掌桥专利:专业的专利平台
掌桥专利
首页

一种全光纤直接半导体激光器

文献发布时间:2023-06-19 16:04:54



技术领域

本发明涉及激光技术领域,尤其涉及一种全光纤直接半导体激光器。

背景技术

半导体泵浦源以其高电光效率、泵浦波长被激光物质吸收效率高、寿命长等特点,既可以作为光纤激光器、固体激光器等的泵浦源,亦可以合成之后或单独直接输出成为直接半导体激光器(Direct Diode Laser,DDL)。然而半导体泵浦源输出激光的功率较低、光束质量较差,因此,只能应用于薄板焊接、熔覆、淬火、热处理等对激光功率密度要求不高的应用领域,严重限制了其应用范围。目前解决这一技术难题一般采用光束整形合束对多个半导体泵浦源进行合束处理,合束的技术如空间合束仅能提高功率不能提高亮度;偏振合束可以提高亮度,但仅限于两束激光;综上,这些合束存在耦合难度高、体积大、激光损耗大等问题。

发明内容

基于此,本发明提出了一种全光纤直接半导体激光器,通过设置变径光纤取代了传统的空间合束技术,提升了所述全光纤直接半导体激光器(DDL)输出激光的亮度及减小了全光纤直接半导体激光器的体积。

第一方面,本发明提供一种全光纤直接半导体激光器,包括:依光路设置的半导体激光芯片阵列、合束器、第一剥模器、变径光纤和第二剥模器;其中,所述变径光纤的输入端与所述第一剥模器的输出端光纤连接且光纤参数相同,所述变径光纤的输出端与所述第二剥模器的输入端光纤连接且光纤参数相同,所述光纤参数包括光学参数和结构参数。

第二方面,本发明还提供另一种全光纤直接半导体激光器,包括:依光路设置的半导体激光芯片阵列、合束器、第一剥模器、变径转换模块、第二剥模器和激光输出头;其中,所述变径转化模块内设有上述的变径光纤。

相较于现有技术,本发明有益效果:

(1)本发明提供了一种全光纤直接半导体激光器,包括:依光路设置的半导体激光芯片阵列、合束器、第一剥模器、变径光纤和第二剥模器;其中,所述变径光纤的输入端与所述第一剥模器的输出端光纤连接且光纤参数相同,所述变径光纤的输出端与所述第二剥模器的输入端光纤连接且光纤参数相同,所述光纤参数包括光学参数和结构参数。通过设置变径光纤取代了传统的空间合束技术,提升了所述全光纤直接半导体激光器输出激光的亮度,而且实现了全光纤结构,有利于减小了全光纤直接半导体激光器的体积。

(2)本发明还提供了另一种全光纤直接半导体激光器,包括:依光路设置的半导体激光芯片阵列、合束器、第一剥模器、变径转换模块、第二剥模器和激光输出头;其中,所述变径转化模块内设有上述的变径光纤。在通过设置变径光纤取代了传统的空间合束技术,提升了所述全光纤直接半导体激光器输出激光的亮度,而且实现了全光纤结构,有利于减小了全光纤直接半导体激光器的体积。同时,通过设置变径转换模块及激光输出头进一步的提高了所述全光纤直接半导体激光器输出激光亮度的稳定性。

附图说明

图1是本发明实施例提供的全光纤直接半导体激光器的结构示意图;

图2现有技术中传能光纤的外部结构图;

图3现有技术中传能光纤的纤芯折射率分布曲线;

图4是本发明实施例提供的变径光纤的外部结构图;

图5是本发明实施例提供的变径光纤的纤芯折射率分布曲线;

图6是本发明实施例中激光在变径光纤中传输的示意图;

图7A是本发明实施例中一种变径光纤的结构示意图;

图7B是本发明实施例中另一种变径光纤的结构示意图;

图8A是激光在基于图7A的变径光纤的纤芯中的全反射光路图;

