掌桥专利:专业的专利平台
掌桥专利
首页

一种单分散分子筛微球及其制备方法

文献发布时间:2023-06-19 09:43:16


一种单分散分子筛微球及其制备方法

技术领域

本发明属于分子筛材料制备技术领域,具体涉及一种单分散分子筛微球及其制备方法。

背景技术

单分散微球具有较高的球形度和较窄的粒径分布,其制备方法是各种应用领域的技术关键,包含无孔微球和多孔微球。多孔微球材料凭借其巨大比表面积、丰富孔道和优异吸附性能可广泛应用于色谱填料、催化、吸附、生物分离和药物控释等领域,成为微球发展热点。单分散多孔微球领域目前占主导地位的是高分子聚合物微球。近十几年来,微球的材料领域从高分子微球已经拓展至无机微球,特别是氧化硅或氧化钛微球,应用领域又从以往的一般工业应用发展到高尖端技术领域,如医疗和生物医药领域、电子信息等领域。例如功能化均粒的无定形二氧化硅微球已被CN102070152B报导。

然而单分散多孔微球目前仅有聚合物和氧化硅,具有固有均一微孔的单分散分子筛微球尚未见报导。分子筛(molecular sieve)材料由[TO

因此,迫切需要开发具有均匀粒径、可调尺寸、均一孔径、且具有高稳定性、高机械强度的分子筛微球。

发明内容

为克服现有技术缺陷,本发明提供了以下技术方案:

本发明的第一方面提供了一种单分散分子筛微球,其中,

所述单分散分子筛微球是由分子筛晶体堆积而成的球形结构,其中,分子筛晶体中铝和硅的摩尔比为0~1:1;且所述单分散分子筛微球包含多级孔结构,包括分子筛晶体内微孔以及分子筛晶体之间的孔道;

进一步的,所述单分散分子筛微球直径为1~1000μm,优选3~100μm;

进一步的,所述单分散分子筛微球的粒径变异系数(即CV值)小于10%,优选≤3%;

进一步的,所述组成微球的分子筛晶体的粒径为20~2000nm;

进一步的,所述单分散分子筛微球的包括但不限于LTA型单分散分子筛微球、SOD型单分散分子筛微球或MFI型单分散分子筛微球;更进一步的,所述MFI型单分散分子筛微球包括ZSM-5或Silicalite-1型单分散分子筛微球;

进一步的,所述LTA型单分散分子筛微球中Al/Si摩尔比为1:1;

进一步的,所述SOD型单分散分子筛微球中Al/Si摩尔比为1:1;

进一步的,所述ZSM-5型单分散分子筛微球中Al/Si摩尔比为1:40;

进一步的,所述Silicalite-1型分子筛微球为全Si分子筛微球;

本发明的第二方面提供了一种上述任一项单分散分子筛微球的制备方法,包括以下步骤:

S1:将碱溶解在去离子水中,加入铝源搅拌形成澄清溶液;

S2:将单分散多孔二氧化硅微球加入到S1所述溶液中,进行第一次搅拌,然后抽真空处理,再进行第二次搅拌,即得到单分散分子筛微球前驱体混合物;

S3:将上述单分散分子筛微球前驱体溶液转移至聚四氟乙烯反应笼中干燥,得干燥前驱物;

S4:将所得干燥前驱物和聚四氟乙烯反应笼转移到聚四氟乙烯水热反应内胆中,加入蒸气相物质,且确保蒸气相物质不接触所述干燥前驱物,加热进行蒸气相反应,反应结束后将得到的混合物降温,然后进行固液分离、洗涤和干燥,即得单分散分子筛微球;

进一步的,所述碱:去离子水:铝源:单分散多孔二氧化硅微球的摩尔量之比为1~10:1~1000:0~1:1;更进一步的,所述碱:去离子水:铝源:二氧化硅微球的摩尔量之比为1~5:1~200:0~1:1;

进一步的,所述碱选自氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙、氢氧化铝、氢氧化银、氢氧化铅、氢氧化锌、氢氧化铯、碳酸钾、碳酸钠、氨水、联氨、羟氨、液氨中的任意一种或几种;

进一步的,所述铝源选自铝箔、铝粉、氯化铝、偏铝酸钠、硫酸铝、硝酸铝、异丙醇铝、拟薄水铝石、氢氧化铝中的任意一种或几种;

