掌桥专利:专业的专利平台
掌桥专利
首页

一种多场景模拟微型桩加固模型试验装置

文献发布时间:2023-06-19 18:46:07


一种多场景模拟微型桩加固模型试验装置

技术领域

本发明涉及一种多场景模拟微型桩加固模型试验装置。

背景技术

自然界经常会出现滑坡灾害,常常会对工农业的生产和人民的生命财产安全造成巨大的损害。关于滑坡的防治,国内外都有很大的进步,滑坡常用的防治措施有:排水、抗滑桩加固、挡墙法,减重削坡压脚等。目前,在边坡工程中,微型桩的应用已变得十分广泛。大量的工程实例表明,微型桩对滑体的扰动比较小,有较强的场地适应性和较强的抗弯能力,可以对滑床和滑体起到一定的锚固作用,使滑坡的整体性有显著的提高,同时也对滑面的综合抗剪强度的提高做出了贡献。然后微型桩在多种场景下如何精准使用才能起到更好的防治效果还缺乏科学的理论支持,然而现有的试验装置功能单一,可模拟的场景十分有限,例如在不同降雨量、不同级地震、应急抢险以及不同压力场景下等,对应不同桩间距时,微型桩的承载性能情况的研究,现有技术缺乏可用的试验设备。具体情况如下:

首先,在边坡防治工程中,桩间距的大小对土拱效应的产生起着决定性作用。当滑体产生的下滑力作用于抗滑桩上时,桩与土体之间的耦合作用将产生土拱,改善结构抗滑效果。传统上对桩间距的选取比较保守,为考虑经济效益,确定合理桩间距有着十分重要的意义。为了研究土拱效应,确定合理的桩间距,需要研究桩间距的大小对土拱效应形成的影响,常进行室内模型试验,观察桩身的应力应变特征。而进行室内模型试验时,边坡的成型比较难控制,一方面是边坡角度控制起来比较困难,二是常规的试验装置模型箱为固定尺寸的方形箱,对于小桩间距的试验,存在填土量大,效率低的问题。

另外,降雨、地震、土体自重、地表水的浸泡等都可能引起滑坡,对于不同的成因往往需要通过针对性的试验来对滑坡进行分析。

再者,在出现滑坡后,为了防止二次坍塌,需要对边坡进行紧急加固,此时需要采用非水反应类高分子聚合物材质临时浇筑并快速成型的微型桩,该材料的特点是生成反应属于无水反应,有凝固时间短,强度提升快,15分钟即可提供极限强度的90%,有较高的拉、压强度;无需养护,无污染,故考虑用此材料对边坡进行紧急支护。但是该材料的具体应用经验需要模拟试验以获取经验数据,因此也需要模拟紧急抢险场景下该材料的微型桩成型模拟以及成型后的性能研究。

发明内容

本发明的目的在于提供一种可模拟降雨、地震、应急抢险及各场景彼此组合的复杂场景下,可实现对普通微型桩以及非水反应类高分子聚合物微型桩进行试验研究的多场景模拟微型桩加固模型试验装置。

本发明的技术方案如下:一种多场景模拟微型桩加固模型试验装置包括:

模型箱,为上部开口的矩形箱体结构,包括固定连接的前、后、右侧挡板和底板,还包括可沿左右方向滑动的滑动挡板,底板的前后两侧平行对称设置两条沿左右方向延伸的导轨,滑动挡板的下部两侧通过滑块滑动安装在导轨上,导轨上设置有用于将滑块相对于导轨锁定的锁定结构,前、后侧挡板上边分别对应设置有一排沿左右方向延伸的螺栓孔,可通过螺栓将滑动挡板的上部相对于前、后侧挡板固定;

边坡成型压板,包括通过铰接轴相互铰接的水平压板和成型斜板,水平压板、成型斜板和铰接轴可沿左右方向伸缩;

加载装置,包括多根立柱以及固定在立柱顶部的两根固定横梁,两根固定横梁对称平行设置在模型箱的上方前后两侧,两根固定横梁上分别铺设有滑轨,两滑轨之间架设有两根滑动横梁,滑动横梁通过两端的滑动部滑动装配在滑轨上以便沿滑轨自由滑动,滑动横梁的下方设置有伺服千斤顶以用于为成型后的边坡加载;