图8B是激光在基于图7B的变径光纤的纤芯中的全反射光路图;

图9是本发明另一实施例提供的全光纤直接半导体激光器的结构示意图;

图10是本发明另一实施例提供的变径转换模块结构示意图。

具体实施方式

为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本发明。在本说明书中,所述“第一”、“第二”字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同项或相似项进行区分,在本发明实施例中不作限制。

为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。

实施例一

请参阅图1,在一些实施例中所述全光纤直接半导体激光器1,包括:半导体激光芯片阵列11,用于发射激光;合束器12,其输入端与所述半导体激光芯片阵列11的输出端连接;变径光纤10,其输入端与所述合束器12的输出端连接,其输出端用于输出激光。

现有技术中,通常的激光器在对半导体激光芯片阵列11输出的激光通过合束器合后,一般采用传能光纤对合束后的激光进行传输,实现全光纤结构,此处的传能光纤通常是指其直径与折射率均保持恒定,如图2和图3所示。虽然合束器12可实现功率合束,但是其本身在合束的过程中存在功率损耗,且对提高输出激光亮度的能力有限。

因此,本实施例一中,采用所述变径光纤10,如图4所示,对所述合束器进行功率合束后的激光进行进一步的聚集,提高了所述全光纤直接半导体激光器的输出功率及亮度。

根据光的折射定律,光在不同折射率介质中传输时,会优先进入折射率较高的介质中传输。在一实施例中所述变径光纤10为渐变折射率光纤,当所述渐变折射率光纤为渐变增大的高折射率分布时,激光光束向所述变径光纤的中间高折射率区域汇聚压缩,当所述渐变折射率光纤为渐变减小的低折射率分布时,激光光束汇聚压缩的速率逐渐递减。

请继续参阅图4至图6,在本实施例一中所述变径光纤10在沿激光的输出方向,其直径距离逐渐减小,且沿其直径方向,其纤芯的折射率逐渐减小,以满足激光在所述变径光纤的纤芯中按照全反射传输,以聚集激光光束,从而压缩光斑。

具体地,在本实施例一中,所述变径光纤10沿其直径方向,其纤芯的折射率逐渐减小,因此,当所述半导体激光芯片阵列11发射的激光在通过所述合束器12进行合束后,再在所述变径光纤10的纤芯中传输时,激光会逐渐向纤芯的中心靠近,激光光束逐渐集中,保证了激光较好的光束质量和激光能量聚集。同时,本实施例中,其所述变径光纤的直径沿激光的输出方向逐渐减小,以满足激光在所述变径光纤10的纤芯中实现全反射传输,减少激光从纤芯中漏出,以压缩光斑。可以理解为,在激光光束能量集中的过程中,所述变径光纤10的纤芯的直径逐渐减小,则单位面积的激光功率变大,即功率密度越大,从而提升了所述全光纤直接半导体激光器的输出亮度,替代了传统复杂的空间耦合技术和芯片设计,此外,减小了所述全光纤直接半导体激光器1的体积,扩大了其应用场景。

具体地,请继续参阅图3,现有技术中传能光纤的折射率分布曲线,随纤芯直径的变化,其折射率不变,记其纤芯半径为R,对应的纤芯相对包层的折射率为H,x对应图3中的横坐标轴(r),y对应图3中的纵坐标轴(n)。而本实施例所述变径光纤10的纤芯折射率分布曲线呈半椭圆曲线,如图5所示。所述椭圆曲线的轨迹方程(1)如下:

其中,H为所述变径光纤的纤芯相对包层的折射率,Hmax为所述变径光纤的纤芯相对包层的折射率,R为所述变径光纤的纤芯半径,x对应图5中的横坐标轴(r),y对应图3中的纵坐标轴(n)。

