性材料的示例包括:铁氧体(ferrite)、铁、钴或镍及其合金。在一些具体实施中,电磁场可由放置在患者体内、身上或附近的线圈2803生成。线圈2803可以由控制器2804供电。

f)磁搅动器2800可以由接近搅动器2800的导管内生成的电磁场驱动的磁性材料构成。内部生成的磁场可以由接近电极2802放置的线圈2805生成。线圈2805可以由放置在身体外部的控制器2806供电。

g)球或气泡可以是铁磁流体。铁磁流体是可以受磁场影响的磁性液体。

h)搅动器2800可以由声学或超声换能器生成的声场驱动。换能器可以接近电极2802结合到导管中。在其他实施例中,换能器可以在身体外部。

i)声场可直接作用于流体,通过超声流促使其流动。超声流是一种现象,凭借该现象,流体分子在声场影响下的运动中的不可逆性引起宏观流动发生。

j)搅动器可以是流体喷口。

在图28的所示实施例中,导管包括单个搅动器2800。在其他实施例中,导管可以结合多个搅动器以进一步促进热传递和电极冷却。在各种实施例中(例如,如图28所示),搅动器2800可以在外部激活。在该示例中,伸长导管2804可具有近端和远端、位于远端附近的电极2802、位于电极2802内的基本上封闭的空间2801,以及位于基本上封闭的空间2801内的搅动器2800。搅动器2800可以附接到耦接元件2805。耦接元件2805可以延伸通过导管轴2804以连接到外部驱动源或致动器(未示出)。搅动器2800的致动可以是旋转运动或轴向平移。各方面包括以下一项或多项:

a)导管2804可具有温度感测部件。温度感测部件可以提供流体的搅动。

b)搅动器2800可以由单独的轴驱动。

c)搅动器2800可以相对于基本上封闭的空间2801的大小更大或更小。在基本上封闭的空间2801的表面上可以存在翅片或纹理以增加对流热传递。

d)搅动器2800可以是由致动器驱动的旋转或平移的电线、线圈、电缆或轴。

e)致动器可以接近搅动器2800。

f)致动器可以是线性或旋转微型电动机。

g)致动器可以在身体外部。

h)致动器可以由在身体外部传输或生成的场驱动。

i)搅动器2800和/或导管轴可包括一个或更多个温度测量元件(例如,热敏电阻器、RTD、热电偶、光学传感器等)。

j)致动器可以是超声致动器。

在一个实施例中,电极2802、封闭的流体空间和流体可以一起被配置为用作热管。合适的热管流体包括水、醇、碳氟化合物、全氟冠醚、氟利昂、某些有机溶剂(例如二甲基亚砜)、汞和/或类似物。热管可以在部分真空下操作以实现期望的操作温度范围。热管本身可以被计成将冷凝流体从冷表面引导或导向回热表面。这可以通过开槽、纹理化图案化或涂覆热管的内表面来实现。还可以有单独的通道或管路以用于返回冷凝的液体。冷凝的液体也可以通过多孔介质区或热管的一部分内的芯吸(wick)来运输。图28的消融导管的结构和功能特征(例如,搅动器2800和热管配置)中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图29A至图29D示出了各种热传递机制对从组织到血液的温度和热传递的影响。粗线表示温度与跨电极的距离。垂直线表示包括组织到电极界面2900、电极到内部流体界面2901和2902以及电极到血液界面2903的边界表面。

热传递可以通过热通量来表征,热通量是每单位面积跨表面传递的热量,以瓦/平方厘米(Watts/mm

图29A示出了简化的理想化电极的温度分布,该电极表示为在血液2904和组织2905中具有均匀温度的均一材料的无限大板。可以看出,在这种情况下,温度2906跨电极线性变化,仅通过组织和血液的温度提供恒定的热梯度。

图29B示出了真实固体电极的温度分布。在这种情况下,组织的温度由组织的RF加热和从组织传递的热量之间的平衡来确定。由热传导部分地通过电极发生热传递,其速率由电极材料的热导率和电极的几何形状决定。沿跨电极2907、2908、2909的路径的温度分布可以是非线性的,并且热梯度2910将是非恒定的。只要组织中的RF功率耗散不太高,在组织电极界面2900处的组织温度可低于更深组织的峰值温度。

图29C示出了与图29B相比,当使固体电极设备输送更高量的功率时对组织温度的影响。在这种情况下,穿过电极的热传递不足以防止接近电极的组织过热。

图29D示出了本文公开类型的流体填充消融导管电极的实施例的温度曲线。在该示例中,流体填充空间的内部对流热传递跨电极壁提供更高的温度梯度,从而增加热传递,引起电极界面处的更低组织温度或更高的可允许RF功率水平。

在一些实施例中,基本上封闭的空间是可扩展空间。在一些实施例中,可扩展空间由球囊形成。在一些实施例中,球囊被配置为促进热传递流体在空间内的流动。在一些实施例中,球囊扩展以基本上闭塞血管。在一些实施例中,消融导管的基本上封闭的空间不在电极内,而是在其上安装电极的球囊内。

图30A和图30B示出了球囊消融导管的实施例。在一些实施例中,允许球囊3002内的基本上封闭的空间3001以受控速率泄漏流体。在一些实施例中,流体泄漏的热传递速率小于从球囊3002到周围组织的热传递速率。在其他实施例中,从球囊3002到周围组织的热传递速率是经由流体泄漏传递的热量的补充。在一些实施例中,泄漏由延伸通过球囊3002的导丝管腔3004中的开口3003提供。

在一些实施例中,流体以比以恒定速率输送相同平均流速的速度更高的速度脉冲通过入口射流3005。在一些实施例中,通过高速、低流速射流提供流动。射流可以被配置为基本上在整个球囊3002中引起循环。可以通过同一管腔(例如,管腔3007)交替地注射和移除循环流动。图30A和图30B示出了具有阀3008的实施例,阀3008被设置成在注射期间部分地阻塞输送管腔3007,以提供高速、低流量射流,同时允许在收缩期间球囊3002的低阻力排空。在一些实施例中,阀3008是瓣阀或锥形阀,其在注射期间基本上密封管腔3007但在收缩期间变形或塌缩以提供减小的阻力。在一些实施例中,阀腰部3009安装在延伸通过球囊3002的导丝管腔3004上。

在一些实施例中,高速射流由孔口提供。孔口的大小可小于0.01英寸、在0.001英寸至0.005英寸、在0.005英寸至0.010英寸,或大于0.01英寸。在一些实施例中,孔口不是圆形的。非圆形孔口可具有小于0.01英寸、0.001英寸至0.005英寸、0.005英寸至0.010英寸或大于0.01英寸的水力直径。图30A和图30B的球囊消融导管可包括沿球囊3002的外表面(未示出)定位的多个消融元件(例如,电极)。根据若干实施例,(一个或更多个)孔口可被定位成朝(一个或更多个)电极的后表面直接引导(一个或更多个)射流。例如,可以定位单独孔口以在每个单独电极处引导单独喷流。图30A和图30B的消融导管的结构和功能特征(例如,喷口、孔口、阀、管腔)中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图31示出了具有远侧扩展腔室3100的球囊消融导管的实施例。球囊3101支撑消融元件(未示出),消融元件可包括多个电极,例如,如图4和图12A至图12B所示。球囊消融导管包括导丝管腔3102。在一些实施例中,球囊3101膨胀以接触组织3103,从而完全阻塞血液流过血管。在其他实施例中,球囊3101基本上(但不是完全地)阻塞血液流过血管。流体3104通过流体输送管腔3105输送。在一些区中,热量从热组织传导到球囊流体3104中,球囊流体3104具有低于热组织温度的中间温度。在其他区中,热量从球囊流体3104传导到较冷的组织区域。远侧扩展腔室3100可以扩展和缩回以容纳球囊流体3104以在球囊3101内提供对流。在一些实施例中,可在扩展腔室3100和组织3103之间发生额外的热传递。

在一些实施例中,脉冲输送流体引起球囊3101的体积增大和减小。在一些实施例中,提供扩展腔室3100以容纳流体3104和/或减小压力和直径波动。在一些实施例中,扩展腔室3100将球囊3101保持在恒定直径,以保持安装其上的消融元件与组织的接触。扩展腔室3100可以设置在球囊3101的远侧、近侧、内部或外部。在一个实施例中,扩展腔室3100是单独的顺应性球囊。在一些实施例中,扩展腔室3100在伸长轴内。在一些实施例中,通过球囊3101内的可压缩材料提供顺应性。可压缩材料可以是气体,诸如空气、CO

图32是远侧放气阀的剖视图。在一些实施例中,通过适应球囊3202的远侧腰部3201或远侧联结来提供受控流体泄漏3200。在其他实施例中,受控泄漏由导丝管腔3204中的开口3203提供。经过所述泄漏的流体可以通过导丝管腔3204的开口3203或向近侧通过导丝管腔3204进入体内或允许其离开身体。在一些实施例中,提供阀以控制通过导丝管腔3204的流体流动的速率和/或方向。在一些实施例中,收集流体以再循环通过系统。阀可以是具有重叠节段3205的单独元件。在其他实施例中,阀可与球囊3202一体。在一些实施方式中,阀可以形成滑动界面3206。阀可以具有颈缩区3207,如图32所示。图32的远端放气阀的结构和功能特征中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

一些配置缺乏有助于冷却非阻塞性消融系统的自发血流。与球囊消融系统的一个实施例相关联的能量平衡的示例在下面的表1中示出(值是非限制性值并且可以根据期望和/或需要而变化)。

较低的体积和流速本质上更安全,并因此需要较不复杂的控制和安全系统。小于约10mL-20mL的不受控制的手动注射是常见的并且通常被认为是安全的。虽然该流速足以将多余的热量带离球囊,但是传统的灌注系统不能在低流速下提供足够的搅拌或搅动以使整个球囊内的温度均衡。本文公开的导管的若干实施例有利地在低流速下提供充分的搅拌或搅动,以通过改善的流体输送装置使整个球囊内的温度均衡。

在一些实施例中,可以提供通道以允许血液被动灌注通过球囊。在一些实施例中,被动血液灌注将热量带离球囊。在一些实施例中,可以通过机械、液压、气动或其他手段来激励流动。流动激励装置的各种实施例包括:流体部件、簧片、挡板、非线性液压机械元件、双稳态元件、微流体致动器、圆柱体、膜和/或悬臂。

在一些实施例中,射流被配置为在热传递腔室内夹带额外的流动。在一些实施例中,提供护罩以导引腔室流体经过喷射孔口。在其他实施例中,喷口是喷射件(ejector)或喷射器(eductor)的形式。作为利用高速、低流速射流以中等速度或流速夹带更大体积流体的装置,喷射件和喷射器在加工工业和蒸汽机车中是已知的。

图33A至图33D示出了球囊消融导管的流体喷射系统3300的实施例。所示实施例包括直径扩大的护罩、整流罩或主体,以通过夹带流体更有效地在球囊腔室内提供循环。喷射件的元件可包括:1)小直径喷射出口3301;2)引导环境流动经过喷口的开口3302;以及3)减少流动分离并提高效率的锥形的会聚/发散或文氏管形状的出口3303。在各种实施例中,流体喷射系统3300包括延伸构件3304。流体导引体可以由一个或更多个薄支柱或丝网突起3305支撑,该薄支柱或丝网突起3305支撑环形配置的中心元件(例如,类似于挤出模具辐架)。各种实施例可包括这些元件中的一个、一些或全部。图33A至图33D的流体喷射系统的结构和功能特征中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图34A和图34B示出了球囊消融导管的实施例,其具有用于夹带流体和促进循环的哨状装置。通过轴3401中的管腔3400输送的流体通过喷嘴3402形成射流。开口3403提供了要被夹带的周围流体的进入。开口3403可以具有喇叭形唇缘3404。喷嘴或孔口3402可以由阻塞装置3405形成。可根据期望和/或需要提供额外的管腔3406。在一些实施例中,球囊消融导管包括用于线上输送的导丝管腔3407。远侧导丝管腔3408部分可以是整体的或单独的部件。图34A和图34B的消融导管的结构和功能特征(例如,哨状装置)中的任一个可以结合到本文描述的其他球囊导管或消融设备中。