进一步的,所述单分散多孔二氧化硅微球直径为1~1000μm,其粒径变异系数(CV值)小于10%;优选的,所述单分散多孔二氧化硅微球的直径为3~100μm;优选的,所述二氧化硅微球粒径变异系数(CV值)≤3%;

进一步的,S2中所述搅拌转速为100~2000rpm,优选为500rpm;所述搅拌温度为常温;所述第一次搅拌时间为20~60min;优选的,搅拌30min;进一步的,S2中抽真空处理的绝对压力为0Pa~6000Pa,优选3000~5000Pa;进一步的,所述抽真空5~20min;优选的,所述抽真空10min;

进一步的,S3所述干燥温度在0~100℃之间,优选25℃;进一步的,所述干燥时间为3~24h,优选6~12h;

进一步的,S4所述干燥前驱物与蒸气相物质的质量比1:10~1000;优选的,S4所述干燥前驱物与蒸气相物质的质量比1:100~500;

更进一步的,S4所述蒸气相物质选自去离子水、乙醇、甲醇、丙醇、四乙基氢氧化铵、三乙胺、二乙胺、乙二胺中的任意一种或几种;优选去离子水或由水、乙二胺和三乙胺以摩尔比1:1:2组成的混合物;

进一步的,S4所述的蒸气相反应中,温度在0~300℃之间,优选在30~200℃之间,更优选在50~180℃之间;

进一步的,S4所述的蒸气相反应中,所述压力在10bar~常压之间;优选压力为1~5bar;

进一步的,S4所述的蒸气相反应中,所述反应时间为1~240h,优选12~72h;

进一步的,S4所述的降温至常温(25℃);

进一步的,S4所述固液分离方法选自滤膜过滤、离心分离、沉降分离中的一种或多种,优选采用离心分离;更进一步的,所述离心转速为2000~10000rpm,优选为5000~8000rpm;所述离心时间为1~10min,优选为3~5min;

进一步的,S4所述采用去离子水、乙醇、丙酮、甲醇、石油醚中的一种或多种进行洗涤,优选去离子水;

进一步的,S4所述干燥选自红外干燥、鼓风干燥、真空干燥、双锥干燥、刮膜干燥中的一种或多种,优选真空干燥;更进一步的,S4所述干燥温度40~300℃,优选为40~80℃,最优选为60℃;

进一步的,所述单分散分子筛微球的制备方法,还包括以下步骤:

S5:将S4所述的单分散分子筛微球采用除钠以外的金属离子进行离子交换,例如,钙、锂、铜、锌等,使之局部或完全取代钠离子,获得含相应金属离子的单分散分子筛微球。

本发明的第三方面提供了一种上述任一种单分散分子筛微球的用途,用于制备色谱填料、制备催化剂、制备吸附剂、制备离子交换剂、制备生物芯片或作为缓控释药物载体。

附图说明

图1为本发明单分散分子筛微球的制备工艺流程图

图2a为原料单分散多孔二氧化硅微球的形貌特征

图2b为原料单分散多孔二氧化硅微球的X射线衍射图谱

图3为原料单分散多孔二氧化硅微球的粒径分布图

图4为实施例1制备的单分散LTA分子筛微球的扫描电镜图

图5为实施例1制备的单分散LTA分子筛微球的粒径分布图

图6为实施例1制备的单分散LTA分子筛微球与商业5A沸石的X射线衍射图谱

图7为实施例1制备的单分散LTA-CaA分子筛微球与商业5A沸石的硬度对比图

图8为实施例1制备的单分散LTA-CaA分子筛微球与商业5A沸石的氮气吸附对比图

图9为实施例1制备的单分散LTA-CaA分子筛微球与经过550℃,6h煅烧的单分散LTA-CaA分子筛微球氮气吸附对比图

图10为实施例2制备的单分散SOD分子筛微球的扫描电镜图

图11为实施例2制备的单分散SOD分子筛微球的粒径分布图

图12为实施例2制备的单分散SOD分子筛微球的X射线衍射图谱

图13为实施例3制备的单分散ZSM-5分子筛微球的扫描电镜谱图

图14为实施例3制备的单分散ZSM-5分子筛微球的粒径分布图

图15为实施例3制备的单分散ZSM-5分子筛微球的X射线衍射图谱

图16为实施例4制备的单分散Silicalite-1分子筛微球的扫描电镜谱图

图17为实施例4制备的单分散Silicalite-1分子筛微球的粒径分布图

图18为实施例4制备的单分散Silicalite-1分子筛微球的X射线衍射图谱

有益效果

本发明采用单分散多孔二氧化硅微球制备单分散分子筛微球,获得分子筛微球具有更多孔道,粒径大小均一,具有吸附量大、机械强度高、热稳定性好等优点,其使用时易于装填,在作为色谱填料、催化、吸附、分离和药物缓控释制剂等技术领域具有广泛应用。

