掌桥专利:专业的专利平台
掌桥专利
首页

光通信O波段硅基高速半导体激光芯片及其制造方法

文献发布时间:2023-06-19 11:39:06


光通信O波段硅基高速半导体激光芯片及其制造方法

技术领域

本发明涉及激光芯片技术领域,尤其涉及一种光通信O波段硅基高速半导体激光芯片及其制造方法。

背景技术

高速光芯片是大容量数据中心、5G网、大容量接入网的关键发光芯片。与常规的InP衬底相比,硅衬底具有导电和导热性良好、成本低、坚硬度好、与常规半导体工艺兼容等优点,在硅衬底上制备InP激光芯片是光通信下一步发展和集成化的关键;通常在硅衬底上由于晶格常数等不匹配使得在硅衬底上无法直接生长InP材料系。

此外,应变量子阱采用压缩应变可以将最高空穴带转为类轻空穴带,使得Auger符合和价带间吸收率大幅降低,压缩应变可以有效的减小空穴的有效质量和态密度,从而使得激光器的增益和弛豫频率提高;1990年,研究人员发现同压应变相比,采用张应变量子阱可以进一步的降低激光器阈值,使得出光功率和弛豫频率更高(Tanban-EK T et al.Performance enhancement of InGaAs/InP quantum well lasers by both tensile andcompressive strain.21 st Internal.Semicon.Laser Conf.1990;D-3)。为了进一步降低激光器芯片的阈值电流和工作电流,可以采用张应变量子阱,然而高速激光芯片为了提高激光器的光子和电子相互作用密度、提高调制频率,通常采用较多层数的量子阱;由于电子的有效质量较小通常在导带上采用P型电子阻挡层对其进行限制,然而空穴的有效质量较大,在多层量子阱中容易产生分布不均的问题,通常载流子在能带上的输运主要有两种:一种通过热跃迁越过势垒,另一种为载流子的隧穿效应,通常量子垒对于重空穴而言无法实现较大比例的隧穿。

另外,半导体激光器由于在解离腔面处光子和电子密度比较集中,容易发热形成腔面灾变失效,是激光器应用过程中失效较为常见的一种因素。

发明内容

为了克服现有技术存在的缺陷,本发明提供了一种光通信O波段硅基高速半导体激光芯片及其制造方法。在硅衬底上采用晶格参数相近的过渡材料,并对生长后的界面进行烘烤和清洗来改善InP材料体系的生长界面降低位错。此外,采用多层超晶格的薄层作为量子垒,利于空穴在不同阱之间的隧穿,从而改善空穴注入的均匀性和微分增益。而在靠近出光和背光端面进行选择区域生长PNP电流阻挡层的方法可以阻挡电流流向端面;另一方面PNP的组合波导可以通过调整厚度调整光斑近场,降低激光器的端面光子密度,改善芯片可靠性。在P面电极金属下,采用掺杂Fe的绝缘InP层有效改善芯片的电容参数,提高带宽,可以不用采用常规的BCB等工艺。

其通过采用不同的缓冲层来形成InP材料低位错密度的生长表面;在能带结构上采用N-InAlGaAs取代常规的N-InAlAs电子阻挡层,降低电子从N型进入量子阱的势垒,降低阈值;采用超晶格结构量子垒取代单层垒层结构改善重空穴在量子阱中的输运;并在材料结构上进行调整,实现可靠性良好的硅衬底光通信用O波段高直调速率半导体激光芯片。

本发明具体采用以下技术方案:

一种光通信O波段硅基高速半导体激光芯片,其特征在于:在Si衬底上,采用不同的缓冲层形成的低位错密度的生长表面;在材料结构上采用N-InAlGaAs取代N-InAlAs电子阻挡层,并采用超晶格量子垒结构。