图35A和图35B示出了阻塞性消融导管3500的示例周围的温度分布的模拟。在一些实施例中,血流3501受阻。组织3502由电极3503加热。热量从热组织传递回球囊3500中。热量也从球囊3500传递到周围组织3502的较冷区中。在一些实施例中,通过增加球囊3500的长度超出消融区来获得增加的热传递。例如,球囊的长度可以被配置为延伸超出消融区(向近侧、向远侧或在两者之间分开)5%-100%(例如,5%-20%、20%-50%、50%-100%、50%-80%、75%-100%、其重叠范围或大于100%),或向近侧、向远侧或在两者之间分开1cm-5cm。在一些实施例中,轴或其中的各种管腔或腔室提供导管与周围血液/组织之间的热传递,从而用作(一个或更多个)远程热传递部件。

在一些实施例中,球囊3500可具有安装到其外表面的多个电极或其他消融元件,例如,如图4和图12A至图12B所示。模拟预测单个损伤激活的平衡条件。热传递受到球囊表面积和组织热传递性质的限制。同时或快速连续激活的多个电极通过增加热表面积同时减少可用于热传递到组织中的冷表面积来增加到球囊中的热传递。总能量大约与多路复用电极的数量成比例。例如,如果单个电极在2分钟内输送180焦耳的能量,则4个电极将输送720焦耳。使用下面概述的假设并忽略球囊流体的初始焓变,这将需要4*2.1mL=8.4mL的灌注流体。

在一些实施例中,多路复用电极所需的额外热传递可以有利地通过以下中的一个或更多个来提供(或偏移):

·增加球囊表面积

·提供远程顺应性/热传递元件

·以低平均流速注入流体以消除热量

·朝每个电极的后表面直接引导一个或更多个射流。

在一些实施例中,管腔温度被限制为小于50摄氏度。在其他实施例中,管腔温度被限制为45摄氏度或47摄氏度。在一些实施例中,管腔温度是受限的,除了接近消融电极的占地面积之外。可以根据期望和/或需要来瞄准或使用其他温度。本文描述的电极冷却结构和技术(例如,具有用于流体或球囊冷却实施例的基本上封闭的空间或腔室的电极)可以在本文描述的导管和系统中的任一个中结合或实施,以用于在治疗期间冷却能量输送元件。

根据若干实施例,肝总动脉是使用RF电极导管的消融靶。对于一些受试者,肝总动脉的长度可限制可能的消融部位的数量。在一些实施例中,使沿肝总动脉的纵向长度产生的损伤的大小最小化增加了血管内可用的消融部位的数量。为了减小平行于血管纵向轴线的损伤的宽度,同时保持足够的损伤深度并使暴露于血流或冷却流体的电极表面最大化以进行冷却,RF电极导管的一个或更多个电极可以被配置为具有大于或等于其长度的直径。例如,如果电极的直径通常为6弗伦奇(0.080英寸),则电极的长度可以是0.080英寸或更小。

根据若干实施例,期望损伤大小的一致性,而不依赖于血管大小的变化,血管大小的变化可以针对不同受试者的相同靶血管而变化。例如,肝总动脉的内直径可以从3mm至7mm变化。另外,损伤形成中的重叠可能是不期望的。如果靶治疗长度足够短(例如,由于患者解剖结构)并且需要沿血管长度形成多个间隔开的损伤,则可能难以避免或防止损伤形成中的重叠。

根据若干实施例,可以协调和定位损伤以提供连续的倾斜周向损伤,而不会在任一个位置或横截面切片处产生周向损伤。在一些实施例中,控制损伤的位置和程度。损伤可以相隔180度放置并沿血管长度轴向位移。在一些实施例中,控制损伤的周向和轴向范围,使得损伤的边沿恰好在能量输送元件(例如,电极)位置的任一侧上的90度的位置处交叉。在一些实施例中,参考电极可以定位在损伤之间以测量温度或阻抗以检测损伤交叉。在一些实施例中,损伤间隔开1mm-50mm之间(例如,1mm、5mm、10mm、12mm、15mm、20mm、25mm、50mm及其重叠范围)。损伤可以重叠或不重叠。在一个实施例中,产生可以重叠或不重叠的多个焦点或消融部位以生成热创伤线。焦点或部位可以间隔开0.2mm至20mm(例如,0.2mm至2mm、5mm至15mm、10mm至20mm、1mm至12mm,或其重叠范围)。在一些实施例中,损伤是非周向的。在一些实施例中,损伤是周向的,包括偏移的周向、部分周向和完全周向。在各种实施例中,损伤可以间隔为电极直径的1至15倍。例如,对于直径为1mm或2mm的电极,电极可以间隔1mm至30mm(例如,1mm至12mm、5mm至15mm、10mm至20mm,及其重叠范围)。可基于血管直径调整损伤间隔。消融的数量(或消融位置的数量)也可以基于血管直径或基于针对特定损伤间隔的期望剂量反应(例如,完全剂量-反应率)而变化。

因为单独的导管末端温度和阻抗可能是组织温度或损伤大小的不良指标,所以可以在消融期间测量末端温度和阻抗两者,以便监测损伤发展和/或确认损伤形成,从而提供对靶神经去神经的确认。

最初,末端温度升高并且阻抗减少。组织电导率随温度升高至某个阈值(例如,大约80摄氏度)。高于该阈值温度,组织可能开始收缩和干燥,并且阻抗可能开始增加而不是减少。温度和阻抗的解耦可以用作损伤形成的指示以确认去神经。如果阻抗开始增加而末端温度没有对应降低,则可以将这点用作终点或用作损伤形成的确认。温度和阻抗的解耦时间也可以用作反馈以触发能量输送协议中的其他变化,诸如降低功率或增加冷却。

在一些实施例中,可以通过以90度间距而不是以180度间距径向间隔开消融部位来防止或抑制血管的完全周向消融。图36示意性地示出了以180度间距和90度间距执行的消融。如图所示,即使180度间距沿血管的长度轴向间隔开,消融损伤的“尾部”也可能在血管的两侧上潜在地重叠(假设每次消融形成延伸约180度血管周界的损伤),从而形成完整的周向损伤。当使用90度间距时,邻近损伤之间可能潜在地存在重叠,但是由多个损伤组成的整个损伤的完全血管周向性的风险降低。单点或多点RF消融导管可以促进消融部位径向间隔大约90度和至少一个电极长度的纵向间隔。在一些实施例中,消融部位径向间隔90度引起不太完全的血管周向消融(例如,75%-95%、70%-90%、65%-80%、75%-90%,或其重叠范围)。在一些实施例中,治疗部位(例如,消融部位)可以周向间隔开120度(例如,如果能量输送设备包括三个电极)。在其他实施例中,替代地使用180度间隔而不是90度间隔或者使用180度和90度间隔两者。

根据若干实施例,本文描述的系统和方法有利地增加血管周围消融大小和神经冲击,同时减少血管壁创伤和邻近结构涉及。例如,对于RF电极实施例,电极形状和能量输送参数可以被设计成最大化或增加血管周围消融面积和神经冲击,同时最小化血管创伤和邻近结构涉及。在各种实施例中,使用基本上由单个电极组成的能量输送设备。在其他实施例中,使用基本上由两个和仅由两个电极组成的能量输送设备。在一些实施例中,使用基本上由四个和仅由四个电极组成的能量输送设备。在其他实施例中,使用基本上由三个和仅由三个电极组成的能量输送设备。在其他实施例中,使用基本上由五个和仅由五个电极组成的能量输送设备。

参考图37A和图37B,消融模式可以有利地增加整个血管周围消融体积,同时保持很少或没有对与消融构件(例如,电极、换能器)接触的血管壁的部分的热损害或内皮化(例如,小于20%的平均最大血管创伤周长、没有内部弹性椎板破坏、没有动脉夹层,和/或没有临床上显著的新内膜形成、没有长期血管狭窄、没有周向血管壁创伤)。图37A示出了消融图案的一个实施例,该消融图案包括四个间隔开的消融位置3705A-3705D。消融位置以相等的距离X间隔开,并且每个消融位置与下一个位置偏移180度。在一些实施例中,位置之间的间隔由最小阈值确定,并且间隔不一定必须相等(恰好高于最小阈值间隔)。最小阈值间隔(损伤区域的中心点之间)可以在2mm和8mm之间(例如,在2mm和4mm之间、在3mm和6mm之间、在4mm和8mm之间、在3mm和7mm之间、2mm、3mm、4mm、5mm、6mm、7mm、8mm、其重叠范围,或该范围的任何值或在该范围内的任何值)。在一些实施例中,最小阈值间隔取决于靶血管长度的解剖学限制。例如,对于肝总动脉,根据若干实施例,间隔为4mm或6mm。关于图37A描述的间隔可用于本文描述的实施例中的任一个中的电极的间隔。对于具有部署配置的设备,间隔可以是当设备处于与血管壁接触的部署配置时的间隔。

图37B示出了通过在图37A中所示的四个位置处的消融形成的损伤区域3710A-3710D的示意图。如图所示,间隔和180度偏移的组合增加血管周围损伤混合以提供沿血管长度的更大的周向血管周围创伤,从而提高功效的可能性,同时避免周向血管壁创伤。电极大小、功率、持续时间和接触水平的因素也可以有助于功效。根据若干实施例,单独消融点和随后的损伤区域受到电极大小和形状、消融系统所应用的能量算法、血管直径、血管壁厚度和血流流速的影响。消融点之间的间隔促进血管壁和血管周围空间中的单独损伤区域的混合或分离。根据若干实施例,增加消融点之间的空间减少(例如,最小化)损伤区域混合,同时减小消融点之间的空间增加(例如,最大化)损伤区域混合。当产生用于破坏血管周围神经的损伤区域时,期望减小(例如,最小化)血管壁内的损伤区域并增大(例如,最大化)血管周围空间中的损伤区域。损伤区域混合的优化提高了360度(或近360度)周向血管周围损伤区域的可能性,同时降低沿受治疗血管长度的周向血管壁创伤的可能性,从而避免了血管狭窄。沿血管长度的360度周向血管周围消融区域的频率可以增加,同时通过以下方法保持血管壁创伤恒定:在血管直径范围内将消融点之间的距离从8mm或更大(例如,8mm、9mm、10mm、11mm、12mm)减小至6mm或更小(例如,6mm、5mm、4mm、3mm、2mm),同时保持电极直径和长度(例如,电极面积在3mm

治疗血管诸如肝总动脉中治疗配置的一个实施例是通过在彼此纵向和/或旋转地间隔开的两个或更多个位置(例如、两个、三个、四个、五个、六个、七个、八个、九个、十个、六个至八个、四个至八个、多于十个位置)进行消融来治疗两个或更多个区域(例如,两个、三个、四个、五个、六个、多于六个区域)。在一些情况下,治疗两个或更多个区域可能是有利的,其中邻近区域彼此纵向和旋转地间隔开,诸如图37A所示。通过纵向并旋转地操纵电极,可以利用单个电极实施例产生这样的一系列治疗区域。在一些情况下,可能期望包括两个或更多个电极,这些电极趋向于沿治疗血管的管腔的相对象限(或侧面)对齐。如果期望多个非重叠的治疗区域,例如图37A中所描述的,则这可能是特别有益的。

