掌桥专利:专业的专利平台
掌桥专利
首页

一种应力自动施加下软磁材料磁性实时检测装置

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及磁性能与应力测量技术领域,特别是涉及一种应力自动施加下软磁材料磁性实时检测装置。

背景技术

片状软磁材料由于涡流损耗小,广泛应用于大型电气设备与电磁机构,如电动机、发电机、变压器等。在实际应用过程中,片状软磁材料的磁性能,如磁导率、磁滞回线、矫顽力等特性会受到应力影响,应力来源多为电切割产生的剪切力、装配与匝绕线圈过程中产生的局部推力等。软磁材料磁性能影响着大型电气设备的运行性能与工作效率,因此精准测量应力影响下软磁材料的磁特性至关重要。

目前软磁材料磁性能检测方法已有爱泼斯坦方圈法、环形样件法与单片测量法,已有应力作用下磁性能的测量方法,通过气缸或电机施加不同方向应力同时利用探针与H线圈组合探头测量软磁材料的磁性能。在专利(丁晓峰,熊彦文,肖力豪,郭宏.一种可控应力条件下的硅钢片二维磁特性测量系统及其测量方法,CN104569875A)中,在可控应力下对硅钢片二维磁特性进行测量。在专利(张殿海,贾梦凡,任自艳,张艳丽.电工钢片矢量磁特性的温度与应力效应测量装置)中,对十字型电工钢片进行不同应力与温度下的磁特性测量。在专利(李永建,张文婷,万振宇,付裕,杨明.一种适用于电工材料应力加载下的三维磁特性测量装置)中,提出了一种应力作用下电工材料三维磁特性测量方法。但上述专利并未实现应力的自动控制与闭环检测,此外,未涉及大尺寸片状软磁材料在应力作用下磁特性的测量。综上,用于大尺寸片状软磁材料的应力与磁性能自动施加与实时测量装置,目前尚未发现相关报道。

发明内容

本发明的目的是提供一种应力自动施加下软磁材料磁性实时检测装置,以解决上述现有技术存在的问题,能够克服现有技术的不足,提供一种精度高、体积小、重量轻、性能稳定、实时控制的用于大尺寸片状软磁材料应力与磁性能的自动施加与实时测量装置。

为实现上述目的,本发明提供了如下方案:本发明提供一种应力自动施加下软磁材料磁性实时检测装置,包括被测样片,还包括,

施磁部,包括结构相同的上施磁件和下施磁件,所述被测样片位于所述上施磁件与所述下施磁件之间;

夹持件,设置有两个,两所述夹持件位于所述施磁部相对的两侧,两所述夹持件用于对所述被测样片进行夹持,任一所述夹持件通过应力件受力;

驱动件,设置在施磁部另外的两侧,所述驱动件用于驱动所述上施磁件升降;

探测件,设置在所述被测样片靠近所述上施磁件的一侧,所述探测件与所述被测样片接触。

优选的,所述上施磁件包括单轴磁轭,所述单轴磁轭上绕设有低阻抗绕组,所述低阻抗绕组与所述被测样片对应设置,所述单轴磁轭通过第一无磁夹件固定,所述单轴磁轭通过第二无磁夹件与所述驱动件传动连接。

优选的,所述单轴磁轭包括若干C型电工钢片,若干所述C型电工钢片叠加形成所述单轴磁轭,所述第一无磁夹件设置有两个,两所述第一无磁夹件分别设置在所述单轴磁轭的两侧壁上,所述第一无磁夹件包括两相对设置的第一U型固定件,所述单轴磁轭位于两所述第一U型固定件之间,两所述第一U型固定件固接。

优选的,所述第二无磁夹件设置在所述第一无磁夹件远离所述被测样片的一侧,所述第二无磁夹件包括两相对设置的第二U型固定件,所述单轴磁轭侧壁固接有连板,两所述第二U型固定件对所述连板进行固定,所述第二U型固定件内壁与所述单轴磁轭之间存在间隙。

优选的,所述驱动件包括两相对设置的抬升滑台,所述抬升滑台活动端固接有传动板,所述第二U型固定件远离所述单轴磁轭的一侧固接有抬升板,所述传动板位于所述抬升板上方,且所述传动板顶端与所述抬升板底端抵接。

