掌桥专利:专业的专利平台
掌桥专利
首页

一种电动汽车充电站PLC电路有源滤波控制方法

文献发布时间:2023-06-19 12:24:27


一种电动汽车充电站PLC电路有源滤波控制方法

技术领域

本发明属于电动汽车充电站技术领域,具体涉及一种电动汽车充电站PLC电路有源滤波控制方法。

背景技术

电动汽车(electricvehicle)指使用电能作为动力源,通过电动机驱动行驶的汽车,属于新能源汽车,包括纯电动汽车(BEV)、混合动力电动汽车(HEV)和燃料电池电动汽车(FCEV)。由于其对环境影响相对传统汽车较小,因而发展前景被广泛看好,但技术尚不成熟。

目前一般的电动汽车充电站通常使用PLC(powerlinecarrier)运用电力线载波实现信息传输的通信方式,这种通信方式的谐波的存在使计量计费系统准确性变差,影响了电网的电能质量和通信系统的稳定性。

发明内容

本发明的目的是为了克服现有技术存在的使计量计费系统准确性变差,影响了电网的电能质量和通信系统的稳定性的问题,提供一种电动汽车充电站PLC电路有源滤波控制方法,该电动汽车充电站PLC电路有源滤波控制方法具有可提升闭环系统的控制性能的效果。

为实现上述目的,本发明提供如下技术方案:一种电动汽车充电站PLC电路有源滤波控制方法,包括以下步骤:

步骤一:负荷三相电流经变换矩阵T

步骤二:通过公式的推导,得出转化到基波坐标系下各次谐波坐标系下的谐波耦合量形式都相同的结论,所以把各次谐波电流控制器的输出控制量叠加后,经解耦实现dq轴分别独立可控,把三相四线APF通过park变换转到p-q坐标下的数学模型;

步骤三:公式中s

步骤四:对APF控制系统进行设计,设计控制系统考虑2方面:①电流能够快速地跟踪负载电流的变化;②直流侧的电压基本保持不变,当系统的瞬时有功功率达到平衡,可保证直流侧电压的稳定,在谐波检测环节中加入直流侧的电压控制来对瞬时有功功率的在负载及线路上的损耗进行补偿实现瞬时有功功率平衡;

步骤五:传统的PI电压闭环控制传递函数,二阶系统响应,传统PI控制中,直流电压控制过程的超调量a%和调节时间调节时间较长,稳态误差偏大,当外部参数发生变化时系统不能迅速达到稳态,针对此特点引入了模糊控制,设计模糊PI数字控制器以减弱外界条件变化对系统告成的影响;

步骤六:对PI的模糊控制,根据总结的实际经验,用自然语言表述的控制策略,通过实际数据归纳纳总结出控制规则的智能控制策略,基本的模糊控制系统由模糊化、模糊推理、解模糊部分构成,与传统控制策略相比具有对数学模型准确性要求低、对系统参数不敏感,响应速度快、自适应性较好的优点,尤其适合于非线性、时变及纯滞后系统的控制;

步骤七:根据IF-THEN编码,制定模糊控制策略,为保证数据的处理及时有效,通过设置采样的时间间隔,实现实时调节P、I参数的目的;

步骤八:模糊控制器的关系生成方法和推理合成算法采用Mamdani方法,去模糊化方法采用重力中心法算法。

优选的,所述步骤三中,由公式可知经Park变换后,d-q坐标系下的电流、电压分量之间有交叉耦合,可在谐波旋转坐标下实现,指定次谐波电流的检测和控制,即正、负序谐波电流通过相应的谐波旋转坐标变换转换成直流量后,经低通滤波器来提取直流量,经控制器实现直流量的控制,从而达到无静差控制指定次谐波电流的目的。

优选的,所述步骤三中,APF指令直流侧电压不仅影响逆变器的输出电流及APF的补偿性能,也影响输入电网的电流和滤波电容的电压。

优选的,所述步骤五中,对给定值的直流侧的电压,选择采用APF输出侧电流反馈模糊PI控制逆变器输出电压来稳定直流侧的母线电压。

优选的,所述步骤六中,采用误差(e)及误差变化(ec)作为输入语言变量,通过调整和校准模糊规则,对输入量进行运算得到模糊矢量,模糊推理中产生的模糊量转化为精确量即解模糊,模糊PI控制器由PI控制器和模糊控制器组成,用模糊控制规则的模糊控制器用来修正PI控制器的参数,其中△K

优选的,所述步骤六中,模糊化这一步的目的是对实值进行模糊集的推算,主要待确定的参数有论域大小,伸缩因子,隶属函数等,本控制器以控制系统的偏差e和偏差变化率ec作为输入,△K

优选的,所述步骤六中,模糊控制策略E和ec对△k

优选的,所述步骤七中,解模糊通过采样时刻得到的e和ec,经模糊化和模糊策略后得到△K

与现有技术相比,本发明提供了一种电动汽车充电站PLC电路有源滤波控制方法,具备以下有益效果:

本发明通过分析了分析了基于PLC的电动汽车充电电路,抑制谐波的有源滤波器中,采用指定谐波消除法构建控制系统模型,详细推导电流模糊控制结合PI的Fuzzy-PI复合控制电流的策略,利用matlab/simulink建立系统仿真模型并进行了仿真,模糊PI控制器应用于三相四桥臂APF的直流侧电压环的控制中,可提升闭环系统的控制性能,使系统不仅具有良好的动态、静态特性,而且达到了减少谐波、改善正弦波波形的目的。