根据若干实施例,本文描述的系统和方法利用单个电极、两个电极或四个电极,其大小和形状以及能量输送参数平均影响血管壁周界(例如,肝总动脉壁周界)的5%-30%(例如,5%-10%、10%-15%、15%-20%、20%-25%、25%-30%或其重叠范围)与在约5mm深度的血管周围周界的40%和80%之间(例如,40%-60%、45%-55%、50%-60%、60%-85%或其重叠范围),从而在每次消融时影响大量神经(通过实现更大的消融区域)同时在患者动脉内使用较少的完全消融以实现所期望的治疗效果。因为肝总动脉的长度平均仅为30mm,对于靶向肝总动脉的实施例,可以在肝总动脉的长度上执行的消融的数量受到约束。因此,当靶向该解剖结构同时仍然减少或限制对血管壁的损害时,减少消融的数量并提高消融的有效性是有利的。根据若干实施例,本文描述的RF消融导管保持适当的接触条件以启动或完成成功消融所需的能量循环,从而尽管血管长度受约束,仍减少了消融循环或放置位置的数量。可以基于特定血管或特定治疗的期望剂量-反应率来选择或调整消融循环或放置位置的数量、消融位置的间隔或其他参数。例如,消融循环或放置位置的数量(和/或位置的间隔)可以被选择为与最大或完全剂量-反应率相关或引起最大或完全剂量-反应率的数量(和/或间隔)。在一些实施例中,消融循环或放置位置的数量(和/或位置的间隔)被选择为与小于最大或完全剂量-反应率但仍有效的剂量-反应率相关或引起该剂量-反应率的数量(和/或间隔)。可以基于从先前消融获得的数据确定剂量-反应率。在一些实施例中,剂量-反应率基于空腹葡萄糖测量值、去甲肾上腺素测量值(例如,组织去甲肾上腺素水平测量值、组织阻抗测量值、血糖水平、甘油三酯水平、胰岛素水平、胰高血糖素水平、脂质水平、胃肠激素水平,或两个、三个或更多个因素、参数,测量值或特性的组合)确定。还可以基于除肝总动脉以外的血管的剂量-反应率来选择或调整各种治疗(例如,消融)参数。在一些实施例中,增加特定损伤间隔的消融数量会增加剂量-反应率。

图38A和图38B示出了治疗导管3800和定位方法的实施例,其结合使用损伤间隔指示器或标记3802,以在期望在多个位置定位治疗导管3800以产生多个治疗区域时帮助定位治疗导管3800,例如如图37A和图37B所示。所描述的损伤间隔指示器和技术可以结合到本文描述的神经调节设备(例如,治疗导管、消融导管或设备)的任何实施例中,由此神经调节设备(例如,治疗导管)将被重新安置以产生多个治疗区域3804。治疗导管3800包括多个电极3805(在这种情况下,两个电极),当处于部署配置时,其纵向间隔开分离距离L,并且在血管的相对侧上接触血管(例如,偏移约180度)。治疗导管3800可以包括两个损伤间隔指示器3802,并且可以在电极3805的远侧固定在治疗导管3800的远端部分上。损伤间隔指示器3802的间隔可以与电极3805的纵向间隔(当部署时)具有预定关系。在这种情况下,损伤间隔指示器3802的间隔是长度L(或2L)的两倍。如图所示,治疗导管3800包括在可偏转部分上的一个电极和在不可偏转部分上的一个电极;然而,在其他实施例中,两个电极3805可以沿可偏转部分或沿不可偏转部分定位。

在使用中,借助于荧光镜血管造影成像,治疗导管3800可定位在期望的治疗血管内。一旦定位在血管内的期望的第一位置(例如,如图38A所示),电极3805被激活以在电极3805与血管壁的接触位置处产生第一组治疗区域3804A,诸如损伤区域。通过将远侧损伤间隔指示器3802B定位在先前的近侧损伤间隔指示器3802A处,将治疗导管3800重新安置到第二位置(在这种情况下撤回)。一旦部署,电极3805第二次被激活以产生第二组治疗区域3804B(如图38B所示)。以这种方式,在血管的交替的相对侧上产生四个相对等间隔的治疗区域。

当治疗导管3800处于第一位置(例如,图38A中所示的位置)时,如果在荧光透视或血管造影图像上记录对应的解剖学界标(例如,邻近近侧标记3802A的侧枝)也可以是有利的。如果从该第一血管造影图像产生“路线图”,则可以仅使用在路线图“顶部上”的荧光透视成像将治疗导管3800重新安置到第二位置,而无需额外的对比度输送。不透射线的标记3802在数字减影血管造影术的情况下也可以是有用的。在该实施例中,当治疗导管3800处于其第一位置时,可以产生损伤间隔指示器3802的重像。可以在不需要额外的造影剂输送的情况下实现重新安置到第二位置。

虽然已经描述了在电极3805的远侧的两个损伤间隔指示器,诸如不透射线的标记带,但可以设想损伤间隔指示器也可以在电极的近侧,电极3805中的一个也可以用作损伤间隔指示器中的一个,只要电极是荧光透视可见的。也可以使用结合了无线电致密材料的导管轴的部分。在一些实施例中,损伤间隔指示器中的一个定位在电极3805的远侧,并且损伤间隔指示器中的另一个定位在电极3805的近侧。在一个实施例中,损伤间隔指示器可定位在治疗导管3800的球囊内、球囊的远侧和/或球囊的近侧。

在上述实施例中,其中两个电极在部署时处于纵向间隔布置,但在血管的相对侧上,损伤指示器间隔有利地是电极间隔的两倍。然而,在其中部署的电极可以纵向间隔开但在血管的同一侧上的一些实施例中,损伤间隔指示器之间的间隔有利地等于电极之间的间隔或该间隔的一半。电极之间的间隔可以根据血管直径而变化。在其他实施例中,前两个损伤区域3804A在血管的同一侧上,而后两个损伤区域3804B在血管的相对侧上,其中治疗导管3800旋转到血管的相对侧并被定位成使得远侧电极轴向地定位在前两个损伤区域3804A之间,这可以通过损伤间隔指示器之间的间隔和定位来确定。

根据若干实施例,期望受控电极部署以实现一致的电极定位、接触力和取向。本文描述了用于可控地释放和恢复多个弹性或可变形电极支撑构件的各种装置。在若干实施例中,用于可控释放和恢复电极的装置即使在电极非常靠近(例如,在5mm内)导引导管的远侧终点时也起作用。

在一些实施例中,RF能量输送系统输送不同持续时间的RF能量波。在一些实施例中,RF能量输送系统改变RF能量的幅值。在其他实施例中,RF能量输送系统输送多个RF波脉冲。例如,RF能量输送系统可以输送一系列RF脉冲。在一些实施例中,RF能量输送系统改变RF能量的频率。在其他实施例中,RF能量输送系统改变RF能量的任何一个或更多个参数,包括但不限于持续时间、幅度、频率和脉冲总数或脉冲宽度。例如,RF能量输送系统可以输送选择的RF能量,以最有效地调节(例如,消融或以其他方式破坏)肝丛中的交感神经纤维。在一些实施例中,RF能量的频率保持在恒定或基本上恒定的水平。

在一些实施例中,RF能量的频率在约50kHz和约20MHz之间、在约100kHz和约2.5MHz之间、在约400kHz和约1MHz之间、在约50kHz和约5MHz之间、在约100kHz和约10MHz之间、在约500kHz和约15MHz之间、小于50kHz、大于20MHz、在约3kHz和约300GHz之间,或其重叠范围。也可以使用非RF频率。例如,频率可以在约100Hz至约3kHz的范围内。在一些实施例中,施加的电压的幅度在约1伏特和1000伏特之间、在约5伏特和约500伏特之间、在约10伏特和约200伏特之间、在约20伏特和约100伏特之间、在约1伏特和约10伏特之间、在约5伏特和约20伏特之间、在约1伏特和约50伏特之间、在约15伏特和25伏特之间、在约20伏特和约75伏特之间、在约50伏特和约100伏特之间、在约100伏特和约500伏特之间、在约200伏特和约750伏特之间、在约500伏特和约1000伏特之间、小于1伏特、大于1000伏特,或其重叠范围。

在一些实施例中,RF能量的电流范围为约0.5mA至约500mA、约1mA至约100mA、约10mA至约50mA、约50mA至约150mA、约30mA至约400mA、约100mA至约300mA、约250mA至约400mA、约300mA至约500mA,或其重叠范围。所施加的RF能量的电流密度可具有以下电流密度:在约0.01mA/cm

在各种实施例中,发生器包括存储的计算机可读指令,其在被执行时提供特定治疗(例如,定制能量算法)以治疗由操作者选择的特定血管。因此,发生器使用单个RF能量输送设备促进具有不同治疗参数的RF能量的输送,所述单个RF能量输送设备被配置为跨不同的患者解剖结构提供类似或一致的性能(例如,一体适用)。发生器可包括适合于环境的安全控制:血管大小、流量、阻力和/或其他结构。存储的计算机可读指令(例如,软件、算法)可以被定制以递送优化的损伤深度和/或可以包括预编程的与操作者无关的治疗算法。在一些实施例中,提供了预编程的治疗过程,其可包括一个或更多个参数(诸如功率、治疗持续时间、靶位置的数量、靶位置的间隔、能量、脉冲或非脉冲等)。预编程的治疗过程可以基于血管尺寸(例如,直径、区段长度、壁厚度、患者年龄、患者体重等)。在一个实施例中,可以执行(例如,自动或手动)预先配置或预定的神经调节过程(例如,消融)以调节(例如,消融)一个或更多个神经。预定治疗过程或概况可包括完整或部分治疗路线或治疗点。该路线可以围绕血管的部分周界(例如,270度、220度、180度、90度或60度)或围绕整个周界延伸。

例如,在一些患者体内,靶调节(例如,消融)位置(诸如肝总动脉)可能不够长以允许完全调节(例如,消融)靶神经。在一些实施例中,可能期望使用单个能量输送设备治疗邻近肝动脉血管系统的部分或是肝动脉血管系统的部分的多个血管(例如,腹腔动脉、脾动脉、肝总动脉、肝固有动脉)。在一些实施例中,操作员可以选择要治疗的血管,并且发生器可以基于所选择的血管自动调整能量输送参数(例如,选择预定的能量算法)。例如,不同的血管可具有不同的流动特性和不同的直径。因此,不同的能量分布(例如,变化的功率和/或时间)可以与不同的血管相关联以实现期望的总能量输出。在消融实施例中,不同的能量分布为各种不同的血管提供相同的体积和/或周界损伤弧。可以根据在发生器内由控制器、处理器或其他计算设备确定的预先配置的能量分布(例如,基于存储在存储器中的指令的执行)手动或自动控制能量的输送。例如,如果标称血管直径(例如,肝总动脉)大于邻近血管直径,则可以将功率水平和时间调整得更低,因为血管壁和电极表面之间将存在更大的接触面积。在一些实施例中,可以将可允许的温度目标或限制调整得更高以补偿较低的血流容量以从电极移除热量。如果邻近动脉较大,则可以增加功率以在单个循环中调节(例如,消融)更大的面积。在一些实施例中,可以采用在较大的邻近血管中更多调节(例如,消融)部位的趋势。

在一些实施例中,可以使用恒温模式来调节从RF能量源(例如,发生器)输出的能量。恒温模式在达到下限温度阈值时打开能量源,并在达到上限温度阈值时关闭能量源(类似于恒温器)。在一些实施例中,使用恒温模式的消融导管系统需要反馈,在一个实施例中,该反馈由温度传感器提供。在一些实施例中,消融导管系统包括与能量源(例如,RF发生器)通信的温度传感器。在这些实施例中的一些中,当温度传感器记录温度已下降到某个下限阈值水平以下时,能量源开始输送能量(例如,打开),并且当温度传感器记录温度已超过预定的上限阈值水平时,能量源终止能量输送(例如,关闭)。

在一些实施例中,可以使用除温度之外的参数(诸如组织阻抗)来调节来自能量输送系统的能量输出。随着组织温度升高,组织阻抗可能增加。阻抗模式可以被配置为当达到下限阻抗阈值时打开能量源,并且当达到上限阻抗阈值时关闭能量源(以与恒温模式响应于温度的升高和降低相同的方式)。使用恒定阻抗模式的能量输送系统可以包括某种形式的反馈机构,在一个实施例中,该反馈机构由阻抗传感器提供。在一些实施例中,通过测量电压和电流并将电压除以电流来计算阻抗。