具体实施方式

实施例1

一种单分散分子筛微球的制备方法,包括以下步骤:

S1:将66mg氢氧化钠溶解于2ml去离子水中,加入165mg偏铝酸钠搅拌形成澄清溶液;S2:将100mg单分散多孔二氧化硅微球(直径在3~100μm之间,且CV值≤3%)加入到S1所述溶液中(即Na

实施例2

一种单分散分子筛微球的制备方法,包括以下步骤:

S1:将66mg氢氧化钠溶解于2ml去离子水中,加入165mg偏铝酸钠搅拌形成澄清溶液;S2:将100mg单分散多孔二氧化硅微球(直径在3~100μm之间,且CV值≤3%)加入到S1所述溶液中(即Na

实施例3

一种单分散分子筛微球的制备方法,包括以下步骤:

S1:将66mg氢氧化钠溶解于4.5ml去离子水中,加入66mg偏铝酸钠和10mg ZSM-5晶种(Zeolite Socony Mobil-5)搅拌形成澄清溶液;S2:将1g单分散多孔二氧化硅微球(直径在3~100μm之间,且CV值≤3%)加入到S1所述溶液中(即Na

实施例4

一种单分散分子筛微球的制备方法,包括以下步骤:

S1:将66mg氢氧化钠溶解于4.5ml去离子水中形成溶液;S2:将1g单分散多孔二氧化硅微球(直径在3~100μm之间,且CV值≤3%)加入到S1所述溶液中(Na

实验例1:单分散多孔SiO

1)对原料单分散多孔二氧化硅微球采用JEOL公司的扫描电镜进行形貌测试,结果如图2a所示,可以清楚看见原料二氧化硅微球形貌均匀,粒径均一,球形度高;其中,图2a右上角插图为放大的微球局部扫描电镜图;

2)采用Bruker公司的X射线粉末衍射仪对二氧化硅微球进行结晶度测试,结果如图2b所示,结果表明原料二氧化硅微球是以无定形的形式存在;

3)通过计数的方法统计超过100个二氧化硅微球的直径,绘制粒径分布曲线结果如图3所示,结果表明其粒径分布的CV值为1.62%,表明原料二氧化硅微球为单分散微球。

实验例2:实施例1产物的表征

(1)对实施例1制备的产物单分散LTA分子筛微球采用JEOL公司的扫描电镜进行形貌和EDS能谱测试,结果如图4所示,可以清楚看见产物单分散LTA分子筛微球与原料单分散多孔二氧化硅微球在形貌和粒径方面完全一致,其中图4右上角插图为放大的微球局部扫描电镜图;

(2)X射线能谱分析EDS结果表明产物全结晶LTA分子筛微球Si:Al=1,通过计数的方法统计超过100个LTA分子筛微球的直径,获得粒径分布的曲线如图5所示,结果表明其粒径分布的CV值为1.63%,表明LTA分子筛微球为单分散微球。

(3)对实施例1制备的产物单分散LTA分子筛微球采用Bruker公司的X射线粉末衍射仪对其和商用5A沸石(ACROS)进行结晶度测试,结果如图6所示,表明本发明LTA分子筛微球与商用5A沸石(ACROS)的衍射峰完全一致,并且峰强度优于5A沸石,其结晶度是5A沸石的10倍左右,这表明本发明的单分散LTA分子筛微球比5A沸石的微观有序度更高;

(4)将实施例1制备的产物单分散LTA分子筛微球进行钙离子交换,步骤如下:500mg单分散LTA分子筛微球加入25ml氯化钙(1M)溶液中,采用氢氧化钙(1M)调节溶液pH至9,在80℃下,强烈搅拌6h;重复上述过程6次,离心收集,去离子水洗涤,在60℃下干燥24h,得5A型全结晶LTA沸石微球,组成为LTA-CaA。采用Fischerscope公司的硬度测试仪(针头直径为20μm)对LTA-CaA微球和商用5A沸石(ACROS)进行硬度测试,结果列于图7,结果表明LTA-CaA微球的硬度为190.5N/cm