将本实施中所述变径光纤10的折射率等效为如图3所示的传统的传能光纤的折射率时,即所述变径光纤10的平均等效折射率为H。由于当所述变径光纤10的纤芯相对包层的折射率太大时,会增加所述变径光纤的制造困难、且增加其断裂可能性;且当所述变径光纤10的纤芯相对包层的折射率较小时,会致使激光光束聚焦效果会变差,故优选地,本实施例一中所述变径光纤10的纤芯最大折射率Hmax是平均等效折射率H的1~3倍,即可实现了所述变径光纤10在通过高折射率分布引导激光向中间高折射率区域集中,从而达到聚集光束、提升输出亮度的目的。此外,按照椭圆曲线的逐渐变化又可以较好的控制汇聚的速率以减少激光汇聚时的损耗和发热问题。

具体地,从本实施例一采用的所述变径光纤10的外部结构图(如图4所示)与现有技术中所述传能光纤的外部结构图(如图2所示)对比可知,所述传能光纤的直径随着所述传能光纤的长度变化是保持不变的,而所述变径光纤10的直径随着所述变径光纤10的长度变化会发生变化。即沿激光输出方向,所述变径光纤10的输入端101和输出端103均为直径恒定的平直区段,将其分别记为输入平直区段101、输出平直区段103,所述变径光纤的输入端与输出端之间设有至少一变径区段102,所述变径区段102的光纤直径沿激光输出方向逐渐减小。其中,所述变径光纤10的输入端101和输出端103均为直径恒定的平直区段,可便于所述变径光纤与其他光学器件(如合束器、剥模器或隔离器等)的连接(如熔接),保证所述变径区段102的有效长度。

请继续参阅图4,在本实施例中,为了减少变径过程中的损耗使得变径区段102仍然满足全反射关系,所述变径区段102的长度需满足公式(2)如下:

其中,公式(2)中D为所述变径光纤的输入端直径,d为所述变径光纤的输出端直径,L为所述变径光纤的变径区段的长度,β为所述变径光纤的包层与纤芯的折射率比。

具体理解可以参阅图7A和7B不同参数的变径光纤结构示意图。

针对变径光纤A,记其输入平直区段101a的直径为D1,其变径区段102a的长度为L1,其输出平直区段103a的直径为d1,变径区段102a的变径倾角为θ1。针对变径光纤B记其平直区段101b的直径为D2,其变径区段102b的长度为L2,其输出平直区段103b的直径为d2,变径区段102b的变径倾角为θ2,其中,变径光纤A与变径光纤B的变径比例相等,即D1/d1等于D2/d2。请结合图8A和8B,激光在所述变径光纤A和所述变径光纤B中的全反射光路图,针对变径光纤A,记激光的入射光与纤芯的侧壁(所述侧壁也可以理解为包围纤芯的包层与纤芯两者之间的界面)之间的入射角为α1,针对变径光纤B,记激光的入射光与纤芯的侧壁(所述侧壁也可以理解为包围纤芯的包层与纤芯两者之间的界面)之间的入射角为α2,当变径光纤长度L1小于L2时,则变径倾角θ1大于θ2,入射角α2大于α1,也就是,当变径区段102的长度L增加时,所述变径区段102的变径倾角将会减小,其入射角就会相对增大,越容易满足全反射要求,若是所述变径区段102不够长则其直径达不到逐渐减小的要求,会有部分激光从所述变径光纤10的纤芯中折射到包层中,会造成激光功率的损失,减小所述全光纤直接半导体激光器1的输出功率。因此,本实施例若是采用传统的熔融拉锥光纤,将难以提高输出激光的亮度,并保证光束质量。

基于此,为了使激光在所述变径光纤10满足全反射条件,减小激光损耗,本实施例,优选地,所述变径光纤10的d/D的比值为0.2~0.5或所述变径区段102的长度L为5~50m,或所述变径光纤10的d/D的比值为0.2~0.5及所述变径区段的长度L为5~50m,以此,可将所述全光纤直接半导体激光器1输出激光的亮度提升到4~25倍。