在一些实施例中,基于导管的能量输送系统包括具有第一电极的第一导管和具有第二电极的第二导管。将第一导管插入靶血管(例如,肝总动脉)内并用于输送能量以调节靶血管内的神经。第二导管可以插入邻近血管内,并且可以在两个电极之间测量阻抗。例如,如果第一导管插入肝动脉内,则第二导管可插入胆管或门静脉内。在一些实施例中,将第二电极置于受试者的皮肤上,并在第二电极和基于导管的能量输送系统的电极之间测量阻抗。在一些实施例中,第二电极可以定位在其他位置,该其他位置被配置为提供对靶组织的阻抗的基本上精确的测量。

在一些实施例中,阻抗测量值被传送到能量源(例如,脉冲发生器)。在一些实施例中,当阻抗记录阻抗已下降到某个下限阈值水平以下时,能量源开始生成脉冲(即,打开),并且当阻抗记录阻抗已超过预定上限阈值水平时,能量源终止脉冲(即,关闭)。

在一些实施例中,能量输送系统的能量输出由时间调节。在此类实施例中,能量输送系统的能量源输送能量持续预定的时间量,并然后终止能量输送持续预定的时间量。该循环可以在所期望的总体治疗持续时间重复。在一些实施例中,能量被输送的预定时间量和终止能量输送的预定时间量是经验优化的时间长度。根据若干实施例,根据阻抗控制能量输送并且当阻抗接近阈值水平时减少能量输送(或可替代地,无论阻抗水平如何,以时间调节能量)有利地提供热能聚焦在血管腔外围的位置处。例如,当能量脉冲终止时,血管腔可能由于血液的对流热损失而迅速冷却,从而保护内皮细胞免受热损害。在一些实施例中,外围组织中的热量(例如,靶神经所在的位置)经由热传导更慢地消散。在一些实施例中,连续脉冲趋向于引起外围(例如,神经)组织的优先加热。根据若干实施例,当组织的阻抗由于蒸发而上升时,电导率急剧下降,从而有效地防止或抑制能量进一步输送到靶组织。在一些实施例中,通过在组织阻抗上升到该水平之前终止能量脉冲(例如,通过阻抗监测或时间调节),可以避免这种有害影响。根据若干实施例,炭形成是组织蒸发和碳化的结果,其由阻抗、电弧和血栓形成的快速增加而引起。通过防止或抑制阻抗上升,可以避免组织炭化。

在一些实施例中,通过计算功率输出的时间积分(其可以预先与消融特性相关)来监测总能量输送,以跟踪疗法的进展。在一些实施例中,监测温度、时间和电场之间的关系,以使用阿伦尼乌斯(Arrhenius)关系获得消融电极周围组织内的温度场的估计。在一些实施例中,根据需要向消融电极提供已知的热输入,以便提供用于评估周围组织反应的已知初始条件。在一些实施例中,暂时冷却消融区的一部分,并且降低所得温度。例如,对于已经进行一段时间的血管内消融,可以预期组织内存在一些升高的温度分布。如果临床医生想要在给定时间(例如,t

在一些实施例中,可以监测参数诸如温度、红外辐射或微波辐射以评估输送至组织的能量的幅值,并因此估计诱导的神经调节的程度。热辐射(温度)、红外辐射和/或微波辐射的幅值都可以指示身体组织内包含的能量的量。在一些实施例中,随着组织冷却回到体温,预期在消融完成之后幅值减小,并且在特定点(例如,在血管腔表面处)测量的该减小的速率可用于评估消融的大小(例如,较慢的减小可对应于较大的消融大小)。本文描述的实施例中的任一个可以单独使用或组合使用以指示组织损伤区域的实际大小。

电极末端温度控制通常用作消融程序特别是血管内和/或心脏消融程序的控制变量和治疗进度指示器。该方法的一个潜在问题是尽管目标是在到组织中的特定深度处治疗组织,但温度感测元件(热电偶或热敏电阻)通常仅能够测量心脏或血管组织的表面温度。此外,由于电极本身内的温度梯度,温度感测元件趋向于测量电极的整体温度,而不是精确测量表面温度,该表面温度通常受到围绕电极的对流血流度数(其通常约为37℃)的强烈影响。

在一些实施例中,可以采用功率控制的消融算法来代替温度控制的算法,因为在(一个或更多个)电极处的温度并不总是对组织内达到的最大温度的良好指示。由于(一个或更多个)电极与血液接触,因此预期其温度不会显著升高超过37℃,并且可能远低于组织内的温度。电极温度可用于检测肝动脉的RF消融治疗期间的并发症。例如,如果电极温度上升太多(例如,高于80℃),这可表明发生了意外情况(例如,在动脉壁中已形成孔,以及电极直接插入组织中,或可替代地,血栓形成)。在若干实施例中,电极温度监测提供额外的控制冗余层以确保程序安全性,但是它不可以用作控制RF能量的主要反馈变量。

在施加RF能量期间,随着组织温度提高,阻抗的变化应该接近阻抗-温度曲线(例如,在30%的公差范围内),其中组织温度的提高应该对应于阻抗的轻微降低。如果阻抗降低太多(例如,从曲线>30%),则电极可能不与动脉壁接触,而是可以与血液基本直接连通,血液具有显著更低的电阻率。在这种情况下,重新安置导管以确保与动脉壁的良好接触。

如果阻抗保持高于预期,则可能需要通过增加RF功率水平来进一步加热组织。可替代地,如果阻抗远高于预期(例如,高于约200Ω-300Ω),则这可能指示血栓的形成。在此情况下,消融立即中止,因为组织血栓导致消融变得不可预测和不安全。

根据若干实施例,在血管消融期间仔细监测和控制电极和血管壁温度。可以监测消融深度。在若干实施例中,限制或降低在动脉壁处的温度以避免血管痉挛、血栓形成和狭窄。在各种实施例中,影响电极和被接触组织的对流冷却的能力可能是特别有利的。电极温度会影响损伤的深度。在一些实施例中,影响电极冷却的主要机制是来自经过电极的血流和接触的血管壁的对流冷却。肾动脉的消融具有550mL/min的流速。通过肝总动脉的流量为~100mL/min-200mL/min(例如,150mL/min),这比肾动脉中的典型流速(~550mL/min)慢得多,其中消融已经以最小的电极冷却执行或在没有电极冷却的情况下执行。因为肝动脉内的低流速和/或可变流速,本文提供了旨在增加电极冷却的方法和系统。图39示出了在肝总动脉中流速降低的情况下血管内消融的挑战的示例。图39示出了随着距电极表面的距离增加,RF加热减少的曲线图。在一些实施例中,电极表面处的减少的加热需要降低总功率,这可引起治疗靶(例如,肝神经、肾神经或其他外周神经)处的加热减少。

RF能量可以是脉冲的或连续的。电压、电流密度、频率、治疗持续时间、功率和/或其他治疗参数可以根据是使用连续信号还是脉冲信号而变化。例如,对于脉冲RF能量,电压或电流幅度可以显著增加。脉冲信号的占空比可以为约0.0001%至约100%、约0.001%至约100%、约0.01%至约100%、约0.1%至约100%、约1%至约10%、约5%至约15%、约10%至约50%、约20%至约60%、约25%至约75%、约50%至约80%、约75%至约100%,或其重叠范围。脉冲持续时间或脉冲的宽度可以变化。例如,在一些实施例中,脉冲持续时间范围可以为约10微秒至约1毫秒;然而,可以根据期望和/或需要使用小于10微秒或大于1毫秒的脉冲持续时间。根据一些实施例,脉冲能量的使用可促进降低的温度、减少的治疗时间、降低的冷却要求和/或增加的功率水平,而没有升高温度或由于加热导致内皮损害的风险。在涉及使用具有球囊的导管的一些实施例中,球囊可以选择性地收缩和膨胀以增加管腔壁冷却并增强脉冲能量提供的冷却功能。

治疗持续时间范围可以为1秒至1小时、5秒至30分钟、10秒至10分钟、30秒至30分钟、1分钟至20分钟、1分钟至3分钟、2分钟至4分钟、5分钟至10分钟、10分钟至40分钟、30秒至90秒、5秒至50秒、60秒至120秒、其重叠范围、小于1秒、大于1小时、大约120秒,或其重叠范围。持续时间可以根据各种治疗参数(例如,幅度、电流密度、接近度、连续或脉冲、神经类型、神经大小)而变化。在一些实施例中,控制RF或其他电能,使得能量的输送在约50摄氏度至约90摄氏度(例如,60度至75度、50度至80度、70度至90度、60度至90度,或其重叠范围)的范围内加热靶神经或周围组织。在一些实施例中,温度可以低于50摄氏度或高于90摄氏度。电极末端能量范围可以为37摄氏度至100摄氏度。在一些实施例中,RF消融热损伤大小范围为约0cm至约3cm(例如,在1mm和5mm之间、在2mm和4mm之间、在5mm和10mm之间、在15mm和20mm之间、在20mm和30mm之间、其重叠范围、约2mm、约3mm),或在距血管腔的中膜厚度差的一倍至十倍(例如,一倍至三倍、二倍至四倍、三倍至五倍、四倍至八倍、五倍至十倍)内(例如研究表明,肝总动脉和肝动脉其他分支周围的神经通常在此范围内)。在若干实施例中,血管(例如,肝动脉)的中膜厚度范围为约0.1cm至约0.25cm。在一些解剖结构中,肝动脉分支的神经纤维中的至少大部分位于距管腔壁0.5mm至1mm的范围内,使得使用血管内方法的调节(例如,去神经)对于降低的功率或能量剂量要求是有效的。

在一些实施例中,RF消融导管用于在一个或更多个位置处对肝丛中的交感神经纤维执行RF消融。例如,RF消融导管可以以周向或径向图案执行消融以在一个或更多个位置(例如,一个、两个、三个、四个、五个、六个、七个、八个、九个、十个、六个至八个、四个至八个、多于十个位置)消融肝丛中的交感神经纤维。尸体研究表明,肝神经通常集中在由肝总动脉起点和胃十二指肠动脉起点之间的中点限定的区中,因为神经趋向于沿动脉的非分支区接近动脉管腔,并在分支区中从动脉管腔分开。尸体研究还表明,肝神经主要位于由动脉管腔限定的环状空间内,并且同心环与动脉管腔间隔开大约4mm。在一些实施例中,神经的数量和与神经的动脉管腔的接近度朝向肝总动脉中点增加。在一些实施例中,交感神经纤维有利地在肝总动脉起点和胃十二指肠动脉起点之间的中点处被调节(例如,消融)。在一些实施例中,交感神经纤维从肝动脉管腔调节(例如,消融)直至4mm-6mm、3mm-5mm、3mm-6mm、2mm-7mm的深度。在其他实施例中,通过在沿血管长度线性间隔开的多个点处执行RF消融,在一个或更多个点处消融肝丛中的交感神经纤维。例如,可以在沿肝固有动脉的长度线性间隔开的一个或更多个点处执行RF消融,以消融肝丛中的交感神经纤维。在一些实施例中,RF消融以任何图案在一个或更多个位置处执行,以根据期望和/或需要引起消融肝丛中的交感神经纤维(例如,可以或可以不交叉的螺旋图案或一系列线性图案)。消融图案可包括连续图案或间歇图案。根据各种实施例,RF消融不会对血管壁造成任何持久性损害,因为在壁处的热量通过流动血液,通过身体外部提供的冷却或通过由邻近器官和组织结构提供的增加的冷却(例如,门静脉冷却和/或注入)来消散,从而产生梯度,其中升高跨内层和中层到神经在其中行进的外膜的温度。外膜是动脉壁的外层,其中中膜是中间层,并且内膜是内层。内膜包括由一层结缔组织支撑的一层内皮细胞。中膜是三个血管层中最厚的,并且包括平滑肌和弹性组织。外膜包括纤维结缔组织。

本文描述的导管实施例可以与线上、快速交换或可操纵导管方法结合使用。在一些实施例中,手柄或歧管(未示出)位于轴上的近侧,其使得能够将导线连接到能量源(例如,RF发生器)、附接到球囊膨胀设备,和/或进入导丝管腔和/或使远侧可操纵段偏转的机构。