该装置中未涉及部分均与现有技术相同或可采用现有技术加以实现,本发明结构科学合理,使用安全方便,为人们提供了很大的帮助。

附图说明

图1是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中滤波后分离出直流分量的公式图;

图2是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中有源电力滤波器的数学模型的公式图;

图3是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中有源电力滤波器的数学模型图;

图4是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中有源电力滤波器的数学模型的公式图;

图5是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中谐波旋转坐标系下的d轴数学模型图;

图6是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中p-q坐标下的数学模型图;

图7是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中直流电压谐波检测控制原理图;

图8是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中PI电压闭环控制传递函数图;

图9是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中二阶系统响应公式图;

图10是本发明提出的电动汽车充电站PLC电路有源滤波控制方法的控制系统图;

图11是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中模糊控制器基本结构图;

图12是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中整定规则表的结构示意图;

图13是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中模糊控制器的工作流程图;

图14是本发明提出的电动汽车充电站PLC电路有源滤波控制方法中模糊控制的输出使用加权平均值法公式图;

图15是本发明提出的电动汽车充电站PLC电路有源滤波控制方法的模糊仿真模型图。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体式连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

请参阅图1-15,本发明提供一种技术方案:一种电动汽车充电站PLC电路有源滤波控制方法,包括以下步骤:

步骤一:负荷三相电流经变换矩阵T

步骤二:通过图3公式和图5公式的推导,得出转化到基波坐标系下各次谐波坐标系下的谐波耦合量形式都相同的结论,所以把各次谐波电流控制器的输出控制量叠加后,经解耦实现dq轴分别独立可控,把三相四线APF通过park变换转到p-q坐标下的数学模型如图6所示;

步骤三:图6公式中s

步骤四:对APF控制系统进行设计,设计控制系统考虑2方面:①电流能够快速地跟踪负载电流的变化;②直流侧的电压基本保持不变,当系统的瞬时有功功率达到平衡,可保证直流侧电压的稳定,如图7所示在谐波检测环节中加入直流侧的电压控制来对瞬时有功功率的在负载及线路上的损耗进行补偿实现瞬时有功功率平衡;

步骤五:传统的PI电压闭环控制传递函数如图8所示,二阶系统响应如图9所示,传统PI控制中﹐直流电压控制过程的超调量a%和调节时间调节时间较长,稳态误差偏大,当外部参数发生变化时系统不能迅速达到稳态,针对此特点引入了模糊控制,设计模糊PI数字控制器以减弱外界条件变化对系统告成的影响;

步骤六:对PI的模糊控制,根据总结的实际经验,用自然语言表述的控制策略,通过实际数据归纳纳总结出控制规则的智能控制策略,基本的模糊控制系统由模糊化、模糊推理、解模糊部分构成如图11所示,与传统控制策略相比具有对数学模型准确性要求低、对系统参数不敏感,响应速度快、自适应性较好的优点,尤其适合于非线性、时变及纯滞后系统的控制;

步骤七:根据图12进行IF-THEN编码,制定模糊控制策略,为保证数据的处理及时有效,通过设置采样的时间间隔,实现实时调节P、I参数的目的;

步骤八:模糊控制器的关系生成方法和推理合成算法采用Mamdani方法,去模糊化方法采用重力中心法算法,如图15所示。

本发明中,优选的,步骤三中,由图6公式可知经Park变换后,d-q坐标系下的电流、电压分量之间有交叉耦合,可在谐波旋转坐标下实现,指定次谐波电流的检测和控制,即正、负序谐波电流通过相应的谐波旋转坐标变换转换成直流量后,经低通滤波器来提取直流量,经控制器实现直流量的控制,从而达到无静差控制指定次谐波电流的目的。

优选的,步骤三中,APF指令直流侧电压不仅影响逆变器的输出电流及APF的补偿性能,也影响输入电网的电流和滤波电容的电压。

优选的,步骤五中,对给定值的直流侧的电压,选择如图10采用APF输出侧电流反馈模糊PI控制逆变器输出电压来稳定直流侧的母线电压。

优选的,步骤六中,采用误差(e)及误差变化(ec)作为输入语言变量,通过调整和校准模糊规则,对输入量进行运算得到模糊矢量,模糊推理中产生的模糊量转化为精确量即解模糊,模糊PI控制器由PI控制器和模糊控制器组成,用模糊控制规则的模糊控制器用来修正PI控制器的参数,其中△K

优选的,步骤六中,模糊化这一步的目的是对实值进行模糊集的推算,主要待确定的参数有论域大小,伸缩因子,隶属函数等,本控制器以控制系统的偏差e和偏差变化率ec作为输入,△K

优选的,步骤六中,模糊控制策略E和ec对△k

步骤七中,解模糊通过采样时刻得到的e和ec,经模糊化和模糊策略后得到△K

综上所述,采用指定谐波消除法构建控制系统模型,详细推导电流模糊控制结合PI的Fuzzy-PI复合控制电流的策略,利用matlab/simulink建立系统仿真模型并进行了仿真。结果表明:模糊PI控制器应用于三相四桥臂APF的直流侧电压环的控制中,可提升闭环系统的控制性能,使系统不仅具有良好的动态、静态特性,而且达到了减少谐波、改善正弦波波形的目的。

以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

相关技术
  • 一种电动汽车充电站PLC电路有源滤波控制方法
  • 一种光伏关断器PLC驱动电路及其控制方法
技术分类

06120113281950