优选的,所述夹持件包括可调节的夹具,所述被测样片位于所述夹具内,且所述被测样片通过所述夹具固定,所述夹具远离所述被测样片的一侧固接有力臂,所述力臂通过应力计转接杆与所述应力件连接。

优选的,所述应力件包括应力实时检测计,所述实时检测计与所述应力计转接杆连接,所述应力实时检测计通过应力计滑台对所述被测样片施力,另一所述夹具远离所述被测样片的一侧固接有无磁滑台,所述无磁滑台用于对另一所述夹具进行固定。

优选的,所述探测件包括设置在所述被测样片上的定位基板,所述定位基板底端与所述被测样片顶端接触,所述定位基板中心位置可拆卸连接有磁性测量探头,所述磁性测量探头与所述被测样片顶端接触。

优选的,所述定位基板包括两相对设置的放置板,两所述放置板之间固接有X型交叉板,所述X型交叉板的交叉点上开设有通槽,所述磁性测量探头位于所述通槽内,且所述X型交叉板对所述磁性测量探头进行支撑。

优选的,所述磁性测量探头顶端设置有盖板,所述盖板上可拆卸连接有若干固定架,所述固定架位于所述盖板下方,且若干所述固定架配合对所述磁性测量探头进行固定,所述X型交叉板上滑动连接有滑台,所述滑台位于所述固定架下方,且所述滑台对所述固定架进行支撑。

本发明公开了以下技术效果:

1.通过夹持件和应力件配合,针对大尺寸片状软磁材料采用了应力自动施加结构与实时检测技术,大大提高了应力施加的可控性与准确度、减小了应力测量误差、降低了应力施加能耗、增大了软磁材料尺寸测量范围;

2.通过设置施磁件,采用磁性能闭环控制与实时检测技术,基于应力与磁性能整合信号,控制输出激励,大幅提高了应力作用下大尺寸片状软磁材料磁性能测量精准度,减小了磁性能测量误差、提高了抗干扰能力,并进一步减小了整体结构的体积。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为检测装置的立体图;

图2为图1中A处的局部放大图;

图3为无磁滑台与夹具连接关系的立体图;

图4为下施磁件的立体图;

图5为夹具的立体图;

图6为夹具与施磁件连接关系的立体图;

图7为传动板的立体图;

图8为定位基板与磁性测量探头连接关系的立体图;

其中,1-被测样片,2-单轴磁轭,3-低阻抗绕组,4-第一U型固定件,5-第二U型固定件,6-连板,7-抬升滑台,8-传动板,9-抬升板,10-夹具,11-力臂,12-应力计转接杆,13-应力实时检测计,14-无磁滑台,15-定位基板,16-磁性测量探头,17-放置板,18-X型交叉板,19-盖板,20-无磁螺钉,21-固定架,22-滑台,23-无磁铁轭底座,24-高度调节腰孔,25-滑槽,26-应力计滑台。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

参照图1-8,本发明提供一种应力自动施加下软磁材料磁性实时检测装置,包括被测样片1,还包括,施磁部,包括结构相同的上施磁件和下施磁件,被测样片1位于上施磁件与下施磁件之间;夹持件,设置有两个,两夹持件位于施磁部相对的两侧,两夹持件用于对被测样片1进行夹持,任一夹持件通过应力件受力;驱动件,设置在施磁部另外的两侧,驱动件用于驱动上施磁件升降;探测件,设置在被测样片1靠近上施磁件的一侧,探测件与被测样片1接触。

在进行试验时,通过两夹持件对被测样片1进行固定,并将被测样片1置入上施磁件与下施磁件之间,其中,上施磁件在驱动件的作用下升降,使得上施磁件与被测样片1接触,但不施加额外应力在被测样片1的表面上。在其中一个夹持件上连接应力件,通过应力件向夹持件施加推力或者拉力,并通过应力件测量施力大小,在此过程中,探测件对被测样片1进行监测,以得到所需数据。