(5)采用Micromeritics公司的比表面积测试仪对LTA-CaA微球和商用5A沸石(ACROS)在0℃进行氮气吸附效果测试,吸附等温线如图8所示;其中,单分散LTA-CaA分子筛微球的氮气吸附量为12.7cm

(6)采用管式炉对LTA-CaA微球在550℃、空气氛围中进行6h煅烧,之后采用Micromeritics公司的比表面积测试仪对CaA微球以及经过煅烧的LTA-CaA微球在0℃进行氮气吸附效果测试,吸附等温线如图9所示,结果表明高温煅烧前后其氮气吸附仅降低少于5%(LTA-CaA为12.7cm

实验例3:实施例2产物的表征

(1)对由实施例2制备获得的单分散SOD分子筛微球采用JEOL公司的扫描电镜进行形貌和EDS能谱测试,如图10所示,可以清楚看见产物单分散SOD分子筛微球与原料二氧化硅微球在形貌和粒径方面完全一致,EDS结果表明产物单分散SOD分子筛微球Si:Al=1;其中,图10右上角插图为放大的微球局部扫描电镜图;

(2)通过计数的方法统计超过100个实施例2制备的SOD分子筛微球的直径,粒径分布的结果列于图11,结果表明其粒径分布的CV值为1.74%,表明SOD分子筛微球为单分散微球;

(3)对由实施例2制备获得的产物单进行X射线粉末衍射仪进行结晶度测试,谱图列于图12,结果表明本发明制备的单分散SOD分子筛微球与SOD沸石的标准图谱完全一致,没有多余的衍射峰,这表明本发明指标的单分散SOD分子筛微球晶体结晶度100%。

实验例4:实施例3产物的表征

(1)对实施例3获得的单分散ZMS-5分子筛微球采用JEOL公司的扫描电镜进行形貌和EDS能谱测试,谱图列于图13,可以清楚看见产物单分散ZMS-5分子筛微球与原料二氧化硅微球在形貌和粒径方面完全一致,EDS结果表明产物单分散ZMS-5分子筛微球Si:Al=40;另外,图13右上角插图为放大的微球局部扫描电镜图;

(2)通过计数的方法统计超过100个ZMS-5分子筛微球的直径,粒径分布的结果列于图14,结果表明其粒径分布的CV值为1.75%,表明ZMS-5分子筛微球为单分散微球;

(3)对由实施例3制备获得的产物进行X射线粉末衍射仪进行结晶度测试,谱图列于图15,结果表明本发明制备的单分散ZMS-5分子筛微球与ZMS-5的标准图谱完全一致,没有多余的衍射峰,这表明本发明制备的单分散ZMS-5分子筛微球晶体结晶度100%。

实验例5:实施例4产物的表征

(1)对实施例4制备的单分散晶Silicalite-1分子筛微球采用JEOL公司的扫描电镜进行形貌和EDS能谱测试,谱图列于图16,可以清楚看见产物单分散Silicalite-1分子筛微球与原料二氧化硅微球在形貌和粒径方面完全一致,EDS结果表明产物单分散Silicalite-1分子筛微球仅含有Si,不含Al;另外,图16右上角插图为放大的微球局部扫描电镜图;

(2)通过计数的方法统计超过100个Silicalite-1分子筛微球的直径,粒径分布的结果列于图17,结果表明其粒径分布的CV值为1.74%,表明Silicalite-1分子筛微球为单分散微球;

(3)对实施例4制备的产物单分散Silicalite-1分子筛微球进行X射线粉末衍射仪进行结晶度测试,谱图列于图18,结果表明本发明制备的单分散Silicalite-1分子筛微球与Silicalite-1的标准图谱完全一致,没有多余的衍射峰,这表明本发明制备的单分散Silicalite-1分子筛微球晶体结晶度100%。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

相关技术
  • 一种单分散分子筛微球及其制备方法
  • 一种单分散酚醛树脂微球以及多孔碳微球的宏量制备方法
技术分类

06120112275189