本实施例中一所述变径光纤10的长度较长,为使所述全光纤直接半导体激光器1的结构更加紧凑,因此,本实施例中所述变径光纤10呈至少一圈盘绕状,以此还可以保证较低的弯曲损耗,减少激光功率的损失;但是当所述变径光纤盘绕的弯曲半径过小时,也会增加激光从所述变径光纤10中泄露的风险。因此,本实施一中,优选所述变径光纤在固定的过程中,其盘绕状的弯曲半径为10~30cm。

需要说明的是,为了保证较小的损耗就需要减少变径区光纤倾角,而光纤倾角与变径光纤长度呈正比、与变径比例呈反比,为了得到较大的变径比增加输出亮度往往需要采用变径区域均匀变化且长度很长的变径光纤,这种变径光纤需要专业的光纤拉丝塔才能制造,传统的熔融拉锥方式是无法生产和制造的。根据实际需要,所述变径光纤的纤芯横截面可以为圆形或多边形。由于当所述变径光纤的纤芯横截面为圆形时,该变径光纤的制备工艺相对简单,故本实施例优选采用纤芯横截面为圆形的变径光纤。沿激光输出方向(即光纤长度方向)所述变径光纤的包层与纤芯的直径比例保持恒定,且所述变径光纤折射率的改变仅限于其纤芯,其包层的折射率不改变,光纤的纤芯折射率大于包层折射率。

由于所述全光纤直接半导体激光器一般可直接用来加工,尤其是对金属材料的加工,在此加工的过程中会有部分激光被反射进入所述全光纤直接半导体激光器内,这部分被反射的激光为回返光,回返光的存在会对激光器中的光学器件造成严重损坏,并随着输出功率的增大其回返光也增强,本实施例采用了变径光纤,由于沿激光输出方向,其直径距离逐渐减小,则回返光进入所述变径光纤后,则所述回返光会被扩束,甚至有部分回返光会从所述变径光纤中的纤芯中泄露出去,这样就可以进一步的保护半导体激光芯片阵列11。因此,本实施例中,所述全光纤直接半导体激光器1采用所述变径光纤10即可以实现输出激光的亮度,也可以减小回返光对所述半导体激光芯片阵列11的损伤,提高了所述全光纤直接半导体激光器1的使用寿命。

请继续参阅图1,在本实施例一中为有效的滤除包层光及降低包层光功率,优选地,所述全光纤直接半导体激光器1还包括:第一剥模器13、第二剥模器15,具体为,依光路设置的半导体激光芯片阵列11、合束器12、第一剥模器13、变径光纤10、第二剥模器15;其中,所述变径光纤10的输入端与所述第一剥模器13的输出端光纤连接且光纤参数相同,所述变径光纤10的输出端与所述第二剥模器15的输入端光纤连接且光纤参数相同,所述光纤参数包括光学参数和结构参数。

需要说明的是,所述光学参数包括光纤折射率渐变方向、光纤折射率的渐变率、光纤折射率的分布等;所述结构参数包括纤芯的半径、包层的半径、纤芯与包层偏心率等。

进一步地,为了减小器件之间因光纤熔接而损耗耦合功率,所述全光纤直接半导体激光芯片阵列11输出端的光纤参数与所述合束器12输入端的光纤参数相同,所述合束器12输出端的光纤参数与所述第一剥模器13输入端的光纤参数相同,所述第一剥模器13输出端的光纤参数与所述变径光纤10输入端的光纤参数相同,所述变径光纤10输出端的光纤与所述第二剥模器15输入端的光纤参数相同。

需要说明的是,所述光纤及所述变径光纤均包括纤芯、包围纤芯的至少一包层、包围包层的涂覆层,即所述光纤及变径光纤可以为单包层光纤、双包层光纤或三包层光纤,本实施例以单包层光纤为例,所述包层的折射率小于纤芯的折射率,包层的折射率大于涂覆层的折射率,考虑所述光纤及变径光纤的制备工艺,优选地,所述变径光纤的涂覆层、包层和纤芯直径为等比例的变化。