在快速交换实施例中,导丝端口可位于远侧末端的近侧10cm至20cm处。在一个实施例中,导丝端口被构造成保持柔性过渡,该柔性过渡是抗扭结的,同时有效地将推力传递到远侧组件。在导丝端口的近侧,轴可以由海波管构成,该海波管被包覆在聚合物中并且包括膨胀管腔并保护导线。

在一些实施例中,本文描述的导管(例如,神经调节导管系统的导管)的直径在以下范围内:约2Fr-8 Fr,约3Fr-7 Fr,约4Fr-6 Fr(包括约5Fr),及其重叠范围。导管(例如,管、探针或轴)可具有沿其长度变化的直径,使得当导管在血管系统内推进时,导管的远侧部分足够小以配合逐渐变小的血管。在一个实施例中,导管的外直径大小配合于肝总动脉(其可以小至约1mm的管腔直径)或肝固有动脉内。在一些实施例中,导管长至少约150cm、长至少约140cm、长至少约130cm、长至少约120cm、长至少约110cm、长至少约100cm、长至少约75cm,或长至少约90cm。在一些实施例中,导管的柔性足以导航于曲折的肝动脉解剖结构,其具有约10mm、约9mm、约8mm、约7mm、约6mm、约5mm、约4mm、约3mm、约2mm、约1mm或约0.5mm的弯曲半径。

根据若干实施例,本文描述的基于导管的系统的设备具有可致动的、可扩展的、可操纵的、预弯曲的、可偏转的和/或柔性的远侧末端部件或远侧段。可偏转性或柔性可有利地使能量施加器偏向动脉壁以确保有效和/或安全地输送疗法、允许能量施加器的精确定位、保持能量输送元件抵靠血管壁的接触、保持与血管壁的足够的接触力或压力,和/或帮助将导管(例如,神经调节导管)导航到靶解剖结构。在一些实施例中,具有可操纵的、可弯曲的或可铰接的远侧部分的设备(例如,导管)提供引起远侧末端(其可包含消融元件或能量输送元件)的关节运动、弯曲或其他部署的能力,即使在导管(例如,神经调节导管)的大部分保持在导引导管或导引延伸导管内时。在一些实施例中,神经调节导管提供通过导丝输送的能力,因为放置导引导管对导航可能是笨重且耗时的。在一些实施例中,神经调节导管通过导引护套或导引延伸导管插入血管系统内。在一些实施例中,不使用导丝。

根据若干实施例,除神经调节导管之外,基于导管的系统可包括导引导管、导引延伸导管或支撑导管(例如,Guidezilla

在一些实施例中,导引导管4005和/或导引延伸导管4020包括可扩展部分,其被配置为推进到期望位置,并然后在神经调节设备推进通过导引延伸导管4020或导引导管4005之前或期间进行扩展。可扩展部分可以实现血管内直径的短暂或临时扩展。在一个实施例中,可扩展部分可以由彼此滑动的多个层形成。在一个实施例中,可扩展部分可以由具有间断的纵向切口的圆柱体形成,并且由保持切口在未扩展状态下被压缩的弹性层包封。可扩展部分可提供稳定或锚定。可沿导引导管4005和/或导引延伸导管4020的长度(例如,球囊、带、电线)在各种位置处提供稳定机构(除可扩展部分之外或代替可扩展部分)。在一些实施例中,导引导管4005或导引延伸导管4020的部分可在引入神经调节设备之后变硬,以在神经调节程序期间提供稳定性和维持定位。在一些实施例中,“伸缩式”系统4000不包括导丝,因为导引延伸导管4020可以消除对导丝的需要。

在一些实施例中,系统4000可包括柔性导引器,其在导丝4010与导引导管4005或导引延伸导管4020之间提供锥形过渡,从而促进进入曲折的肝动脉血管系统。柔性导引器可以代替微导管4015和/或导引延伸导管4020。在一些实施例中,柔性导引器包括弹性或形状记忆材料,诸如镍钛合金或低硬度Pebax

图41示出了使用图40的系统进入肝动脉内的靶神经调节位置的实施例。导引导管4005推进到在腹主动脉4001内或在腹主动脉4001离开腹腔动脉4002的起点处的位置。在一些实施例中,导丝4010和微导管4015然后推进到在靶神经调节位置处或邻近靶神经调节位置的位置,并且导引延伸导管4020在微导管4015上推进到靶神经调节位置。导引延伸导管4020可以单独地在导丝4010上或在微导管4015(其继而在导丝4010上推进)上推进。图41示出了在移除导丝4010和/或微导管4015之后的系统4000。图41还示出了通过导引延伸导管4020推进到肝动脉内的靶神经调节位置的神经调节设备4025的实施例。在一些实施例中,可以不使用导丝4010或微导管4015,并且导引延伸导管4020可以推进超过靶神经调节位置,并且神经调节设备4025推进到靶神经调节位置,并然后导引延伸导管4020被撤回以取出神经调节设备4025。根据若干实施例,导引延伸导管4020可以促进神经调节设备4025的施加扭矩,以便允许神经调节设备4025旋转到肝动脉或其他靶血管的多个或所有象限。在一些实施例中,在神经调节设备4025的初始“部署”之后移除导引延伸导管4020。在神经调节(例如,消融)期间,流体(例如,冷却流体、造影剂或选择性染料)可以通过导引导管4005或导引延伸导管4020注入。

在一些实施例中,导引延伸导管4020或神经调节设备4025在其内推进的其他进入设备被配置为在导引延伸导管4020或其他进入设备的内直径与神经调节设备4025的外直径之间保持紧密空隙。例如,内直径可以具有低摩擦表面或涂层和/或结构(例如,顺应性材料诸如硅氧烷的凸起肋),其减少接触点的数量并且提供抵靠神经调节设备的外表面的向内直径向力,该神经调节设备沿导引延伸导管4020或其他进入设备的长度延伸并且涂覆有低摩擦涂层,诸如亲水涂层。沿神经调节设备的柔性长度的增强支撑可以允许神经调节设备更准确地折曲并且可以支持提高的扭矩效率。

导引导管4005或导引延伸导管4020的移动可能干扰神经调节设备的位置。例如,导引导管4005或导引延伸导管4020的移动可以使得通过导引导管4005或导引延伸导管4020的管腔输送的RF能量输送设备的电极由于设备之间的摩擦而移动。因此,在一些实施例中,锚定导管4005或导引延伸导管4020可有利地最小化或减少运动伪影。

图42A和图42B示出了基于导管的血管进入系统的实施例,其包括导引护套或捕获支撑套管4221,以向神经调节设备4225(例如,电极治疗导管)的轴提供额外的支撑。类似于上面结合图40和图41描述的系统,该系统包括导引导管4205,其适于通过腹主动脉4201推进到其中腹腔动脉4202从腹主动脉9501分支的位置(例如,腹腔动脉的门孔)。导引护套或捕获支撑套管4221延伸出导引导管4205的开放远端。在所示实施例中,捕获支撑套管4221的长度对应于腹腔动脉4202从腹主动脉4201到肝总动脉4203和脾动脉4204的接合处的长度。图42A示出了神经调节设备4225,其包括线上RF能量输送导管,该线上RF能量输送导管具有沿导管的轴定位的两个间隔开的电极。两个间隔开的电极被定位成使得电极中的至少一个与肝总动脉4203的内壁接触以进行消融。电极可以都被定位成与内壁接触。电极可包括单极电极或一对双极电极。

根据若干实施例,神经调节设备4225借助于血管造影和荧光镜可视化来定位。造影剂可以通过导引导管4205的管腔提供。可替代地,造影剂可以通过导引护套或捕获支撑套管4221输送,神经调节设备4225延伸穿过该导引护套或捕获支撑套管4221。如果导引护套4221定位在肝总动脉4203的门孔附近,则可以增强可视性,因为大部分造影剂将流过肝总动脉而不是脾动脉4204。导引护套或捕获支撑套管4221还可以为神经调节设备4225的近侧部分提供增强的支撑。可替代地或另外地,神经调节设备4225可以包括用于造影剂输送的附加管腔,由此造影剂可以在定位在主侧血管(诸如脾动脉4204)的远侧的出口4227处离开。图42B示出了结合对比腔的神经调节设备的实施例。出口可以沿捕获支撑套管4221的一部分或在捕获支撑套管4221的远侧的神经调节设备4225的位置处定位。尽管本文关于在肝总动脉内的定位进行了图示和描述,但是神经调节设备4225可以可替代地定位在其他血管段中,并且可以通过在任何适当血管的门孔处放置导引导管来执行导管输送。

图43A和图43B示出了导管系统的实施例,其被配置为在曲折的血管系统(例如,肝总动脉的曲折的血管系统)内提供改善的壁接触和导管稳定。导管系统包括导引导管4305和可扩展元件导管4310(例如,球囊导管)。在所示实施例中,可扩展元件导管4310包括球囊导管,其具有定位在球囊导管远端的球囊。球囊导管可以以收缩状态插入肝总动脉内(如图43A所示),并然后膨胀至扩展状态(如图43B所示)。在一些实施例中,可扩展元件4315的扩展(例如,球囊的膨胀)使曲折血管(例如,肝动脉部分)伸直以促进设置在可扩展元件中或可扩展元件上的一个或更多个电极或其他治疗构件(例如,换能器、微波发射器)的壁接触。如果使用多个电极或其他治疗构件,则多个构件可沿可扩展元件的长度和/或周界在各位置处间隔开,从而促进在多个位置(同时或分离地)进行治疗。扩展状态还可以引起导管稳定性改善,从而改善治疗程序的效率并减少治疗时间。

可扩展元件可以是可自扩展的、可机械扩展的或可气动扩展的(例如,可膨胀的)。在一个实施例中,可扩展元件包括形状记忆材料(例如,可自扩展的支架状元件)。在一个实施例中,导管系统包括被动分段导管(例如,一个或更多个嵌套链节的形状锁定组件),其在柔性状态下导引导管进入并通过曲折的血管,并然后转换到刚性的形状锁定状态。在一个实施例中,导管以弯曲状态进入曲折血管,并然后伸直血管以使血管形成基本上直的圆柱形状。

呼吸可以引起被靶向以用于神经调节的血管的移动。例如,呼吸可引起肝总动脉区域内移动多达2cm-5cm,这可能导致神经调节导管或设置在其上的治疗元件(例如,电极、换能器或发射器)的不期望的运动。由呼吸引起的运动可能不利地影响治疗元件(例如,电极或换能器)抵靠血管壁的连续和充分的壁接触,并且在本文描述的若干实施例中,减少或移除了不利影响。

在各种实施例中,可以通过显著减小神经调节导管与其内插入神经调节导管的导引导管之间的摩擦,来减少神经调节导管(例如,消融导管)的不期望的运动。例如,可以通过疏水(例如,基于氟的)润滑剂或涂层来实现摩擦的减少。在一些实施例中,可以减小从导管的近端(例如,与导引器护套接触)和导管的远端(例如,电极)的力和/或位移平移,以解决导管的运动。在一些实施例中,可以增加导管远端(例如,电极)和靶组织附近的摩擦以解决导管的运动。

