掌桥专利:专业的专利平台
掌桥专利
首页

一种黑磷纳米片及其制备方法和应用

文献发布时间:2023-06-19 09:41:38


一种黑磷纳米片及其制备方法和应用

技术领域

本发明属于二维材料领域,尤其涉及一种黑磷纳米片及其制备方法和应用。

背景技术

黑磷(BP)晶体是一种类石墨烯的二维层状材料,即层内原子由强的共价键结合,层与层之间在弱的范德华作用下结合,具有0.3eV(块体)到2.0eV (单层)层数依赖的直接带隙、强的面内各向异性、优异的光电特性和良好的生物兼容性,在电学、光学、生物学和机械领域有广泛的应用前景。

材料的应用基于其制备技术。现有技术中一般通过破坏层间范德华力来制备少层黑磷纳米片,最常用的方法包括机械剥离法和液相剥离法。但是这两种方法对于二维黑磷晶体的制备合成分别存在如下技术问题:

机械剥离法制备二维黑磷的可控性差且产量低,无法满足工业应用的需求;液相剥离法制备二维黑磷通常需要经过长时间剧烈的超声振荡,破坏了黑磷层内结构,导致黑磷纳米片的尺寸较小(纳米级别),无法满足半导体集成器件的需求。

CN106698369B公开了一种二维黑磷纳米片的液相剥离制备方法,包括以下步骤:将块状黑磷和含磷离子液体按质量比1:0.5-100加入到有机溶剂中,得到混合液,在无氧、0℃-10℃条件下,将所述混合液先进行探头超声3-7h,再进行水浴超声1-10h后,静置,取上清液进行离心分离,得到二维黑磷纳米片。该方法需要较长时间的震荡,会较大程度的破坏黑磷内部的共价键。

CN107188141B公开了一种合成黑磷纳米片的方法,该方法通过溶剂热的方法,在反应釜中装入白磷与乙二胺,待白磷完全溶解后,将反应釜密封,并置于烘箱中加热至60-140℃,恒温12个小时。待反应停止后,即可得到纯相的黑磷纳米片。通过该方法得到的黑磷纳米片的尺寸较小,难以满足半导体集成器件的需求。

CN106335885B公开了一种黑磷纳米片及其制备方法与应用,所述方法包括:将黑磷粉末置于无氧水中形成黑磷粉末分散液,选择性地,控制该分散液的pH为碱性;在惰性环境下,超声所述黑磷粉末分散液;超声完毕后,离心收集上清液,得到所述黑磷纳米片。该方法不使用任何有机溶剂,因此,由其制得的黑磷纳米片无有机溶剂残留,不污染环境,但是通过该方法制备的大的黑磷纳米片的尺寸较小,为纳米级,难以满足半导体集成器件的需求。

因此,本领域亟待需要一种简单可行的批量制备大尺寸少层黑磷纳米片的方法。

发明内容

针对现有技术的不足,本发明的目的之一在于提供一种黑磷纳米片的制备方法。所述制备方法能够得到大尺寸少层黑磷纳米片,且操作简单。

为达此目的,本发明采用如下技术方案:

本发明提供一种黑磷纳米片的制备方法,所述制备方法包括如下步骤:

将阳极和阴极浸入含有四丁基阳离子(TBA

所述阴极包括黑磷。

本发明采用的是电化学阴极剥离法,即黑磷作为电化学阴极。加上直流电压后,电解液中的TBA

TBA

本发明所述的“少层”指的是层数≤10,黑磷纳米片的层数也可以用厚度来表示,厚度越大,层数越多。

本发明对提供电化学剥离的实验系统不做具体限定,任何一个能够满足所述阴极、电解液和直流电压的电化学系统均可用于本发明,示例性的可以使用双电极电化学系统。

优选地,所述电解液中含有四丁基季铵盐。

优选地,所述四丁基季铵盐包括四丁基醋酸铵(CH

除了TBA

优选地,所述电解液中四丁基阳离子的浓度为0.0002-0.02M,例如0.0005 M、0.0008M、0.001M、0.002M、0.003M、0.004M、0.005M、0.006M、0.007 M、0.008M、0.009M、0.01M、0.011M、0.012M、0.013M、0.014M、0.015M、 0.016M、0.017M、0.018M、0.019M等,优选0.002M。