本发明的一个实施例中,下施磁件的下方设置有无磁铁轭底座23。无磁铁轭底座23的存在对下施磁件进行支撑固定。

进一步优化方案,上施磁件包括单轴磁轭2,单轴磁轭2上绕设有低阻抗绕组3,低阻抗绕组3与被测样片1对应设置,单轴磁轭2通过第一无磁夹件固定,单轴磁轭2通过第二无磁夹件与驱动件传动连接。上施磁件和下施磁件的结构相同,且两者相对设置,上施磁件与驱动件连接,下施磁件与无磁铁轭底座23连接,单轴磁轭2和低阻抗绕组3的存在使得试验正常进行,第二无磁夹件对单轴磁轭2进行捆绑固定,而第二无磁夹件一方面对单轴磁轭2进行固定,另一方面,第二无磁夹件与驱动件连接,驱动件通过带动第二无磁夹件升降,从而带动单轴磁轭2升降。

本发明的一个实施例中,第一无磁夹件和第二无磁夹件的材质优选为铸铝材料。

本发明的一个实施例中,低阻抗绕组3由多层低电阻漆包铜线绕设而成,层间包裹绝缘纸防止漆包线短路。

进一步优化方案,单轴磁轭2包括若干C型电工钢片,若干C型电工钢片叠加形成单轴磁轭2,第一无磁夹件设置有两个,两第一无磁夹件分别设置在单轴磁轭2的两侧壁上,第一无磁夹件包括两相对设置的第一U型固定件4,单轴磁轭2位于两第一U型固定件4之间,两第一U型固定件4固接。多个C型电工钢片叠加在一起,C型电工钢片包括一平面和两与平面垂直的竖直面,两个第一U型固定件4固定在两个竖直面上,通过两第一U型固定件4的连接,从而对多个C型电工钢片进行固定,而低阻抗绕组3绕设在平面上。

本发明的一个实施例中,两第一U型固定件4通过连接螺栓固定。

本发明的一个实施例中,C型电工钢片优选采用匚型结构。

进一步优化方案,第二无磁夹件设置在第一无磁夹件远离被测样片1的一侧,第二无磁夹件包括两相对设置的第二U型固定件5,单轴磁轭2侧壁固接有连板6,两第二U型固定件5对连板6进行固定,第二U型固定件5内壁与单轴磁轭2之间存在间隙。单轴磁轭2位于两第二U型固定件5之间,两第二U型固定件5通过另一连接螺栓固定,从而通过连板6对叠加形成的单轴磁轭2固定,由于连板6的存在,使得第二U型固定件5与单轴磁轭2之间存在间隙,该间隙用于通过低阻抗绕组3。

进一步优化方案,驱动件包括两相对设置的抬升滑台7,抬升滑台7活动端固接有传动板8,第二U型固定件5远离单轴磁轭2的一侧固接有抬升板9,传动板8位于抬升板9上方,且传动板8顶端与抬升板9底端抵接。抬升滑台7升降,由于传动板8与抬升板9接触,因此抬升板9在传动板8的作用下升降,抬升板9带动第二U型固定件从而带动单轴磁轭2升降。

本发明的一个实施例中,抬升滑台7优选但不限于为电动控制滑台或气动控制滑台,以可以驱动传动板8升降为优选。

本发明的一个实施例中,传动板8的侧面开设有第一螺孔,第一螺孔的设置便于传动板8与抬升滑台7的连接,传动板8的顶面开设有第二螺孔,第二螺孔的设置便于传动板8与抬升板9连接。

本发明的一个实施例中,第二U型固定件与抬升板9优选为一体成型结构,该种设置便于两者的生产,同时提高两者的连接强度。

进一步优化方案,夹持件包括可调节的夹具10,被测样片1位于夹具10内,且被测样片1通过夹具10固定,夹具10远离被测样片1的一侧固接有力臂11,力臂11通过应力计转接杆12与应力件连接。力臂11较长,从而可使得由应力计转接杆12传递的力较为均匀的分布在夹具10上,进而较为均匀的对被测样片1施加拉力或者推力。

本发明的一个实施例中,夹具10包括一上夹板和一下夹板,被测样片1位于上夹板与下夹板之间,且上夹板与下夹板通过固定螺栓连接。该种设置可较为容易的被测样片1进行更换,同时可适用于不同厚度的被测样片1。