在一些实施例中,提供反馈和/或估算措施以评估壁接触的质量和/或幅值。例如,荧光透视成像(例如,血管造影术)可用于评估由电极抵靠血管(例如,动脉)壁接触引起的管腔压痕的幅值。压痕大小可以与接触力直接相关。另外,因为血液和动脉电阻率和介电常数之间存在显著差异,所以电极阻抗可以用作接触力的指示,其中增加的阻抗通常与改善的接触相关。在发起消融之前,可以通过发生器施加测试电流以测量紧邻电极周围的组织的阻抗。基于使用单个主电极(单极)、分段电极(双极)、一个或更多个线圈(例如,环路或螺线管)、一个或更多个巨磁阻设备或定位在神经调节设备上或在单独的辅助传感器上的其他传感器获得的电磁性质测量值,可以获得复阻抗。可以基于可从发生器获得的电流、电压、电阻和/或功率测量值来确定复阻抗。接触感测方法可以使用由发生器提供的能量输送信号(例如,消融信号)的现有频率内容。(一个或更多个)治疗电极可用于执行接触感测,或可使用辅助传感器或电极。在一些实施例中,用于接触感测的频率范围可以为500kHz至10MHz,其可以在治疗频率范围之内或之上。在其他实施例中,用于接触感测的频率范围可以为500kHz至100MHz。在一个实施例中,感测频率不同于消融频率。在一些实施例中,计算损耗角正切、磁导率、动作电位和/或复阻抗的分量(例如,电阻和电抗或幅值和相位角)并用于确定接触电平。还可以使用沿神经调节设备或在一个或更多个独立设备上定位的一个或更多个温度传感器基于热反应来确定接触感测。例如,可以测量脉冲或阶跃反应以促进接触评估。在一些实施例中,不需要肯定接触,因为通过血管内神经调节设备的特定设计保证了接触。

在各种实施例中,两个电极元件彼此紧密接近地设置,由粘合剂或绝缘层分离。该至少两个电极元件可以并联连接以用于以单极模式输送治疗功率,其中电流返回路径由接地垫、无关电极或远离治疗部位的其他返回电极提供。可以以差分或双极模式激励至少两个电极元件,以提供与接近电极元件的组织成分相关的感测信息。在一些实施例中,感测信息(信号)用于评估电极组件和血管壁之间的接触程度。在其他实施例中,感测信号用于评估接近电极组件的组织的温度变化。在其他实施例中,感测信号用于评估电极组件与组织或结构之间的距离。

在一些实施例中,通过将较大的电极分成由热和/或电绝缘材料分离的导电材料节段来产生至少两个电极元件。在一个实施例中,较大的电极基本上是圆柱形的。在另一实施例中,电极基本上是球形的。在又一实施例中,电极由彼此邻近定位的单独的圆柱形或球形元件构成。在一个实施例中,第一电极元件定位在第二电极元件和第三电极元件之间。第二电极元件和第三电极元件可以并联连接。在各种实施例中,电极元件沿导管的轴同轴分布。在一些实施例中,电极元件纵向或周向分布在导管的轴上。在一些实施例中,第一电极元件可以基本上包含在第二电极元件内。

图44A至图44D示出了适于提供用于治疗(例如,消融或其他神经调节)的功率输送和组织接触感测的包括两个同轴电极的电极配置或组件的实施例。在所示实施例中,第一电极元件4405A以同心方式基本上包含在第二电极元件4405B内。图44A是顶视图,图44B是横截面侧视图,并且图44C是被配置用于提供功率输送和组织接触感测的电极组件的一个实施例的横截面等距视图。图44D是被配置用于提供功率输送和组织接触感测的电极组件的第二实施例的顶视图。在所示实施例中,第一电极元件4405A在第二电极元件4405B的壁中形成圆形孔径,使得第一电极元件同心地定位在第二电极元件内。在一些实施例中,电极元件4405中的至少一个被配置为放置在其中电极组件接触血管壁的区域或区附近或与其接触。第一电极元件4405A可以是基本上圆形或球形、多边形、盘形或其他规则几何形状。电极元件4405由电和/或热绝缘材料4410分离。在一些实施例中,电和/或热绝缘材料4410可以由粘合剂、聚合物或陶瓷形成,该粘合剂、聚合物或陶瓷选自包括但不限于迭尔林、环氧树脂、尼龙、聚氨酯、矾土、氧化铝、玻璃陶瓷、聚乙烯、氰基丙烯酸酯、缩醛、PTFE、PFA、FEP和PEEK的组。在一些实施例中,轴提供电和/或热绝缘。

图44A至图44C示出了连接到电极元件4405的两根连接线4415。图44C示出了连接线4415中的一根(例如,铜线)的覆盖物可以包括狭槽4416,使得可以使用单根连接线与第一电极元件4405A和第二电极元件4405B形成连接。在一些实施例中,通过为每个元件提供单独的连接线4415,可以在电极元件之间分配消融电流和感测电流,例如在图44D所示的实施例中所示。滤波、调制和多路复用方法可用于将功率分配到各种连接线4415。在一个实施例中,与电极元件电接触的连接线4415形成热电偶或其他温度测量设备。在另一实施例中,到电极元件的一根或多根连接线4415是单个导体。此种连接线布置的非限制性示例是向在电极组件的血管壁接触区域附近的电极元件4405A中的较小者提供热电偶引线(例如,40规格的T型热电偶引线),以及向周围的电极元件4405B提供单个电源引线(例如,40规格的铜线)。在一些实施例中,在400kHz-650kHz之间的频率(例如,400kHz、450kHz、500KHz、550kHz、600kHz、650kHz)下的消融功率(例如,5W-20W、5W-15W、8W-12W、10W-20W)可以以单极模式输送到电极元件中的较大者或两者(例如,输送到两个电极元件的共模信号,其中返回信号到达接地垫或无关电极),而感测信号(例如,在1MHz至100MHz(例如,1MHz至10MHz、5MHz至15MHz、10MHz、15MHz至50MHz、30MHz至60MHz、50MHz至100MHz)的频率下的1mA-20mA(诸如10mA)的电流)可以以双极模式在两个电极元件之间输送。可以根据期望和/或需要使用其他功率水平、电流水平或频率。根据若干实施例,用于感测的频率在用于消融功率的频率范围之外。可以在高灵敏度下为邻近组织分析感测电流的复阻抗、相位、损耗角正切、电抗和电阻。可以在多个频率处提供感测电流,并且可以将阻抗进行比较或组合成描述组织接触的复合参数。可以在时域或频域中分析感测电流。感测波形可以是扫描、窄带宽带、脉冲、方波、啁啾(chirp)、频率调制、多音频或其他合适的波形。感测系统可以包括外部驱动器和发生器以分离两个电极之间的传感信号的频率。感测系统可以包括一个或更多个共模扼流圈、高通、低通和/或带通滤波器或其他滤波电路系统。感测系统可包括处理设备,其适于确定是否存在足够量的接触或基于从电极组件接收的组织接触测量值来确定组织接触的定量水平。处理设备可以生成指示接触或组织接触水平的输出以用于对用户的显示或其他输出。组织接触测量值可以包括双极接触阻抗测量值或温度测量值。结合图44A至图44D描述的接触感测特征和实施例可以结合到本文描述的神经调节设备(例如,治疗导管、消融导管或其他设备)中的任一个中。

在一些实施例中,温度感测设备可以以对周围组织提供高热反应和高灵敏度的方式设置在第一电极元件内。温度传感器可以由热电偶、电阻温度检测器(RTD)、热敏电阻器、荧光温度传感器、法布里-珀罗温度传感器或其他合适的传感器构成。在一个实施例中,以单极模式通过至少一个电极元件输送的功率引起接近温度传感器的组织的适度、良性、局部加热。由传感器测量的温度变化的速率或幅值反映了与组织或血液的接触程度。小的接触面积和低热质量以及与非感测表面的绝缘提高了反应性和灵敏度。在一个非限制性示例中,40规格T型热电偶引线连接到电极的血管壁接触区域附近的电极元件4405A中的较小者,并且单根40规格铜线连接到周围的电极元件4405B。根据期望和/或需要可以使用其他类型或大小的温度测量设备或电线。在一个实施例中,通过电极元件以单极或双极模式输送1W的功率。温度上升或衰减的幅值或速率被视为血管壁接触的指示。可以根据期望和/或需要使用其他功率水平。

根据若干实施例,涉及肝脏和胰腺的上述生理机能可以通过刺激测试来利用,以实现确认神经破坏,并潜在地预测患者体内的反应。无关于疾病和器官,一些患者更可能从去神经疗法中受益,并且对来自交感神经紧张升高的他们的疾病有显著贡献。根据若干实施例,在治疗之前有利地识别可能的反应者。根据若干实施例,确认去神经和/或预测反应的方法包括刺激肝动脉(例如,肝总动脉)或非肝交感神经靶(例如,肾动脉)周围的神经,并测量生理反应诸如血糖、血胰岛素或血压。在一个实施例中,刺激包括输送适于引起神经阻滞的信号。

在一些实施例中,在实验室设定下对患者使用血管内电极或各种血管外或体外技术执行肝总动脉(例如,肝总动脉内或周围的神经)或其他解剖学靶的刺激(例如,刺激信号或阻断信号的施加或传输)。可以控制刺激以便引发或诱导瞬时葡萄糖和/或胰岛素反应以促进测量。可以在去神经治疗之前执行刺激,并且可以选择具有较大葡萄糖水平升高的患者作为疗法的可能反应者,并且可以排除具有较低葡萄糖水平升高的那些患者作为疗法的可能无反应者。在一些实施例中,方法可以涉及根据本文公开的参数选择具有低劣β细胞功能和/或高空腹葡萄糖水平的患者用于去神经疗法,因为这些患者可以比其他患者更大程度地反应。在一些实施例中,可基于β细胞功能标志物(例如基线胰岛素、C肽、OGTT胰岛素或HOMA-B)的确定的阈值基线水平选择患者进行治疗。β细胞功能标志物水平的瞬时和刺激诱导的降低(例如,降低的峰值或面积或OGTT胰岛素曲线或降低的HOMA-B)可以指示由交感神经输入抑制β细胞功能的程度,其可以有利地根据若干实施例用作可能对肝去神经疗法有反应的患者的预测因子。例如,患者选择可能限于具有低基线胰岛素水平(例如,低于每毫升25微国际单位、低于每毫升24微国际单位、低于每毫升23微国际单位、低于每毫升22微国际单位、低于每毫升21微国际单位,低于每毫升20微国际单位,低于每毫升19微国际单位,低于每毫升18微国际单位、低于每毫升17微国际单位、低于每毫升16微国际单位,低于每毫升15微国际单位)或低C肽水平(例如,低于每升1500皮摩尔、低于每升1400皮摩尔、低于每升1300皮摩尔、低于每升1200皮摩尔、低于每升1100皮摩尔、低于低于每升1000皮摩尔)的患者。在一些实施例中,患者选择可以基于口服葡萄糖耐量测试(OGTT)筛查期间胰岛素或C肽水平的变化。例如,可以选择在OGTT测试期间具有小于预定变化阈值(例如,小于两倍增加、小于1.5倍增加、小于2.5倍增加、小于三倍增加)的患者进行治疗。

在一些实施例中,在去神经(例如,消融)程序之后还执行对肝总动脉(例如,肝总动脉内或周围的神经)或其他解剖靶的刺激,并且将程序后水平与同一患者或未治疗患者的参考数据集中的程序前水平进行比较。刺激后葡萄糖水平升高的降低或其他生理参数水平的降低可能与去神经的程度和成功相关。可以在去神经程序之后执行类似的刺激诱导的β细胞功能标志物测量作为去神经成功和程度的指示,例如通过胰岛素水平的增加来证明。

还可以执行非肝动脉交感神经靶的刺激(例如,刺激信号或阻断信号的施加或传输)和非代谢生理学标志物的测量,以预测可能的患者反应和/或确认成功的去神经。例如,可以刺激肾动脉并引起血压或心率上升,因为可以测量交感神经紧张介导的疾病的指标。通过推断,如果患者具有交感神经介导的心血管反应,他们也可以从代谢疾病的去神经疗法中受益。类似地,如果刺激相关的血压或心率反应从程序前水平降低,则这可以指示成功的去神经。在一些实施例中,刺激颈动脉体并且在程序前和/或程序后测量血压、心率、呼吸速率或血气(例如,氧分压(PO2)或二氧化碳分压(PCO2))反应,以确定可能的患者反应或确认成功的去神经。