本发明优选四丁基阳离子的浓度为0.0002-0.02M,在该范围内,插层离子可以在较短的时间内完全插入黑磷层间,破坏层间范德华力,能够得到尺寸更大、厚度更小的黑磷纳米片;浓度过高,会导致插层离子间的碰撞加剧,在电解液中的迁移速率减慢,相同时间内,插层离子在黑磷中插入不完全,黑磷纳米片剥离效果变差;浓度过低会导致插层离子在相同时间内插入黑磷层间的离子数目不足,难以完全破坏层间的范德华力,黑磷纳米片剥离效果变差。

优选地,所述黑磷为块体黑磷。

优选地,所述黑磷的质量为5-10mg,例如5.5mg、5.6mg、5.8mg、6.0mg、 6.2mg、6.4mg、6.6mg、6.8mg、7mg、7.5mg、7.8mg、8mg、8.3mg、8.5mg、 8.8mg、9mg、9.3mg、9.5mg、9.7mg等。

优选地,所述阳极包括Pt箔。

优选地,所述电解液的溶剂包括N,N-二甲基甲酰胺(DMF)。

DMF起到了离子扩散介质的作用。同时,DMF的表面张力接近黑磷(约 40dyne cm

优选地,所述直流电压的强度为7-25V,例如7V、8V、10V、12V、14V、 15V、16V、18V、20V、22V、24V等,优选20V。

优选地,所述直流电压的施加时间为10-40min,例如11min、12min、15min、 20min、22min、25min、28min、30min、35min、38min等,优选30min。

优选地,在所述施加直流电压之后,将所述黑磷纳米片分散液静置;

优选地,所述静置的时间为1-3h,例如1.2h、1.4h、1.6h、1.8h、2.0h、 2.3h、2.5h、2.8h等,优选2h;

优选地,对所述黑磷纳米片分散液进行如下处理:

利用微量进样器将黑磷纳米片分散液逐滴注射到超纯水的液面上,将 SiO

其原理为:薄层黑磷纳米片具有大的比表面积且水的表面张力很大,纳米片将漂浮在超纯水液面上。同时,分散液中含有四丁基季铵盐,这种阳离子表面活性剂将提高黑磷纳米片在超纯水液面上分散性,并促使纳米片分散均匀。随后,让固态的SiO

优选地,所述微量进样器的容积为4-6μL,优选5μL。

优选地,所述黑磷纳米片分散液的总注射量为15-25μL,例如16μL、18μL、 20μL、24μL等,优选20μL。

优选地,所述SiO

本发明的目的之二在于提供一种黑磷纳米片,所述黑磷纳米片通过目的之一所述的制备方法制备得到。

优选地,所述黑磷纳米片的层数≤10,例如1层、2层、3层、4层、5层、 6层、7层或8层,优选≤8。

优选地,所述黑磷纳米片的厚度为2-5nm,例如2.1nm、2.2nm、2.3nm、2.4nm、2.5nm、2.6nm、2.7nm、2.8nm、3nm、3.1nm、3.2nm、3.5nm、3.8 nm、4.0nm、4.2nm、4.5nm、4.7nm、4.8nm、4.9nm等;

优选地,所述黑磷纳米片的横向尺寸≥10μm,例如11μm、12μm、13μm、 14μm、15μm、16μm、17μm、18μm、19μm、20μm、30μm、40μm、50μm、 60μm、70μm、80μm、90μm等,优选10-100μm。

本发明中,所述横向尺寸指的是纳米片在二维方向(非厚度方向)的最大直径。

本发明的目的之三在于提供一种目的之二所述的黑磷纳米片的应用,所述黑磷纳米片用于制备半导体集成光电器件、光学薄膜、气体传感器、生物传感器或太阳能电池,或用于电子印刷。

