掌桥专利:专业的专利平台
掌桥专利
首页

一种太阳能帆板的对日定向系统及对日定向方法

文献发布时间:2023-06-19 19:30:30


一种太阳能帆板的对日定向系统及对日定向方法

技术领域

本发明涉及卫星技术领域,尤其涉及一种太阳能帆板的对日定向系统及对日定向方法。

背景技术

星箭分离是卫星技术领域中的重要控制技术,在星箭分离过程中,需要进行卫星分离、整星上电、展开太阳能帆板以及对日定向等多个操作,从而实现能源自给完成星箭分离的过程。相关技术中,在星箭分离之后,需要进行对日定向操作,以便太阳能帆板能够得到最大的光照产生电能。在实际火箭发射过程中,在星箭分离后,需要首先将太阳能帆板展开,然后才能进行对日定向操作。

然而,由于目前展开太阳能帆板仍然是通过将爆炸螺栓等火工品解锁装置引爆,然后驱动太阳能帆板展开到位并锁定的,因此也存在着各种意外的发生。例如,有可能引爆火工品解锁装置后,相应的太阳能帆板并没有按照预想的那样展开到位并锁定。有可能出现,只有部分太阳能帆板展开或者是太阳能帆板没有展开到位的情况,无法对日定向。

发明内容

本发明提供了一种太阳能帆板的对日定向系统及对日定向方法,以实现部分太阳能帆板展开或者是太阳能帆板没有展开到位的情况下也能进行太阳能帆板对日定向。

第一方面,本发明实施例提供了一种太阳能帆板的对日定向系统,包括:

火工品解锁装置,用于对太阳能帆板进行解锁;

太阳能帆板检测装置,用于检测太阳能帆板的展开状态信息;

太阳能帆板旋转装置,用于旋转调整太阳能帆板方向;

卫星姿态调整装置,用于驱动卫星调整姿态;

控制终端,其分别连接火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置,根据所获取的太阳能帆板的展开状态信息,控制火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置对卫星整星进行对日定向调整。

第二方面,本发明实施例提供了一种太阳能帆板的对日定向方法,包括:

引爆火工品解锁装置,对太阳能帆板进行解锁以使太阳能帆板展开;

通过太阳能帆板检测装置检测太阳能帆板的展开状态信息;其中展开状态信息用于指示太阳能帆板展开状态并锁定;

根据所获取的太阳能帆板的展开状态信息,控制火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置对卫星整星进行日定向调整。

本发明提供了一种太阳能帆板的对日定向系统及对日定向方法,通过引爆火工品解锁装置,对太阳能帆板进行解锁以使太阳能帆板展开;通过太阳能帆板检测装置检测太阳能帆板的展开状态信息;其中展开状态信息用于指示太阳能帆板展开状态并锁定;根据所获取的太阳能帆板的展开状态信息,控制火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置对卫星整星进行日定向调整,实现部分太阳能帆板展开或者是太阳能帆板没有展开到位的情况下也能进行太阳能帆板对日定向。

应当理解,发明内容部分中所描述的内容并非旨在限定本发明的实施例的关键或重要特征,亦非用于限制本发明的范围。本发明的其它特征将通过以下的描述变得容易理解。

根据下文结合附图对本申请的具体实施例的详细描述,本领域技术人员将会更加明了本申请的上述以及其他目的、优点和特征。

附图说明

结合附图并参考以下详细说明,本发明各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素。

图1示出了本发明实施例的基于卫星本体的坐标系;

图2示出了本发明实施例的一种太阳能帆板的对日定向系统的结构示意图;

图3示出了本发明实施例的一种太阳能帆板的对日定向方法的流程图;

图4示出了本发明较优实施例的一种太阳能帆板的对日定向方法的流程图;以及

图5示出了本发明实施例中太阳相对于卫星本体坐标系的位置向量的示意图。

图中:第一太阳能帆板210;第二太阳能帆板220;第一火工品解锁装置211;第二火工品解锁装置221;第一太阳能帆板检测装置212;第二太阳能帆板检测装置222;第一太阳能帆板旋转装置213;第二太阳能帆板旋转装置223;星务计算机101(控制终端);卫星姿态调整装置300。