此外,所述半导体激光芯片阵列11发射的激光波长可以为915nm、976nm、1080nm等中的一种。

实施例二

由于使用的所述变径光纤10的直径至少是微米级,在压缩光斑的过程中,对其精确度要求非常高,且又所述变径光纤10在传输激光的过程中,会产生热量,当输出功率足够大时,传输中产生的热量若不及时排出,会影响到所述变径光纤10的实际纤芯和包层的直径以及纤芯的折射率。因此,本发明提供实施例二提供另一种全光纤直接半导体激光器2,如图9所示。

本实施例一与实施例二的区别在于,实施例二中所述全光纤直接半导体激光器2还设有变径转换模块14,所述变径转换模块14用于保持所述变径光纤10的光学性能的稳定性。所述全光纤直接半导体激光器2还设有激光输出头16,其输入端与所述第二剥模器17的输出端连接用于输出激光,上述设计保证所述全光纤直接半导体激光器2在加工过程中能够输出稳定的激光。其中,所第二剥模器17的输出端的光纤参数与所述激光输出头16的输入端的光纤参数相同。在一些实施例中,所述变径转换模块14具有密封腔体,所述变径光纤10固定于所述密封腔体内,以用于提高其散热效率。即所述变径转换模块14为一密封导热盒体。

在本实施例二中,请参阅图10,所述密封导热盒体包括:上盖板141、与所述上盖板141相对设置的散热底板142、及围绕所述上盖板141与散热底板142之间的侧板(未图示),所述上盖板141、散热底板142及侧板构成所述密封腔体,所述变径光纤10收容于所述密封腔体内,并通过导热密封胶层143固定于所述散热底板142上,以加速所述变径光纤10散热,从而保证所述变径光纤10光学性能的稳定性。

进一步地,所述密封导热盒体的相对两侧分别设有输入密封套144、输出密封套145,所述变径光纤10的输入端穿过所述输入密封套144与所述第一剥模器13的输出端连接,所述变径光纤10的输出端穿过所述输出密封套145与所述第二剥模器15的输入端连接。其中,所述输入密封套144与输出密封套145用于保护所述变径光纤10的输出端与输入端免受损伤,并确保其在连接处有一定的弯曲强度。

相较于现有技术,(1)本发明实施例提供了一种全光纤直接半导体激光器1,包括:依光路设置的半导体激光芯片阵列11、合束器12、第一剥模器13、变径光纤10和第二剥模器15;其中,所述变径光纤10的输入端与所述第一剥模器13的输出端光纤连接且光纤参数相同,所述变径光纤10的输出端与所述第二剥模器15的输入端光纤连接且光纤参数相同,所述光纤参数包括光学参数和结构参数。通过设置变径光纤10取代了传统的空间合束技术,提升了所述全光纤直接半导体激光器1输出激光的亮度,而且实现了全光纤结构,有利于减小了全光纤直接半导体激光器1的体积。

(2)本发明实施例还提供了另一种全光纤直接半导体激光器2,包括:依光路设置的半导体激光芯片阵列11、合束器12、第一剥模器13、变径转换模块14、第二剥模器15和激光输出头16;其中,所述变径转化模块14内设有上述的变径光纤10。在通过设置变径光纤10取代了传统的空间合束技术,提升了所述全光纤直接半导体激光器2输出激光的亮度,而且实现了全光纤结构,有利于减小了全光纤直接半导体激光器2的体积。同时,通过设置变径转换模块14及激光输出头16进一步的提高了所述全光纤直接半导体激光器2输出激光亮度的稳定性。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

相关技术
  • 一种全光纤直接半导体激光器
  • 一种直接探测型全光纤旋转多普勒测速仪
技术分类

06120114691969