相较于现有技术,本发明的技术效果如下:

(1)本发明采用的是电化学阴极剥离法,即黑磷作为电化学阴极。加上直流电压后,电解液中的TBA

(2)本发明得到的黑磷纳米片具有优异的光电性能。

附图说明

图1a是本发明实施例中的实验装置示意图。

图1b是本发明实施例中被四丁基阳离子插层的黑磷结构示意图。

图2a是本发明实施例1所得黑磷分散液照片。

图2b是本发明实施例3所得黑磷分散液照片。

图3是本发明实施例1所得黑磷纳米片的拉曼光谱图。

图4是本发明实施例1所得黑磷纳米片的AFM原子力显微镜表征图。

图5是本发明实施例1所得黑磷纳米片的光学照片,图中右下角标尺为10 μm。

图6是本发明实施例1所得黑磷纳米片的横向尺寸统计图。

具体实施方式

为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。

本发明以下实施例提供的少层黑磷的电化学制备方法使用电源为可调式直流稳压稳流电源,其可以提供0-27V的电压,本领域技术人员应该明了,可调式直流稳压稳流电源可以替换为其他的直流电源,只需要保证其提供的直流电压与实施例中的相同即可。

本发明以下实施例提供的少层黑磷的制备方法均在玻璃烧杯中进行,所述玻璃烧杯的容积为50mL。

本发明以下实施例提到的螺口玻璃瓶的容积均为20mL。

图1a给出了以下实施例中电化学阴极剥离法的实验装置示意图,采用的是双电极系统。向该电化学系统施加直流电压后,四丁基阳离子插入块体黑磷层间(如图1b所示),块体黑磷阴极会发生肉眼可见的快速膨胀,且缓慢释放细小黑色物质,沉入电解液底部,同时透明电解液逐渐变为浅黄色。

实施例1

本实施例提供一种黑磷纳米片的制备方法,具体包含以下步骤:

(1)用电子天平量取12mg的四丁基醋酸铵(CH

(2)将5mg块体黑磷(购于牧科纳米公司,纯度>99.999%)置于四氟铂片电极夹上,与直流电源负极相连接,作为电化学阴极,Pt箔作为电化学阳极,两电极保持平行,且电极间距离为2cm;

(3)将步骤(2)中的块体黑磷和Pt箔均浸入步骤(1)中的电解液中;

(4)向该电化学系统施加20V的直流电压,30min后,获得黑磷纳米片分散液。

图2a是本实施例所得黑磷分散液照片,分散均匀。

实施例2-4

与实施例1的区别在于,步骤(1)中,将四丁基醋酸铵(CH

图2b是实施例3所得黑磷分散液照片,分散均匀。

实施例5-8

与实施例1的区别在于,步骤(1)中,用电子天平量取1.2mg(实施例5)、 120mg(实施例6)、0.6mg(实施例7)、180mg(实施例8)的四丁基醋酸铵,得到浓度为0.0002M(实施例5)、0.02M(实施例6)、0.0001M(实施例7)、 0.03M(实施例8)的电解液。

实施例9-10

与实施例1的区别在于,步骤(2)中,块体黑磷的质量为7mg(实施例9)、 10mg(实施例10)。

实施例11-13

与实施例1的区别在于,步骤(4)中,施加20V直流电压的时间为10min (实施例11)、20min(实施例12)、40min(实施例13)。

实施例14-17

与实施例1的区别在于,步骤(4)中,向该电化学系统施加7V(实施例 14)、10V(实施例15)、15V(实施例16)、25V(实施例17)的直流电压。

对比例1

本对比例提供一种黑磷纳米片的制备方法,具体如下:

(1)用电子天平称量5mg块体黑磷,加入含有10mL有机溶剂DMF的螺口玻璃瓶中;