降雨模拟装置,包括水泵、水管、喷淋管以及设置在喷淋管上的多个喷头,喷淋管通过可沿滑轨移动的滑动管夹座滑动装配在两滑轨之间;

地震模拟装置,包括上、下平台以及连接在两者之间的多个弹簧,上平台还对应设置有用于模拟地震震波的纵向激振器和横向激振器,所述模型箱和加载装置固定在上平台上;

浇筑工装,包括用于插入边坡土体中以模拟桩孔的钢管以及固定在钢管内下部的浇筑管,浇筑桶底部和侧面设置多个渗浆孔。

进一步地,所述右侧挡板由透明材质制成。

进一步地,前、后侧挡板上沿左右方向均布三组上下方向排布的螺栓孔,每组包括两列对称设置的螺栓孔,滑动挡板通过直角角钢可选择地与其中一组螺栓孔连接固定。

进一步地,右侧挡板和滑动挡板上对称设置有滑槽,滑槽水平设置,滑槽内滑动装配有调节滑块,所述成型斜板的左右两侧分别对称设有斜板滑槽,调节滑块的外端与斜板滑槽滑动配合。

进一步地,铰接轴的右端固定有用于检测成型斜板的倾斜角度的量角板。

进一步地,所述滑动管夹座通过管夹与喷淋管连接,管夹可沿竖直方向的转轴旋转装配在滑动管夹座上。

进一步地,滑动横梁的两端下部分别设置有L形的托板,托板与对应的固定横梁的下表面贴合。

本发明的有益效果:本发明的一种多场景模拟微型桩加固模型试验装置在使用时,具有以下现有技术所不能替代的优点:

(1)可以方便的研究不同桩间距的微型桩的特性,其模型箱的尺寸可以自由调节以适应不同的桩间距,且对应的加载装置的加载位置也可以对应调节,对于不同桩间距对土拱效应的影响的研究十分方便;而且对于小桩间距的研究而言,其模型箱的填土量不必那么多,节省人力且提高试验效率;

(2)可以模拟多种现实场景,例如在暴雨、小雨、地震、地震加下雨、滑坡后为防止二次滑坡的紧急抢救性施工等,通过控制器根据实际地震时的频率、振幅等现有数据,控制激振器以对于的数据震荡,从而模拟真实的地震场景,进而模拟在该场景下不同的微型桩、不同桩间距、不同的材质的微型桩的抗滑坡性能等;同理,在下雨情况下的各种数据的研究;还可以模拟应急抢险环境下的抢救性施工,例如在初次滑坡后且在余震情况下会出现第二次滑坡的情况,预先设定程序首先进行第一次地震以导致第一次滑坡,然后在20分钟后第二次余震以导致第二次滑坡的场景模拟,以及在中间这段时间浇筑非水反应类高分子聚合物浆液以形成微型桩的过程模拟试验,并研究其凝结情况和抗滑情况等,现实的场景中多数情况下并非单纯的一种灾害,本装置作为试验装置,模拟现实就是最重要的工作,本装置可以根据程序设定,利用各个模拟模块同步混杂工作,从而模拟多种混合复杂场景,并可在这些场景下完成微型桩的试验研究。

进一步地,边坡成型的角度容易控制,通过量角板可以方便的核准角度是否合适,而且边坡成型压板与右侧挡板和滑动挡板分别通过滑槽、斜板滑槽和调节滑块配合,可以在调节角度时更加灵活方便。

附图说明

图1为本发明的一种多场景模拟微型桩加固模型试验装置的一种实施例的结构示意图(未显示地震模拟装置);

图2为模型箱的结构示意图;

图3为滑动挡板与前侧挡板的连接结构示意图;

图4为边坡成型压板的组合结构示意图;

图5为图4组合前的结构图;

图6为边坡成型压板的成型斜板与滑动挡板的配合结构图;

图7为加载装置的结构示意图;

图8为降雨模拟装置在使用时的结构示意图;