进一步地,所述缓冲层包括:N-GaP缓冲层、N-GaAs缓冲层和N-InP缓冲层。

以及,一种光通信O波段硅基高速半导体激光芯片,其特征在于:其外延层包括在Si衬底上依次形成的:N-GaP缓冲层、N-GaAs缓冲层、N-InP缓冲层、N-InAlGaAs过渡层、InAlGaAs下波导层、InAlGaAs下分别限制层、InGaAlAs应变多量子阱和垒、InAlGaAs上分别限制层、P-InAlAs电子阻挡层、P-InP间隔层、P-InGaAsP光栅层、P-InP光栅盖层、P-InGaAsP腐蚀停止层、P-InP空间层、P-InGaAsP过渡层、P-InGaAs电接触层以及掺杂Fe的绝缘InP层。

进一步地,芯片前后出光端面解离在再生长区域,再生长区域填充有再生长形成的P-InP层、N-InGaAsP层和P-InP层。

进一步地,还包括在外延层上腐蚀形成的脊型波导。

进一步地,所述脊型波导腐蚀至P-InGaAsP腐蚀停止层。

进一步地,在所述InGaAlAs应变多量子阱和垒中,垒层由3层2nm InGaAlAs垒和2层2nm InGaAlAs阱超晶格结构组成。

以及,一种光通信O波段硅基高速半导体激光芯片的制造方法,其特征在于:其外延层的制作过程包括以下步骤:

步骤S1:缓冲层生长:将N-Si衬底放入MOCVD生长腔体,在高温下通氮气烘烤15min,接着生长300nm N-GaP缓冲层;在高温下通磷烷烘烤15min,再生长300nm N-GaAs缓冲层;接着在高温下通砷烷烘烤15min,生长500nm N-InP缓冲层;

步骤S2:生长15nm的N-AlGaInAs过渡层,生长不掺杂30nm AlGaInAs下波导层;生长不掺杂20nm AlGaInAs下分别限制层;生长7层8nm-AlGaInAs张应变量子阱,张应变至少为1.3%,生长8层10nm-AlGaInAs压应变量子垒,压应变至少为0.4%,量子垒由3层2nm-AlGaInAs垒和2层2nm-AlGaInAs阱超晶格结构组成;生长15nm AlGaInAs上分别限制层,生长25nm P-InAlAs电子阻挡层;生长50nm P-InP层,生长40nm P-InGaAsP光栅层,并制备均匀光栅;

步骤S3:采用PECVD沉积SiO

步骤S4:去除长完PNP层后片子表面的SiO

进一步地,还包括步骤S5:PECVD生长150nm SiO2介质层,光刻腐蚀,形成激光器脊波导,去除表面介质层,生长4000nm SiO2常规钝化层,脊波导表面开孔,去除脊波导表面掺Fe绝缘InP层,电子束蒸发Ti/Pt/Au P型电极金属,P型金属与半导体材料表面通过 SiO2钝化层和掺Fe绝缘InP层形成电学隔离,形成较低的芯片电容;接着芯片背面掩膜减薄至200微米,蒸发N面金属;解离形成bar条,采用Al2O3/Si膜系电子束蒸发,形成芯片谐振腔的高反和高透膜,完成芯片制备。

本发明及其优选方案在硅的衬底上,首先通过MOCVD先生长GaP缓冲层接着依次生长GaAs和InP缓冲层,实现低缺陷的材料表面利于后续激光器结构的外延生长。

在外延结构上,采用N-AlGaInAs代替常规的N-InAlAs降低势垒的高度,有利于提高电子的输运降低阈值;接着采用张应变的多量子阱来改善芯片工作阈值和带宽,量子垒采用薄层的超晶格结构,有利于重空穴在不同量子阱之间的输运,改善其分布均匀性。

在激光器的出光和背光端面上不采用常规的直接解离工艺,在靠近出光和背光端面的区域,采用选择区域生长PNP结构层,PNP的反向PN结特性起到了对电子的限制作用避免载流子流向端面与光子作用发热,发生COMD(腔面灾变失效),同时PNP结构材料作为波导,调整光斑近场分布,降低端面光子密度和发热。InP/InGaAsP/InP对于光场来说起到组合波导的作用并耦合有源区的光,对激光近场分布进行调整,改善近场光斑,降低端面光子密度,并改善端面电子和光子相互作用,降低发散角,改善芯片的端面灾变失效。