进一步的,力臂11通过锁紧螺栓与下夹板固定。当需要更换被测样片1时,仅需要拆卸上夹板即可。

进一步优化方案,应力件包括应力实时检测计13,实时检测计与应力计转接杆12连接,应力实时检测计13通过应力计滑台26对被测样片1施力,另一夹具10远离被测样片1的一侧固接有无磁滑台14,无磁滑台14用于对另一夹具10进行固定。其中一夹具10连接无磁滑台14,无磁滑台14用于固定夹具10,另一个夹具通过应力计转接杆12连接应力实时检测计13,该应力实时检测计13数据导出至数据采集装置(图中未示出),同时数据采集装置基于应力实时检测计13数据通过负反馈控制应力计滑台26移动,实现应力的实时测量与精确闭环控制。

本发明的一个实施例中,无磁滑台14上开设有高度调节腰孔。无磁滑台14配有高度调节腰孔,适用于不同厚度的被测样片1的固定。

进一步的,上述应力实时检测计13、应力计滑台26、数据采集装置采用现有技术即可,其连接关系和使用方式属于现有技术,在此不做过多赘述。

本发明的一个实施例中,应力计转接杆12内开设有螺纹孔,通过该螺纹孔连接应力实时检测计13。

进一步优化方案,探测件包括设置在被测样片1上的定位基板15,定位基板15底端与被测样片1顶端接触,定位基板15中心位置可拆卸连接有磁性测量探头16,磁性测量探头16与被测样片1顶端接触。通过设置定位基板15,使得磁性测量探头16可快速准确的安装在被测样片1的中心位置,进而提高试验效率和试验精度。

磁性测量探头16中设置有用于磁通密度测量的镀金铜制探针与用于磁场强度测量的多层匝绕线圈,磁性测量探头16的检测信号通过放大滤波传输至数据采集装置,数据采集装置基于PI原理控制输出激励电压波形信号,该激励电压信号经过功率放大器放大后加载至低阻抗绕组3,控制被测样片1外施磁场,进而应力自动施加下软磁材料磁性能的精确控制与实时检测。

进一步优化方案,定位基板15包括两相对设置的放置板17,两放置板17之间固接有X型交叉板18,X型交叉板18的交叉点上开设有通槽,磁性测量探头16位于通槽内,且X型交叉板18对磁性测量探头16进行支撑。两放置板17对X型交叉板18进行定位,使得X型交叉板18的交叉位置即为被测样片1的中心位置,在该位置开设通槽,磁性测量探头16位于该通槽内,且通过X型交叉板18对磁性测量探头16进行支撑,以使得磁性测量探头16正常工作。

进一步优化方案,磁性测量探头16顶端设置有盖板19,盖板19上可拆卸连接有若干固定架21,固定架21位于盖板19下方,且若干固定架21配合对磁性测量探头16进行固定,X型交叉板18上滑动连接有滑台22,滑台22位于固定架21下方,且滑台22对固定架21进行支撑。若干固定架21对磁性测量探头16进行支撑,滑台22移动,可适用于不同尺寸磁性测量探头16的定位支撑。磁性测量探头16引出测量信号经过PI处理控制激励电压信号,从而实现磁场的实时测量与闭环控制。

本发明的一个实施例中,盖板19顶端开设有若干滑槽25,滑槽25内滑动连接有无磁螺钉20,无磁螺钉20顶端与盖板19顶端抵接,无磁螺钉20底端与固定架21螺纹连接。通过旋转无磁螺钉20,利用多个固定架21对磁性测量探头16进行夹持,在滑台22的配合下,保证磁性测量探头与被测样片1接触。

试验过程:

将被测样片1放置在上施磁件与下施磁件之间,通过两夹具10对被测样片1夹持固定,并在一夹具10上连接力臂11,另一夹具10上连接无磁滑台14,随后在被测样片1顶端安装放置板17和X型交叉板18,两者与被测样片1顶端紧密接触,随后在X型交叉板18的通槽内放入磁性测量探头16,通过无磁螺钉20和滑台22调节高度,待磁性测量探头16位置高度调节完毕后,利用抬升滑台7控制上施磁件运动,待上施磁件与被测样片1接触后,开始试验。

在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

相关技术
  • 一种应力自动施加下软磁材料磁性实时检测装置
  • 一种用于磁性软纱门自动化生产系统的磁块自动供料装置
技术分类

06120114722401