具体实施方式

为了使本技术领域的人员更好地理解本说明书一个或多个实施例中的技术方案,下面将结合本说明书一个或多个实施例中的附图,对本说明书一个或多个实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本说明书的一部分实施例,而不是全部的实施例。基于本说明书一个或多个实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本文件的保护范围。

需要说明的是,本发明实施例描述的仅仅是为了更加清楚的说明本发明实施例的技术方案,并不构成对本发明实施例提供的技术方案的限定。

参考图1所示,卫星包括:卫星本体100,与卫星本体100连接的第一太阳能帆板210和第二太阳能帆板220。

基于卫星本体100的坐标系,太阳能帆板包括+y太阳能帆板210和-y太阳能帆板220。+y太阳能帆板210在坐标系的+y轴延伸,-y太阳能帆板220在坐标系的-y轴延伸。

此外图1示出了+y太阳能帆板210和-y太阳能帆板220返回零位的示意图。参考图1所示,在返回零位时,+y太阳能帆板210和-y太阳能帆板220的法线与卫星本体100的x轴方向一致。

参考图2所示,本发明的太阳能帆板的对日定向系统包括与第一太阳能帆板210和第二太阳能帆板220连接的第一火工品解锁装置211和第二火工品解锁装置221,与第一太阳能帆板210和第二太阳能帆板220连接的第一太阳能帆板检测装置212和第二太阳能帆板检测装置222,以及与第一太阳能帆板210和第二太阳能帆板220连接的第一太阳能帆板旋转装置213和第二太阳能帆板旋转装置223。系统还包括控制终端101和卫星姿态调整装置300,以下实施例中控制终端为星务计算机101。

本发明实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。

在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。

示例性的,第一火工品解锁装置211和第二火工品解锁装置221用于对第一太阳能帆板213和第二太阳能帆板223进行解锁。第一太阳能帆板检测装置212和第二太阳能帆板检测装置222用于检测第一太阳能帆板210和第二太阳能帆板220是否展开到位并锁定。第一太阳能帆板旋转装置213和第二太阳能帆板旋转装置223用于旋转第一太阳能帆板210和第二太阳能帆板220。

此外,星务计算机101与第一火工品解锁装置211和第二火工品解锁装置221连接,用于控制第一火工品解锁装置211和第二火工品解锁装置221对第一太阳能帆板210和第一太阳能帆板220进行解锁。星务计算机101还与第一太阳能帆板检测装置212和第二太阳能帆板检测装置222连接,获取第一太阳能帆板210和第一太阳能帆板220的展开状态信息。此外星务计算机101还与第一太阳能帆板旋转装置213和第二太阳能帆板旋转装置223连接,用于控制第一太阳能帆板210和第一太阳能帆板220的旋转。

此外,星务计算机101还与卫星姿态调整装置300连接,用于调整卫星本体100的姿态。

当第一太阳能帆板210及第二太阳能帆板220至少有一个展开到位并锁定的情况下,星务计算机(即控制终端)101同时驱动第一太阳能帆板旋转装置213及第二太阳能帆板旋转装置223控制第一太阳能帆板210及第二太阳能帆板220回到零位,星务计算机(即控制终端)101通过卫星姿态调整装置300驱动卫星调整姿态,对卫星整星进行-x轴方向对日;当第一太阳能帆板210及第二太阳能帆板220均未展开到位并锁定时,星务计算机(即控制终端)101驱动卫星姿态调整装置300对卫星进行-z轴方向对日,其中,基于卫星本体100的坐标系,在返回零位时,位于y轴的第一太阳能帆板210及第二太阳能帆板220的法线与卫星本体100的x轴方向一致。

基于同一发明构思,应用上面提到的太阳能帆板的对日定向系统,如图3所示,本发明实施例还提供了一种太阳能帆板的对日定向方法,所述方法包括,S302:引爆火工品解锁装置,对太阳能帆板进行解锁以使太阳能帆板展开;

