掌桥专利:专业的专利平台
掌桥专利
首页

一种用于3D悬浮成像的透镜阵列及其装置

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及悬浮成像领域,尤其涉及一种用于3D悬浮成像的透镜阵列及其装置。

背景技术

悬浮成像或无介质空中成像(显示)系统能提供亦真亦幻的视觉体验,具有广泛的应用前景。新冠疫情形势严峻的背景下,无接触显示的应用需求日益增加,如公共场所的电梯按钮、售票机、柜员机等场合,悬浮成像显示以及无接触空中操控的方式能更有利于保障公众健康,防止病毒传播。而悬浮成像系统则能很好契合这种应用场景。

目前有多种技术方案实现无介质空中悬浮成像。常用的方法是使用雾或水滴作为虚拟屏幕显示悬浮在空中的图像,然而,虚拟屏幕很容易受到气流的影响,浮动图像的质量会恶化。另一种方案是使用大型凸透镜或菲涅耳透镜在空气中漂浮2D/3D图像。然而,浮动图像存在失真、颜色偏差和视角受限等问题。一种方案是使用由多个反射器组成的二面角反射器阵列(DCRA)实现浮动显示,然而,它的视角有限,在浮动图像周围观察到明显的残像。还有一种方案利用商用回复反射器(反光膜/逆光膜)实现无介质空中成像,然而目前市面上销售的回复反射器是针对道路安全设计,其技术指标要求逆反光线具有一定的发散角,因此这导致了使用这些反光膜搭建的悬浮成像系统成像质量模糊,分辨率不高。

发明内容

为了解决上述技术问题,本发明的目的是提供一种用于3D悬浮成像的透镜阵列及其装置,能够提高悬浮成像的分辨率和稳定性且扩大视场角。

本发明所采用的第一技术方案是:一种用于3D悬浮成像的透镜阵列,包括:球面固定板和透镜阵列次单元;所述球面固定板设有卡槽,所述透镜阵列次单元通过所述卡槽固定安装于所述球面固定板上。

进一步,所述透镜阵列次单元包括透镜单元,所述透镜单元包括前表面、后表面和折射墙,所述前表面为透射面,所述后表面为反射面,所述折射墙设于所述前表面和所述后表面之间。

进一步,所述前表面和后表面均为球面,所述前表面与后表面共球心。

进一步,所述前表面的孔径小于后表面的孔径。

进一步,所述透镜单元的面型精度范围为1~10um,表面精度范围为1~50nm。

进一步,所述透镜单元的参数关系式如下:

上式中,D

本发明所采用的第二技术方案是:一种用于3D悬浮成像的装置,包括:

图像源、半反半透镜和如上述透镜阵列;

所述图像源用于产生图像光线能量;

所述半反半透镜用于改变图像光线能量分布;

所述透镜阵列用于将半反半透镜反射过来的光线能量按原方向返回;

所述图像源设置于水平面,所述半反半透镜设置于图像源的上方,与水平面呈45°倾斜设置,所述透镜阵列设置于所述图像源和所述半反半透镜的后方。

进一步,所述透镜阵列的球心设置于观看位置。

本发明方法及系统的有益效果是:本发明首先通过设计一种用于3D悬浮成像的透镜阵列,该透镜单元的前表面为透射面,该后表面为反射面,实现入射光的原路折返;然后利用卡槽结构,将透镜阵列次单元拼接固定于球面固定板上,降低了加工难度和成本,提高了悬浮成像的稳定性;最后将透镜阵列应用于3D悬浮成像中,并将透镜阵列的球心设置于观看位置,扩大视场角且提高分辨率。

附图说明

图1是本发明一种用于3D悬浮成像的透镜阵列的结构示意图;

图2是本发明一种用于3D悬浮成像的装置的结构示意图;

图3是本发明具体实施例透镜阵列次单元的结构示意图;

图4是本发明具体实施例透镜单元的结构示意图;