本文提供了各种系统和方法以提供(急性地和/或长期地)检测神经是否已被消融或去神经,以及与末端器官(例如,肝脏、胰腺、十二指肠等)的神经连接是否因此被破坏的能力。根据若干实施例,可能期望实时检测所输送的实际能量。由于神经承载电信号,并且去神经或消融的神经不能再承载这些信号,因此可以测量沿神经纤维长度的传导。在一些实施例中,可以确定二元信号(例如,开/关)或与神经破坏程度相关的定量信号。在一些实施例中,可以在去神经或神经消融程序后直接监测对靶神经(例如,肝动脉周围的神经)的刺激的预期生理反应(例如,葡萄糖变化、胰岛素或胰高血糖素变化、GI运动性等),以确定是否发生预期的生理反应,从而引起实时的程序内诊断的可能性。在一些实施例中,消融程序期间的实时反馈可以促进输送仅足够成功去神经所需(或仅形成足够损伤)的能量,从而由于解剖学约束(例如,血管长度、曲折度等)而向程序开放更宽泛的群体,该解剖学约束可能限制可能消融的数量和/或降低由过度能量输送引起的任何安全影响(例如,血管或邻近结构创伤)的可能性。

根据若干实施例,用于能量输送(例如,消融)的导管包括感测消融部位的近侧和/或远侧的电极。感测电极可以被配置为与血管壁接触,以便检测靶神经纤维(例如,在肝总动脉周围的外膜中的神经纤维)中的传导。可以使用本文描述的用于促进电极与血管壁接触的结构和特征中的任一个。例如,球囊消融导管可包括球囊中部中的消融电极与在消融电极的近侧和远侧的同一球囊上的感测电极。在一些实施例中,相同的电极被配置为提供消融和感测功能。在一些实施例中,球囊消融导管可包括多个球囊,在消融球囊(或具有消融电极的球囊)的任一侧上具有感测球囊(例如,具有感测电极的球囊)。

可以在与消融导管分离的导管上采用类似的技术,并且可以立即在消融后的一定时间(例如,5分钟、10分钟、15分钟、20分钟、30分钟、45分钟、60分钟)之后或在该一定时间内,或在将来的一些其他诊断或治疗会议时用单独的感测导管执行诊断程序。在一些实施例中,使用基于非导管的诊断系统和方法。例如,近侧和远侧感测电极可以定位在袖带、针、贴片和/或类似物上。进入可以是经皮的、放置在身体外的皮肤上、放置在邻近结构(例如,门静脉、胆管、下腔静脉)中,或放置在器官组织(例如,肝脏组织)本身中。根据若干实施例,该方法有利地涉及在被靶向的生理机能(例如,神经电传导)处进行监测,这提供了可以想到的最直接的测量。

在直接观察下没有神经识别的情况下,可以基于其生理功能来识别神经。在一些实施例中,使用葡萄糖和去甲肾上腺素(“NE”)水平执行绘制和后续调节。在一些实施例中,葡萄糖和NE水平以快速时间常数反应。因此,临床医生可以刺激靶动脉或其他血管中的特定区域(例如,在不同方向上或周向时钟位置或纵向位置)、监测生理反应,并然后仅在表现出不期望的生理反应的位置进行调节(例如,消融)。交感神经趋向于朝向肝动脉的前部行进,而副交感神经趋向于朝向肝动脉的后部行进。因此,可以不仅选择前部的位置,而且可以(使用上述葡萄糖和NE水平测量值)选择前部区中的特定位置,其对刺激表现出最强的生理反应(例如,由于交感神经刺激引起的葡萄糖水平增加)。在一些实施例中,具有0.1s接通、4.9s断开、14Hz、0.3ms、4mA脉冲RF能量的刺激是交感神经激活因子,并且具有2s接通、3s断开、40Hz,0.3ms刺激、4mA脉冲RF能量的刺激是副交感神经激活因子。然而,可以使用RF能量或其他能量类型的其他参数。

在一些实施例中,使用电和/或位置选择性,临床医生可施加刺激脉冲或信号并监测生理反应。在一个实施例中,刺激包括输送适于引起神经阻滞的信号。可以指示治疗功效的一些生理反应包括但不限于以下:血糖水平、血液和/或组织NE水平、血管肌张力、血液胰岛素水平、血液胰高血糖素水平、血液C肽水平、血压(收缩压、舒张压、平均值)和心率。在一些情况下,血糖和组织NE水平可能是最准确且容易测量的参数。可通过动脉或静脉抽血、神经传导研究、口腔或直肠温度读数或经皮或外科手术活检来监测或评估生理反应。在一些实施例中,在每次增量消融后进行经颈静脉肝脏活检以测量所得组织NE水平的降低,并且可基于测量的水平滴定或调整治疗。例如,为了测量肝脏中的组织NE水平,可以通过TIPS方法或其他颈静脉通路插入活检导管以捕获肝脏实质的样品。在一些实施例中,可以安全地侵犯门静脉的静脉壁以获得活检,因为静脉被肝脏实质包围,从而防止或抑制失血。

在各种实施例中,由消融或去神经部位的两侧上的感测电极或其他诊断构件构成的电路检测到的信号或反应可以是(1)阻抗(例如,产生的电路的动态电阻或电导的变化),和/或(2)动作电位(例如,可以用短暂的电压脉冲探测电路,并然后监测电反应,因为神经纤维使用此类动作电位在生理上传导)。在一些实施例中,监测生理反应,根据被询问的器官和生理机能引起若干种可能性。生理反应的示例包括以下:(1)肝脏/葡萄糖:由于肝交感神经的刺激增加净肝葡萄糖产生并因此提高全身葡萄糖水平,因此在去神经或消融后可观察到血糖水平的较小提高;(2)胰腺/胰岛素-胰高血糖素:由于胰腺交感神经的刺激可以增加胰岛素分泌并减少胰高血糖素分泌,因此可以在去神经之前和之后测量这两种激素水平;以及(3)十二指肠-胃/运动性:由于胃肠(GI)交感神经的刺激可引起运动性降低,因此可以在去神经或消融之前和之后测量直接观察运动性或经由多个运动性测试观察运动性。上述系统和方法可以普遍适用于血管内去神经,无关于末梢器官(例如,可以应用于由围绕动脉的神经支配的任何器官)。测量(无论是电学的还是生理学的还是其他类型的)可以在消融程序期间或长期(例如,在程序后的某个时间段)连续进行,以评估去神经的成功。

在涉及肝脏或肝去神经的实施例中,可以通过组织去甲肾上腺素水平评估去神经的确认。例如,组织去甲肾上腺素水平可降低超过90%。在涉及通过消融肝总动脉或其他邻近血管进行的肝去神经的一些实施例中,胰腺和十二指肠中可能存在相应的“剂量反应”。换句话说,在一些实施例中,除了肝脏被去神经之外,通过消融如本文描述的肝总动脉和/或周围血管,胰腺和/或十二指肠可以被充分去神经(例如,>90%)。因此,可以使用表明去神经影响的胰腺或十二指肠的生理学评估(例如,建立的临床测试或测量)来确认肝脏去神经的成功。在一些实施例中,可以继续消融直至检测到意图的或预期的临床变化。

用于测量由去神经影响的胰腺反应的临床测量可包括口服葡萄糖负荷和随后的胰岛素反应。理论上胰腺的去神经应该引起更多的胰岛素分泌,并且已经在狗和临床研究中观察到这种情况的证据。因此,可以给予多次口服葡萄糖负荷,并测量血液胰岛素或C肽水平,并且如果胰岛素或C肽水平提高,则可以推断去神经成功。用于测量胰腺反应的临床测量还可以包括在没有葡萄糖负荷的情况下的点胰岛素或C肽测量。在一些实施例中,可以采取胰高血糖素测量(其是从可以受去神经影响的胰腺分泌的激素)以确认肝脏的去神经。

用于测量十二指肠反应的临床测量可以包括GI运动性测试,因为十二指肠的交感神经去神经,可以存在提高的十二指肠运动性和减少的运送时间。存在若干种临床验证的测试以测量运动性变化,包括查看摄入的放射性食物的运送的核医学测试,以及C醋酸盐呼气测试。在一些实施例中,可以执行内窥镜检查并直接可视化十二指肠以查看运动性变化的迹象。

在一些实施例中,可以测量全身反应(由于通过消融肝总动脉破坏传入神经连接的可能性),以促进在消融肝总动脉时确认肝脏去神经。经由从肝脏到大脑到其他器官的反射路径可以减少到其他器官的交感神经流出。可以受影响和测量的参数包括但不限于血压、心率和肌肉交感神经活动(MSNA)。

交感神经元在正常条件下激发(fire)的速率称为交感神经紧张。同样,副交感神经元在正常条件下激发的速率称为副交感神经紧张。例如由于一个或更多个神经元的消融或刺激引起的神经元激发的变化可引起紧张的变化。可以在治疗之前,期间和/或之后测量、检测或监测紧张,以提供关于该程序的信息。例如,在程序期间或之后监测到的交感神经紧张或生理反应的变化(例如,作为测量紧张的方式)可以提供关于交感神经元去神经程序的功效的实时验证。又例如,可以在用于患者筛查的程序之前测量交感神经紧张,识别用于治疗的区域性位置等。测量可以是全局的或区域性的。

在一些实施例中,可以使用血管内设备测量紧张。例如,可以在动脉和/或静脉中测量去甲肾上腺素(NA)血浆浓度。可以在整个血管系统中测量去甲肾上腺素溢出,包括例如心脏(心脏NA溢出)、前臂(前臂NA溢出)、肾(肾NA溢出)、肝(肝NA溢出)、骨骼肌血管系统等。又例如,测量MSNA的微神经造影术可用于测量浅表神经中的活动。还可以测量其他血液成分,例如但不限于去甲肾上腺素(NE)。可以测量总体的某些血液成分和/或接近已知或据信的起始位置。例如,可以接近特定器官诸如肺测量NE,据信约40%的NE起源于该特定器官。测量值可以通过在基本稳态条件下的值来表征,例如在一定量的时间(诸如约30分钟、约15分钟、约5分钟等)内小于约25%、小于约10%、小于约5%等的变化。也可以测量血管以外的体腔。例如,尿中儿茶酚胺(cathecholamines)可以指示交感神经紧张。可以进行测量的体腔包括例如动脉、静脉、房室、小动脉、小静脉、管或道(例如,尿道、胃肠道)、囊、小管等。

在实施例中,将导管放置在体腔中并且接近器官进行导航。探针可以部署到管腔壁中,例如以一定的深度和/或角度。探针的位置可以例如通过锚、倒钩、球囊、可扩展笼或其部分、其组合等而被稳定。探针可以接收可以记录的电生理信号,例如以生成交感神经紧张的度量特性。背景信号或噪声可以被移除,例如,通过部署探针以测量远离器官的电生理信号。探针可以测量以下中的一个或更多个:血液或其他流体分析物水平、血液或其他流体流动、血液或其他流体流动差异、血氧饱和度、血液灌注、血压、中枢交感神经驱动、电声事件、肌电信号、诱发电位、局部场电位、机械肌电图(mechanomyographic)信号、MSNA、神经交通、神经活动的远程刺激、温度、组织紧张、血管舒张、血管壁硬度、水浓度、其组合等。多个探针可用于测量多个信号或其他性质、体内不同位置处的相同信号,及其组合。

在实施例中,将第一导管置于接近器官(诸如肝脏)的动脉中,并将第二导管置于接近器官的静脉中。第一导管包括第一传感器,其被配置为检测血液成分(例如,NA、NE和/或类似物)。第二导管包括第二传感器,其被配置为检测同一血液成分(例如,NA、NE和/或类似物)。第一导管和第二导管中的至少一个包括被配置为测量血液流速的流量计。可以指示交感神经紧张的血液成分溢出(例如,以ng/min为单位)可以通过将流速(例如,以mL/min为单位)乘以动脉和静脉中的血液成分的浓度差(例如,以ng/mL为单位)来测量。在一些实施例中,第一导管和第二导管可以放置在同一血管中,例如器官的上游和下游。