示例性的,火工品解锁装置例如可以包括:

第一火工品解锁装置211,其分别与第一太阳能帆板210及控制终端101连接,用于对第一太阳能帆板210解锁;以下通过星务计算机来实现;

第二火工品解锁装置221,其分别与第二太阳能帆板210及星务计算机(即控制终端)101连接,用于对第二太阳能帆板220解锁;其中第一太阳能帆板210及第二太阳能帆板220分别连接于卫星本体100的两侧;

太阳能帆板检测装置包括:

第一太阳能帆板检测装置211,其分别与第一太阳能帆板210及星务计算机(即控制终端)101连接,用于检测第一太阳能帆板210的展开状态并锁定;

第二太阳能帆板检测装置212,其与分别第二太阳能帆板220及星务计算机(即控制终端)101连接,用于检测第二太阳能帆板220的展开状态并锁定;

太阳能帆板旋转装置包括:

第一太阳能帆板旋转装置213,其分别与所述第一太阳能帆板及控制终端连接,用于控制第一太阳能帆板的旋转;

第二太阳能帆板旋转装置223,其分别与第二太阳能帆板220及星务计算机(即控制终端)101连接,用于控制第二太阳能帆板220的旋转。

卫星在与火箭分离时,第一太阳能帆板210和第二太阳能帆板220并未处于展开的状态,而是处于折叠收缩的状态。因此在卫星与火箭分离后,尤其是进行速率阻尼停止旋转后,星务计算机101引爆第一火工品解锁装置211和第二火工品解锁装置221,对第一太阳能帆板210和第二太阳能帆板220进行解锁。从而第一太阳能帆板210和第二太阳能帆板220展开。

S304:通过太阳能帆板检测装置检测太阳能帆板的展开状态信息;其中展开状态信息用于指示太阳能帆板展开状态并锁定;

示例性的,星务计算机101在引爆火工品解锁装置后,通过太阳能帆板检测装置212~222检测相应的太阳能帆板210~220的展开状态信息,其中该展开状态信息用于指示太阳能帆板210~220是否展开到位并锁定。

S306:根据所获取的太阳能帆板的展开状态信息,控制火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置对卫星整星进行日定向调整。

下面以一较优的实施例对本发明的有益效果进行说明:

首先,引爆火工品解锁装置,对太阳能帆板进行解锁。

具体地,卫星在与火箭分离时,太阳能帆板210~220并未处于展开的状态,而是处于折叠收缩的状态。因此在卫星与火箭分离后,尤其是进行速率阻尼停止旋转后,星务计算机101引爆火工品解锁装置211和221,对太阳能帆板210和220进行解锁。从而太阳能帆板210和220展开。

其次,获取太阳能帆板的展开状态信息。

具体地,星务计算机101在引爆火工品解锁装置后,通过太阳能帆板检测装置212~222检测相应的太阳能帆板210~220的展开状态信息,其中该展开状态信息用于指示太阳能帆板210~220是否展开到位并锁定。

最后,根据所获取的太阳能帆板的展开状态信息,进行对日定向操作。

参见图3所示,在引爆火工品解锁装置后,星务计算机101通过太阳能帆板检测装置212~222获取+y太阳能帆板210和-y太阳能帆板220的展开状态信息。

当+y太阳能帆板210和-y太阳能帆板220均展开到位并锁定的情况下,星务计算机101同时驱动+y太阳能帆板210和-y太阳能帆板220回到零位。正如图1所示,+y太阳能帆板210和-y太阳能帆板220回到零位时,其法线与卫星本体100的x轴一致。然后,星务计算机101通过卫星姿态调整装置300驱动卫星调整姿态,从而实现整星-x对日,从而完成对日定向。

当+y太阳能帆板210和-y太阳能帆板220中任一太阳能帆板展开到位并锁定的情况下,星务计算机101驱动展开的太阳能帆板回零位。然后,星务计算机101通过卫星姿态调整装置300驱动卫星调整姿态,从而实现整星-x对日,从而完成对日定向。