图9为地震模拟装置在使用时的结构示意图;

图10为地震模拟装置的主视结构示意图;

图11为图10的仰视结构示意图;

图12为浇筑非水反应类高分子聚合物微型桩所用的浇筑工装的结构示意图;

图13为浇筑工装的仰视图;

图中:1-模型箱,11-前侧挡板,12-后侧挡板,13-右侧挡板,131-滑槽,132-调节滑块,14-滑动挡板,15-导轨,16-滑块,17-螺栓孔,18-直角角钢,19-双头螺栓,20-普通螺栓,2-边坡成型压板,21-水平压板,22-成型斜板,221-斜板滑槽,23-铰接轴,24-量角板,25-连接板,3-加载装置,31-立柱,32-固定横梁,33-滑轨,34-滑动横梁,341-滑动部,35-伺服千斤顶,36-托板,4-降雨模拟装置,41-水泵,42-水管,43-PVC喷淋管,44-管夹及滑动管夹座,45-喷头,5-地震模拟装置,51-上平台,52-下平台,53-弹簧,54-纵向激振器,55-横向激振器,6-浇筑工装,61-渗浆孔,62-钢管,7-3D激光扫描仪,8-封堵用薄板。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。

本发明的一种多场景模拟微型桩加固模型试验装置的一种实施例:该试验装置用于对微型桩进行试验研究,如图1-13所示,主体结构包括模型箱1、边坡成型压板2、加载装置3、降雨模拟装置4、地震模拟装置5、浇筑工装6。

如图1、2所示,模型箱1整体为方形箱体结构,包括底板、前侧挡板11、后侧挡板12、右侧挡板13和位于左侧的滑动挡板14,模型箱1的推荐尺寸为长、宽、高分别为2m、1.5m、1.5m,模型箱1为钢板组装结构,除滑动挡板14以外的板均为固定结构,其中与滑动挡板14对应的右侧挡板13为透明材质,例如PC透明板、透明尼龙、亚克力等。在底板与前侧侧板和后侧侧板连接的拐角处设置有彼此平行的导轨15,导轨15横截面为圆台状,两导轨15上分别滑动装配有滑块,两个滑块分别焊接固定在滑动挡板14的两个下端角上,滑动挡板14依靠两个滑块实现沿导轨15的自由滑动,两个滑块上还分别设置有锁紧螺母,可用于将两个滑块相对于导轨15锁定,使滑块不能沿导轨15移动。如图2所示,前侧挡板11和后侧挡板12上边分别设置有一排间隔的螺栓孔,两排螺栓孔位于同一水平面内且一一同轴对应设置。当滑动挡板14移动到某处需要锁定时,可在滑动挡板14外侧(即朝向箱体外面的一侧)通过螺栓固定在最靠近滑动挡板14的螺栓孔内,利用螺栓对滑动挡板14进行挡止,经过挡止后,滑动挡板14无法继续移动,此时箱体内即可填土,通过该结构的设置,使得模型箱1的体积可以自由调节大小,在针对小桩间距的微型桩进行研究时,通过调整滑动挡板14位置以调整为小体积的模型箱1,此时向模型箱1内的填土量较小、试验完成后的清理工作量也对应减小,且填土速度快、试验效率大大提高。

对于微型桩的桩间距的研究,有一些桩间距是比较常用的,此时,需要滑动挡板14常常处于某几个常用的位置,为了提高经常使用过程中滑动挡板14的承载能力,在前侧挡板11和后侧挡板12上沿导轨15的延伸方向间隔设置三组竖向间隔排列的螺栓孔,且每组对应设置两列螺栓孔,此时,可以利用直角角钢18和螺栓,将滑动挡板14牢固的固定在前侧挡板11和后侧挡板12上,如图2、3所示,滑动挡板14每一侧的两面分别有一根角钢18,角钢18上和滑动挡板14上均一一对应设置有螺栓孔,两侧的两个角钢18相对于滑动挡板14的连接采用的是双头螺栓19和两组螺母固定,角钢18相对于前侧侧板和后侧侧板的连接采用的是普通螺栓20和螺母进行连接。