在一些实施例中,可以使用非侵入性设备或身体外部的设备来测量紧张。非侵入性工具可以比现有的微神经仪(诸如用于MSNA或血管内设备)更容易和/或更准确。交感神经紧张的变化可以通过静息心率的变化来表征,因为交感神经紧张的急性改变与同感的心率变化平行。可以使用血压袖带、光学监视器、EKG(心电图)、智能手机、智能手表等来测量心率。

心率变异性(HRV)的频谱分析可用于评估交感神经紧张的变化。例如,EKG可用于测量在各种频率下的频谱功率或强度。HRV频谱可以聚合成三个主要频带:高频带(约0.15Hz至约0.4Hz),其对应于副交感神经分量,低频带(约0.04Hz至约0.15Hz),其对应于交感神经和副交感神经分量两者,以及非常低的频带(约0.0033Hz至约0.04Hz),其可以反映包括缩血管紧张在内的若干种生理机制的影响。可以针对频率对所得到的频谱功率或强度进行绘图。某些频率下的峰值可以指示交感神经活动,使得峰值的变化可以指示交感神经活动的变化。另外或可替代地,作为频谱图下的面积或其一部分(例如,仅高频、仅低频、仅高频和低频等)测量的总频谱功率的变化可以指示交感神经活动,使得总频谱功率的变化可以指示交感神经活动的变化。

交感神经紧张的测量值,例如在筛查阶段中获得的静态数,可以指示去神经或刺激的合适受试者。交感神经紧张的测量值的变化,例如取决于测量类型和程序的加快或放慢,可以指示应该引起交感神经紧张变化的程序(诸如去神经或刺激)的成功。如果未实现预期结果,则可重复或修改程序,例如调整位置、功率、能量类型等。

在一些实施例中,在调节之前绘制交感神经和副交感神经。在一些实施例中,传感器导管在靶调节区域附近插入血管腔内。传感器导管可包括沿导管主体的长度分布的一个传感器构件或多个传感器。在传感器导管就位后,可以刺激交感神经或副交感神经。在一些实施例中,传感器导管被配置为检测电活动。在一些实施例中,当交感神经被人工刺激并且副交感神经保持静止时,传感器导管检测到增加的电活动,并且从传感器导管获得的数据用于绘制交感神经几何形状。在一些实施例中,当人工刺激副交感神经并且交感神经保持静止时,传感器导管检测到增加的电活动,并且从传感器导管获得的数据用于绘制副交感神经几何形状。在一些实施例中,使用神经刺激和传感器导管绘制神经几何形状有利地促进改善地或更明智地选择靶区域以进行调节,使选择的神经可生存而选择性地消融和破坏其他神经。作为一个实施例的示例,为了选择性地消融交感神经,可以人工刺激交感神经,同时已经插入的传感器导管检测并绘制增加的电活动的区域。为了破坏交感神经,可以仅需要消融记录增加的电活动的区域。

在一个实施例中,靶向交感神经纤维的方法涉及使用电生理学绘图工具。在施加旨在增加交感神经活动的中枢或外周神经信号时(例如,通过施用去甲肾上腺素或电刺激),可以使用感测导管来绘制靶血管(例如,肝动脉)的几何形状并突出显示增加的电活动的区域。然后可以引入并激活消融导管以消融增加的电活动的绘制区域,因为增加的电活动的区域可能主要由交感神经纤维支配。在一些实施例中,神经创伤监测(NIM)方法和设备用于提供关于位于血管周围的交感神经的设备接近度的反馈。在一个实施例中,NIM电极通过腹腔镜或胸腔镜连接至交感神经节。

在一些实施例中,药物输送、化学消融和/或冷冻消融的任何组合用于本文描述的神经中的任一种的神经调节,并且可以与能量形态组合使用。在若干实施例中,结合能量输送提供冷却系统,以例如保护邻近神经纤维的组织。

除了通过动脉被血管内输送之外,本文描述的神经调节系统(例如,消融导管系统和其他进入/输送系统)可以通过静脉系统被血管内输送。例如,消融导管系统可以通过门静脉输送。在其他实施例中,消融导管系统通过下腔静脉被血管内输送。任何其他血管内输送方法或途径可用于输送神经调节系统,例如用于调节肝丛中的交感神经纤维。

在一些实施例中,神经调节系统(例如,导管和其他进入/输送系统)经腔输送以调节神经纤维。例如,导管系统可以通过胃经腔输送。在其他实施例中,导管系统通过十二指肠经腔输送,或经由内窥镜逆行胰胆管造影术(ERCP)通过胆管树经腔输送。根据本文描述的实施例,可以使用任何其他经腔或腹腔镜输送方法来输送导管系统。

在一些实施例中,将导管系统经皮输送至胆管树以消融肝丛中的交感神经纤维。根据期望和/或需要,任何其他微创输送方法可用于输送神经调节系统以用于调节或破坏肝丛中的交感神经纤维。

在一些实施例中,开放式外科手术程序用于调节肝丛中的交感神经纤维。任何开放式外科手术程序均可用于进入肝丛。结合开放式外科手术程序,可以使用本文描述的用于神经调节的形态中的任一种。例如,RF消融、超声消融、HIFU消融、经由药物输送的消融、化学消融、冷冻消融、电离能输送(例如X射线、质子束、γ射线、电子束和α射线)或其任何组合可以与开放式外科手术程序一起使用。在一个实施例中,神经纤维(例如,在肝丛中或围绕肝丛)与开放式外科手术程序一起在外科手术上被切割,以便破坏例如肝丛中的交感神经信号传导。

在一些实施例中,非侵入性程序或方法用于消融肝丛和/或其他神经纤维中的交感神经纤维。在一些实施例中,本文描述的形态中的任一种,包括但不限于超声能、HIFU能、电能、磁能、光/辐射能或可以实现神经纤维的非侵入性消融的任何其他形态,与非侵入性(例如,经皮)程序结合使用,以消融肝丛和/或其他神经纤维中的交感神经纤维。

虽然本文描述的设备、系统和方法主要涉及多尿症(diabetes)(例如,糖尿病(diabetes mellitus))的治疗,但是可以使用本文描述的设备、系统和方法治疗其他病症、疾病、失调或综合征,包括但不限于室性心动过速、心房颤动或心房扑动、炎症性疾病、内分泌疾病、肝炎、胰腺炎、胃溃疡、胃动力失调、肠易激综合征、自身免疫性疾病(诸如克罗恩病)、肥胖症、泰萨克斯病、威尔森氏病、NASH、NAFLD、脑白质营养不良、多囊卵巢综合征、妊娠糖尿病、尿崩症、甲状腺疾病和其他代谢失调、疾病或病症。

在一些实施例中,该系统包括以下中的一个或更多个:用于组织调节的装置(例如,消融或其他类型的调节导管或输送设备)、用于能量输送的装置(例如,发生器或其他能量生成模块))、用于部署能量输送构件或其他治疗元件的装置(例如,拉线、预成形的形状记忆材料、可伸缩护套、扩展构件)、用于冷却电极的装置、用于监测生理反应的装置、用于测量组织接触的装置、用于识别邻近致密结构的装置、用于绘制神经的装置、用于成像的装置等。

在一些实施例中,系统包括作为单个特征(与多个特征相对)存在的各种特征。例如,在一个实施例中,该系统包括具有单个能量输送构件(例如,射频电极)的单个消融导管。还可以包括单个热电偶(或用于测量温度的其他装置)。在可替代实施例中提供了多个特征或部件。

结合本文公开的实施例(例如,发生器)描述的各种例示性逻辑块、模块和电路可以用被设计成执行本文描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑、分立硬件部件或其任何组合来实施或执行。通用处理器可以是微处理器,但在可替代方案中,处理器可以是任何传统处理器、控制器、微控制器或状态机。处理器还可以实施为计算设备的组合,例如DSP和微处理器的组合、多个微处理器、一个或更多个微处理器结合DSP内核,或任何其他此种配置。

结合本文中所公开的实施例进行描述的方法和算法的区块可直接体现于硬件中、由处理器执行的软件模块中或两者的组合中。本文描述的模块可以包括结构硬件元件和/或存储在存储器中的非结构软件元件(例如,可由处理或计算设备执行的算法或机器可读指令)。存储器或计算机可读存储介质可包括RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或在本领域中已知的任何其他形式的计算机可读存储介质。本文描述的任何方法可以在存储在存储器中并由一个或更多个处理器或其他计算设备执行的软件代码模块中体现,并且经由该软件代码模块部分或完全自动化。响应于从有形计算机可读介质读取的软件指令或其他可执行机器可读代码的执行,可以在计算设备上执行方法。有形计算机可读介质是可以存储计算机系统可读的数据的数据存储设备。计算机可读介质的示例包括只读存储器(例如,EEPROM)、随机存取存储器、其他易失性或非易失性存储器设备、CD-ROM、磁带、闪存驱动器和光学数据存储设备。存储介质可以有利地耦接到处理器,使得处理器可以从存储介质读取信息和向存储介质写入信息。在可替代方案中,存储介质可以集成到处理器。

例如,根据本发明的实施例的用于执行所选任务的硬件可以实施为芯片或电路。作为软件,根据本发明的实施例的所选任务可以实施为由计算机使用任何合适的操作系统执行的算法或多个机器可读指令。在一个实施例中,提供了网络(有线或无线)连接。可选地,可以提供显示器和/或用户输入设备(诸如键盘、鼠标、触摸屏、用户可致动的输入、触控板)。

尽管本文已经描述了某些实施例和示例,但是可以不同地组合和/或修改在本公开中示出和描述的方法和设备的各方面以形成更进一步的实施例。另外,可以使用适合于执行所述步骤的任何设备来实践本文描述的方法。已经结合附图描述了一些实施例。然而,应该理解的是,图未按比例绘制。距离、角度等仅仅是例示性的,并且不一定与所示设备的实际尺寸和布局具有精确的关系。可以添加、移除和/或重新布置部件。进一步地,结合各种实施例的任何特定特征、方面、方法、性质、特性、质量、属性、元件等的本文中的公开(包括附图)可以用于本文阐述的所有其他实施例中。例如,一个图中描述的特征可以与其他图中示出的实施例结合使用。以某种方式体现或实施的实施例可以实现如本文所教导的一个优点或一组优点,而不一定实现其他优点。本文中使用的章节标题仅用于增强可读性,并不旨在将特定节中公开的实施例的范围限于该节中公开的特征或元件。相同的数字可以用作不同图中的类似部件或特征的标注。使用相同的数字不一定意味着不同的实施例必须包括结合其他图描述的相同编号的部件的所有特征。

虽然实施例易于进行各种修改和可替代形式,但是其具体示例已在附图中示出并在本文中详细描述。然而,应该理解的是,实施例不限于所公开的特定形式或方法,相反,实施例将覆盖落入所描述的各种实施例和所附权利要求的精神和范围内的所有修改、等同形式和可替代形式。本文公开的任何方法不需要按照所述顺序执行。本文公开的方法包括从业者采取的某些动作;然而,它们也可以明确地或暗示地包括那些动作的任何第三方指示。例如,动作诸如“在肝动脉内输送神经调节导管”包括“指示在肝动脉内输送神经调节导管”。

已经以范围格式呈现了本发明的各种实施例。应当理解,范围形式的描述仅仅是为了方便和简洁,并且不应该被解释为对本发明的范围的不可改变的限制。本文公开的范围包括任何和所有重叠、子范围及其组合,以及该范围内的单独数值。例如,应当认为范围诸如约5分钟至约30分钟的描述具有特别公开的子范围,诸如5度至10度、10分钟至20分钟、5分钟至25分钟、15分钟至30分钟等,以及该范围内的单独数字,例如,5、10、15、20、25、12、15.5以及它们之间的任何整体和部分增量。语言诸如“至多”、“至少”、“大于”、“小于”、“在......之间”等包括所述的数字。在术语诸如“约”或“大约”之后的数字包括所引用的数字(例如,“约3mm”包括“3mm”)。如本文使用的术语“大约”、“约”和“基本上”表示接近所述量的量,其仍然执行期望的功能或实现期望的结果。

技术分类

06120114702035