当+y太阳能帆板210和-y太阳能帆板220均未展开到位并锁定时,星务计算机101驱动卫星姿态调整装置300进行-z对日。

可选地,卫星本体100朝向-x轴方向的一侧设置有太阳敏感器102。其中星务计算机101通过卫星姿态调整装置300驱动卫星调整姿态,从而实现整星-x对日的操作,包括:

星务计算机101从太阳敏感器102获取太阳相对于卫星本体100的位置信息;

星务计算机101根据太阳相对于卫星本体100的位置信息,确定太阳相对于卫星本体100坐标系的位置向量与卫星本体100-x轴之间的夹角;具体参考图5所示,S点代表星务计算机101根据从太阳敏感器102获取的太阳的位置信息确定的太阳相对于卫星本体100的坐标系的位置点。从而可以根据S点的坐标信息确定太阳相对于卫星本体100坐标系的位置向量Vs

星务计算机101通过卫星姿态调整装置300驱动卫星调整姿态,使得太阳相对于卫星本体100坐标系的位置向量Vs

从而通过以上操作,星务计算机101可以利用设置于卫星本体100的太阳敏感器102实现整星的-x对日操作。从而使得整星-x对日操作之后,太阳能帆板210~220能够对日,从而提高太阳能帆板210~220发电的效率。

进一步具体地,在整星的-x对日操作中,星务计算机101可以实时获取太阳相对于卫星本体100的坐标系的位置,并计算相应的位置向量Vs

从而星务计算机101进一步计算整体对日特征值L

从而星务计算机101在对日调整过程中,实时计算对日特征值L

进一步可选地,太阳能帆板210~220在朝向卫星本体-x轴方向的一侧还设置有太阳敏感器213~223。从而在完成整星-x对日操作后,星务计算机101根据太阳敏感器213和/或223测量的关于太阳的位置信息通过太阳能帆板旋转装置213旋转+y太阳能帆板210和/或通过太阳能帆板旋转装置223旋转-y太阳能帆板220,对+y太阳能帆板210和/或-y太阳能帆板220进行对日微调。

具体地,在星务计算机101完成整星的-x对日操作后,进一步从太阳敏感器213接收太阳相对于+y太阳能帆板210的位置信息以及从太阳敏感器223接收太阳相对于-y太阳能帆板220的位置信息。

例如,星务计算机101根据从太阳敏感器213接收的信息确定太阳相对于+y太阳能帆板210的坐标系中的位置向量Vs

从而在+y太阳能帆板210的对日微调过程中,星务计算机101可以实时获取太阳相对于+y太阳能帆板的坐标系的位置,并计算相应的位置向量Vs

L

从而星务计算机101在+y太阳能帆板的对日微调过程中,实时计算对日特征值L

同样地,在-y太阳能帆板220的对日微调过程中,星务计算机101可以实时获取太阳相对于-y太阳能帆板的坐标系的位置,并计算相应的位置向量Vs

L

从而星务计算机101在-y太阳能帆板的对日微调过程中,实时计算对日特征值L

从而根据本实施例的技术方案,星务计算机101首先利用卫星本体100的整星对日操作初步实现太阳能帆板的对日操作。然后,星务计算机101进一步对太阳能帆板进行对日微调操作,从而能够更加准确地实现太阳能帆板的对日操作,从而进一步提高太阳能帆板的效率。

本实施例提供了一种太阳能帆板的对日定向方法,通过引爆火工品解锁装置,对太阳能帆板进行解锁以使太阳能帆板展开;通过太阳能帆板检测装置检测太阳能帆板的展开状态信息;其中,展开状态信息用于指示太阳能帆板展开状态并锁定;根据所获取的太阳能帆板的展开状态信息,控制火工品解锁装置、太阳能帆板检测装置、太阳能帆板旋转装置及卫星姿态调整装置对卫星整星进行日定向调整,实现部分太阳能帆板展开或者是太阳能帆板没有展开到位的情况下也能进行太阳能帆板对日定向。

附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

技术分类

06120115938777