如图4、5所示,边坡成型压板2包括水平压板21和成型斜板22,水平压板21和成型斜板22均由沿左右方向相互套设的内板和外套板组成,水平压板21和成型斜板22通过铰接轴23相互铰接,铰接轴23也是由相互套设的内轴和外管组成,水平压板21、成型斜板22和铰接轴23均能够沿左右方向伸缩调节,以便适应于模型箱1的尺寸变化。在铰接轴23的右端还固定设置有量角板24,可以通过量角板24查看成型斜板22相对于水平压板21的角度,也即可以查看成型斜板22的倾斜角度,这个角度即对应于斜坡的角度,通过量角板24的设置,可以方便的对斜坡的角度进行调节控制。

如图1、4、6所示,为了实现边坡成型装置相对于模型箱1的定位,使得边坡的成型位置和形状均符合试验标准,因此在右侧挡板13和滑动挡板14上对应平行设置两根滑槽131,两滑槽131均水平设置,且左右对称。两滑槽131内分别滑动装配有调节滑块132,调节滑块132可以为T形结构,对应的滑槽131也是T形截面,使得安装在滑槽131内的调节滑块132仅能够沿滑槽131滑动,而无法从滑槽131内脱离。在成型斜板22的左右两侧对称设置有两条斜板滑槽221,斜板滑槽221分别沿成型斜板22的边长方向延伸,在使用时,依靠两调节滑块132分别插入两个对应的斜板滑槽221内,使得调节滑块132可以沿着斜板滑槽221滑动。由于调节滑块132既可以相对于滑槽131滑动、也可以相对于斜板滑槽221滑动,所以在边坡成型压板2使用时,可以在保证水平压板21处于固定位置的前提下自由的调节成型斜板22的倾斜角度。

如图7所示,加载装置3为框架结构,搭设在模型箱1的外围,包括四根立柱31和两根固定横梁32,两根固定横梁32的上部设置有滑轨33,两根滑动横梁34两端分别通过与滑轨33导向滑动配合的滑动部341相对于滑轨33滑动,滑轨33的横截面为工字形,使得滑动部341不易从滑轨33上脱离。滑动横梁34的下部对应于成型后的边坡的顶部的设定位置分别固定有伺服千斤顶35,可用于为成型后的边坡加载重力,模拟土体自重或者坍塌等场景。在滑动横梁34的两端下部分别焊接有L形的托板36,托板36延伸至固定横梁32的下方并与固定横梁32的下表面贴合,托板36随滑动横梁34移动而相对于固定横梁32的下表面滑动,当伺服千斤顶35加载时,反馈给滑动横梁34的向上的反作用力可通过托板36卸荷在固定横梁32上。在使用时,针对不同桩间距,可以调节两个伺服千斤顶35的加载位置,以便与微型桩的位置对应,而且可以研究不同方位坍塌对于微型桩的承载性能的影响情况。本实施例中,立柱31的高度可以设置为2.5m,滑动横梁34尺寸为0.2m×0.2m×3m。伺服千斤顶35的输出端的下端固定有钢板,以增大与土体的接触面积,使作用力均匀分布。

如图8所示,降雨模拟装置4包括水泵41、水管42、PVC喷淋管43、多个十字雾化喷头45、管夹及滑动管夹座。水泵41通过将蓄水池中的水通过水管42输送至PVC喷淋管43中,PVC喷淋管43的另一端封堵,PVC喷淋管43通过管夹固定在滑动管夹座上,滑动管夹座滑动装配在固定横梁32上部的滑轨33上,每根PVC喷淋管43下部间隔设置多个出水孔,出水孔处分别安装有十字雾化喷头45。管夹可以相对于滑动管夹座滑动,方便拆装PVC喷淋管43。在试验时,还需要设置3D激光扫描仪7,用于监测边坡的变形过程,收集到的数据以供后续分析使用。