此外,在外延结构上生长的掺Fe绝缘InP层可以起到电学隔离的作用来降低电容、提高带宽,因此无需常规的BCB/PI胶等工艺,改善芯片的电容参数,提高工作带宽;本发明可以实现基于硅衬底的光通信O波段高速半导体激光器芯片。

附图说明

下面结合附图和具体实施方式对本发明进一步详细的说明:

图1为本发明实施例提供的高速激光芯片的外延结构示意图;

图中:1为N-Si衬底,2为N-GaP缓冲层,3为N-GaAs缓冲层,4为N-InP缓冲层,5为N-InGaAlAs过渡层,6为InGaAlAs下波导层,7为InGaAlAs下分别限制层,8为InGaAlAs应变多量子阱和垒,9为InGaAlAs上分别限制层,10为P-InAlAs层,11为P-InP间隔层,12为P-InGaAsP光栅层,13为P-InP光栅盖层,14为P-InGaAsP腐蚀停止层,15为P-InP空间层,16为P-InGaAsP过渡层,17为P-InGaAs电接触层,18为掺杂Fe的绝缘InP层,图中左右端面为激光器的解离腔面,19、20和21分别为选择区域再生长的P-InP、N-InGaAsP和P-InP层。

图2为本发明实施例导带的量子阱和垒能带结构示意图;

图中垒层由3层2nm InGaAlAs垒和2层2nm InGaAlAs阱超晶格结构组成,起到改善重空穴在量子阱之间的输运作用。

具体实施方式

为让本专利的特征和优点能更明显易懂,下文特举实施例,并配合附图,作详细说明如下:

如图1所示,本实施例提供的光通信O波段硅基高速半导体激光芯片的外延层具体结构及芯片的制造过程如下所示:

1.首先将2英寸N-Si衬底1放入MOCVD生长腔体,在高温下通氮气烘烤15min,高温通载气烘烤的作用主要有两方面,一方面去除表面脏污颗粒,另一方面利用高温质量输运效应改善材料生长表面质量,提高表面平整度,接着生长300nm N-GaP缓冲层2;在高温下通磷烷烘烤15min,再生长300nm N-GaAs缓冲层3,其生长晶格常数与GaP相近;接着在高温下通砷烷烘烤15min,生长500nm N-InP缓冲层4,完成缓冲层生长。

2.接着生长15nm的N-AlGaInAs过渡层5,生长不掺杂30nm AlGaInAs下波导层6,下波导层势垒低有利于改善电子的输运;生长不掺杂20nm AlGaInAs下分别限制层7;之后是InGaAlAs应变多量子阱和垒8的形成,包括生长7层8nm-AlGaInAs张应变量子阱,张应变至少1.3%,生长8层10nm-AlGaInAs压应变量子垒,压应变至少0.4%,量子垒由3层2nm-AlGaInAs垒和2层2nm-AlGaInAs阱超晶格结构组成,如图2所示,量子垒为压应变,垒层采用多层超晶格结构改善空穴的输运;与压应变量子阱相比,张应变具有更低的阈值和更高的增益和带宽特性,同时量子垒采用薄层的超晶格结构,更利于重空穴在量子阱之间通过隧穿效应传输,改善重空穴在不同量子阱直接分布的均匀性从而改善微分增益和带宽饱和特性;生长15nm AlGaInAs上分别限制层9,生长25nm P-InAlAs电子阻挡层10;生长50nm P-InP层11,生长40nm P-InGaAsP光栅层12,并制备均匀光栅。

3.接着PECVD沉积SiO

4.去除长完PNP层后片子表面的SiO

5.PECVD生长150nm SiO

本方法采用硅作为衬底,在实际封装过程中无需热沉,高速激光芯片在硅光集成、混合集成、硅光数据中心等领域可以大量使用。

本专利不局限于最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的光通信O波段硅基高速半导体激光芯片及其制造方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。

相关技术
  • 光通信O波段硅基高速半导体激光芯片及其制造方法
  • 光通信O波段硅基高速半导体激光芯片
技术分类

06120113004927