图5是本发明具体实施例3D悬浮成像装置的结构示意图;

图6是本发明具体实施例3D悬浮成像装置的平面结构示意图;

图7是本发明具体实施例透镜单元参数设置示意图;

图8是本发明具体实施例的透镜阵列与平面型透镜阵列的效果对比图。

附图标记如下:

10、图像源;

20、半反半透镜;

30、透镜阵列;31、球面固定板;311、卡槽;32、透镜阵列次单元;33、透镜单元;331、前表面;332、后表面;333、折射墙;

40、子图像;

50、平面型透镜阵列。

具体实施方式

下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。

参照图1、图3和图4,本发明提供了一种用于3D悬浮成像的透镜阵列,包括:球面固定板31和透镜阵列次单元32;球面固定板31设有卡槽311,透镜阵列次单元32通过卡槽311固定安装于球面固定板31上;透镜阵列次单元32包括透镜单元33,透镜单元33包括前表面331、后表面332和折射墙333,前表面331为透射面,后表面332为反射面,折射墙333设于前表面331和后表面332之间,折射墙333用于改变进入前表面331的光源的方向。

其中,折射墙333可以采用PMMA、亚克力、玻璃和光学环氧树脂能材料,后表面可以进行镀膜呈反射面。

在进行应用时,如图4所示,入射光线从S1处进入,由于前表面331为透射面,所以入射光线的方向不会改变且将入射光线尽可能地打到透镜单元33的后表面332上,然后通过折射墙333改变了入射光线的方向,由于后表面332为反射面,可以将由前表面331折射来的光线实现关于入射光线对称地反射回前表面331处,最后光源从S2处射出。

为了降低像差,如图4所示,将前表面331设置为球面,且该前表面331孔径大小的一半位置作为聚焦标准,即入射高度为孔径大小一半的一条平行光线经过该前表面331后将准确地聚焦在透镜阵列30单元后表面332的正中心。

需要指出的是,前表面331也可以采用非球面或者自由曲面。

为了实现回复反射功能,如图4所示,将后表面332设置成球面,且该后表面332的球心与前表面331的球面的球心重合。

在进行应用时,由前表面331入射的光线聚焦到后表面332上时,由于该聚焦光线关于球面的法方向对称,因此入射光将经过后表面332对称地反射,使得反射光与原入射光的方向平行反向,实现回复反射功能。

需要指出的是,后表面332也可以采用非球面或者自由曲面。

参照图2,一种用于3D悬浮成像的装置,包括图像源10、半反半透镜20和上述透镜阵列30;

图像源10用于产生图像光线能量;

半反半透镜20用于改变图像光线能量分布;

透镜阵列30用于将半反半透镜20反射过来的光线能量按原方向返回;

图像源10设置于水平面,半反半透镜20设置于图像源10的上方,与水平面呈45°倾斜设置,透镜阵列30设置于图像源10和半反半透镜20的后方。

在进行应用时,如图5和图6所示,将图像源10放置在水平位置,该图像源10可以由液晶显示屏、LED屏、静态图像或者3D实物组成;半反半透镜20置于图像源10上方,与水平面呈45°倾斜放置,该半反半透镜20对可见光波段实现50%光能反射和50%光能透射;透镜阵列30置于图像源10和半反半透镜20后方;图像源10发出的光线能量一半透过半反半透镜20向上传播,另一半光能反射到透镜阵列30上,经过透镜阵列30后按原方向返回,该光线透过半反半透镜20后将在图像源10关于半反半透镜20对称的空中位置形成子图像40的实像,从而实现悬浮显示效果。

进一步,为了扩大视场角和降低像差,如图2所示,该透镜阵列30的球心位置位于观看位置处。

在进行应用时,从图像源10发出的光线,首先经过半反半透镜20的反射,依次打到透镜阵列30上,该光线经过透镜单元33的对称反射后按原方向返回,再经过半反半透镜20后到达成像位置即子图像40处,实现无介质的3D悬浮成像显示;其中,子图像40与图像源10关于半反半透镜20对称。