降雨模拟装置4可以调节水泵41的转速和频率,以便模拟不同类型的降雨过程,从而研究不同降雨情况下微型桩的性能和边坡变形情况等。

如图9所示,地震模拟装置5包括上平台51和下平台52,下平台52放置或固定在地面上,上平台51通过多个均布的弹簧53支承在下平台52上,模型箱1和加载装置3均固定在上平台51上,上平台51还对应设置有用于模拟地震的纵向激振器54和横向激振器55。通过控制器控制各激振器按照设定频率、振幅震动以模拟地震,从而完成地震场景下的微型桩试验。

如图12、13所示,浇筑工装6的结构为上部开口的圆筒状,周面和底面均设置有渗浆孔61,浇筑工装6的外部套设有钢管62,钢管62的底部通过三根钢筋与浇筑工装6固定连接,钢管62用于预埋在土体内以模拟桩孔,填充土体后将钢管62抽出,与此同时从钢管62的上部向钢管62内的浇筑工装6内浇筑非水反应类高分子聚合物浆液,使得浆液缓慢流至抽出钢管62后留下的桩孔内,待浆液快速凝固后即可形成微型桩。

下面描述一下各场景下的使用过程:

场景一为普通微型桩不同桩间距重力加载时的破坏承载试验:

步骤1,预制模型桩,采用钢筋混凝土预制桩,制作桩径为30mm,桩长为800mm的圆截面桩,混凝土等级确定为C20,采用桩心配筋方式。在模型桩桩身上粘贴应变片;

步骤2,本实例进行2倍桩间距的模型试验,故调整滑动挡板14至适当位置,然后将滑动挡板14相对于前侧挡板11和后侧挡板12固定;

步骤3,清理模型箱1的内部,在模型箱1内壁铺设塑料膜,以减少土体与模型箱1内壁的摩擦力;

步骤4,在模型箱1内填一层土体,将模型桩按照试验设定间距固定在模型箱1中;

步骤5,根据试验设计的坡脚角度安装边坡成型装置,根据模型箱1宽度调整边坡成型装置的尺寸,将水平压板21放置在土体上,参照量角板24,调整成型斜板22相对于水平压板21的角度为15至45°,通过螺栓将倾斜压板固定,在设计土体位置埋设土压力盒,分层填筑土体,进行压实;

步骤6,根据边坡位置,调整加载装置3中滑动横梁34和伺服千斤顶35的位置,使伺服千斤顶35的压头位于坡顶正上方,压头下方垫有钢板,使作用力均匀分布;

步骤7,通过伺服控制器控制伺服千斤顶35进行逐级加载,记录桩顶位移、桩身应变、土体压力等数据;

步骤8,分析处理数据。

场景二为模拟强降雨作用下坡体的破坏过程:

步骤1,预制模型桩;

步骤2,将加载装置3中滑动横梁34移动到两端,将带有喷头45的PVC喷淋管43安装在管夹上,水泵41一端连接水管42,一端连接水源,放置好3D激光扫描仪7;

步骤3,在模型箱1内制作好边坡模型,打开水泵41开关,根据控制器的控制改变水泵41的转速或启动频率以模拟降雨过程,开始试验,并用3D激光扫描仪7检测坡体的变形。

场景三为模拟滑坡紧急抢险时非水反应类高分子聚合物微型桩成型:

步骤1,在模型箱1中先铺一层土,压实,在将钢管62固定在模型箱1适当位置,浇筑工装6通过钢筋焊接固定在钢管62的下部,模拟实际工程中的桩孔,继续填土、压实;

步骤2,填土后,向钢管62中进行注浆操作,一边注浆一边拔出钢管62,浆液直接浇筑在浇筑工装6上,经过浇筑工装6的缓冲后缓慢流出至钢管62拔出后遗留的桩孔内,等待其凝固成型,高分子聚合物待微型桩成型后即可进行重力加载、降雨加载、地震加载等试验。

场景四为地震时坡体的破坏过程:

步骤1,预制微型桩;

步骤2,将微型桩固定在模型箱1的底部设定位置,贴上应变片,预埋压力盒,填土,放置好3D激光扫描仪7;

步骤3,在模型箱1内制作好边坡模型,通过控制器控制地震模拟装置5分别产生纵向震波、横向震波以及混合震波,开始试验,并用3D激光扫描仪7检测坡体的变形。

以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

技术分类

06120115686030