(2)将步骤(1)的螺口玻璃瓶置于细胞粉碎机中,在520W的功率下尖端超声下超声剥离120min,得到黑磷纳米片分散液。

对比例2

与实施例3的区别在于,将四丁基醋酸铵(CH

测试例1

针对实施例1和实施例2得到的黑磷纳米片分散液进行如下性能测试:

(1)分别将实施例1和实施例2步骤(4)的上层透明电解液用塑料滴管轻轻转移10mL,尽量不碰到底层黑磷沉积物,然后将剩余10mL的电解液倾倒至总容量为20mL的螺口玻璃瓶中,如图2a(实施例1)和图2b(实施例3) 所示,底层黑磷沉积物的结构松散,轻轻晃动后,就会迅速分散开。

(2)将实施例1中步骤(4)所得的黑磷纳米片分散液静止2h,使得厚层黑磷纳米片沉积,利用上层分散液进行样品制备,即将上层分散液中的黑磷纳米片转移到220nm SiO

①拉曼光谱测试

测试仪器:英国雷尼绍公司的显微共焦激光拉曼光谱仪,型号是In via Reflex,测试条件:室温,激发光波长为514nm。结果如图3所示。

图3是实施例1所得的黑磷纳米片的拉曼光谱图,分别在360.8cm

②AFM原子力显微镜表征

测试仪器:布鲁克公司的原子力显微镜,型号为Dimension ICON,测试条件:室温,智能模式。结果如图4所示。

图4是实施例1所得黑磷纳米片的AFM原子力显微镜表征图,可以看到黑磷纳米片具有明显的边界。测量黑磷纳米片的厚度为4.5nm,基本对应于6层黑磷纳米片,表明实施例1得到了少层黑磷纳米片;

③光学显微镜表征

测试仪器:上海蔡康光学仪器有限公司的光学显微镜,型号为9XB-PC,测试条件:室温。结果如图5和6所示。

图5是实施例1所得的黑磷纳米片的光学照片,可以看到少层黑磷纳米片横向尺寸高达107.8μm。

图6是实施例1所得的黑磷纳米片的横向尺寸统计图,可以看到其结果呈典型的高斯分布,大约一半样品的横向尺寸位于20-40μm范围内,且≥40μm的样品占样品总数的31%,样品最大的横向尺寸高达百微米,表明实施例1所示的电化学剥离法实现了超大尺寸少层黑磷纳米片的批量制备。

测试例2:

分别将实施例1-17和对比例1-2得到的黑磷纳米片分散液静置2h,其中的厚层黑磷纳米片沉积后,取分散液的上层液制样,将黑磷分散液中的黑磷纳米片转移到220nmSiO

(1)黑磷纳米片的厚度:将上述各个实施例中的黑磷纳米片分别进行AFM 原子力显微镜表征,测量得到各个实施例中黑磷纳米片的厚度(取平均值);

(2)黑磷纳米片的横向尺寸:将上述各个实施例中的黑磷纳米片分别在光学显微镜下进行表征,分别测量各个实施例中少层黑磷纳米片的横向尺寸(取平均值);

测试结果如表1所示。

表1

由表1可知,本发明实施例中得到的黑磷纳米片的横向尺寸较大,具体为 5.0-40.4μm,厚度较小,具体为2.3-9.7nm,相当于3层-10层,即得到了大尺寸少层黑磷纳米片;

对比例1中采用超声辅助液相方法制备黑磷纳米片,得到的纳米片的横向尺寸仅为100nm,厚度为5nm,相较于实施例的黑磷纳米片质量明显变差;

对比例2与实施例1相比,仅将TBA

由此可知,本发明提供的利用TBA

通过对比实施例1-4可知,电解液中阴离子种类的不同也会对黑磷纳米片的尺寸和厚度产生影响,当电解液中的阴离子为CH

通过对比实施例1、5-8可知,当电解液中TBA

申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

相关技术
  • 黑磷纳米片、硫化锌/黑磷纳米片的制备方法及其应用
  • 一种基于聚多巴胺修饰黑磷纳米片的仿生忆阻器及其制备方法和应用
技术分类

06120112265242