为了更好地说明本发明提供的球形透镜阵列30的有益效果,参照图8,将本发明提供的球形透镜阵列30与平面型透镜阵列50进行对比,假设一般平面型透镜阵列50位于半反半透镜20右侧,如此,半反半透镜20和平面型透镜阵列50也可以构成常规的悬浮成像装置。假设从图像源10发出的一束光线a,经过半反半透镜20反射,反射光为a′,反射光a′与球形透镜单元33的光轴平行(夹角趋向于零);而a′如果直接按原方向继续传播到a″,光线a″与平面型透镜阵列50的光轴之间的夹角则为θ,虽然理论上回复反射器对不同入射角(与光轴的夹角)的光线能实现原路返回,但是按照像差理论,与光轴夹角越大的入射光将产生更大的像差,而像差是导致成像模糊的主要原因。要有效消除离轴像差,增加球形回复反射器(即球形透镜阵列30)的入射角度,必然要增加球形回复反射器的透镜单元33内部的表面数目,无疑会增加加工难度和成本。而从入射光a′和a″所对应的入射光角度可知,球形透镜阵列30比平面型透镜阵列50能更大限度地减少所需要的回复反射光的入射角度,在有效角度中(反射光线进入人眼的部分),甚至能将入射光的入射角降低至零。因此,该发明的球形透镜阵列30的结构能有效减少透镜单元33的离轴像差带来的图像分辨率下降,提高显示分辨率并降低加工成本和难度。

另外,本发明公开了该球形回复反射器的模拟实验结果,其回复反射光线的发散角小于0.01度,不符合用于道路安全的反光膜标准,但是十分符合3D悬浮成像系统应用;实验证明,该球形回复反射器的工作角度达到60度以上,成像点像差在250um以下,能实现大视场角和高分辨率的悬浮成像显示效果。

本发明还公开了该透镜阵列30的制作方法,该透镜阵列30的制作可以采用一次成型的注塑工艺或者次单元平板透镜阵列30拼接的工艺实现。

采用一次成型注塑工艺的透镜阵列30是通过超精密CNC技术进行制作,首先根据透镜单元33参数关系式确定透镜单元33参数并制作透镜单元33,然后每个透镜单元33的光轴共同指向人眼观看位置,形成圆形透镜阵列30的整体结构,最后通过一次成型的方式加工出该透镜阵列30,利用光学塑料注塑成型的工艺形成一个整体的光学器件;由于该透镜阵列30的功能主要用于成像,因此每个透镜单元33的面型精度须达到1~10um,表面精度需达到50纳米以下;对于一次成型的注塑工艺而言,加工的精度要求非常高,因此成本很难控制。

如图1、图3和图7所示,以次单元平板透镜阵列30拼接的制作方法如下:

首先,根据透镜单元33参数关系式确定透镜单元33参数并制作透镜单元33,其次,在一块平面上集成若干透镜单元33,形成一块面积较小的透镜阵列次单元32,然后根据人眼位置为球心,加工一块用于固定每个透镜阵列次单元32的球面固定板31,球面固定板31可以用金属或塑料材料制备,主要对透镜阵列次单元32起支撑和固定作用,使得每一个透镜阵列次单元32的中心光轴指向人眼所在位置,最后按图3所示的方式依次排满平面透镜阵列次单元32。这种制备方法要求每一个透镜阵列次单元32的长宽尺寸较小,应控制在透镜阵列次单元32的长度/宽度对球心所张的角度应小于1-3度,此时透镜阵列次单元32上的各个透镜单元33的光轴可以近似看做指向球心。

透镜单元33各个参数关系设置如图7所示,透镜单元33的参数关系式如下:

上式中,D

其中,D

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

相关技术
  • 一种用于3D悬浮成像的透镜阵列及其装置
  • 一种应用于3D成像的VCSEL阵列、激光投影装置及3D成像设备
技术分类

06120114724153