掌桥专利:专业的专利平台
掌桥专利
首页

电子碰撞频率诊断方法、系统、介质、设备、终端及应用

文献发布时间:2023-06-19 10:32:14


电子碰撞频率诊断方法、系统、介质、设备、终端及应用

技术领域

本发明属于等离子体诊断技术领域,尤其涉及一种电子碰撞频率诊断方法、系统、介质、设备、终端及应用。

背景技术

目前:在地面等离子体风洞实验装置中会使用电感耦合等离子体(ICP)方法来生成持续时间长、体积大、均匀且稳定的等离子体,采用微波传输诊断方法对该等离子体进行诊断可以同时获得等离子体密度和碰撞频率参数,但当电磁波频率接近等离子体频率时,电磁波穿过该等离子体后产生的相移可能是周期(360°)的好几倍,由于测试设备的局限性很难准确测试其相移并将其恢复,进而难以诊断电子密度和碰撞频率。若采用激光干扰方法对该等离子体进行诊断,可以获得相对准确的电子密度,但由于激光对等离子体碰撞不敏感,无法诊断出准确的碰撞频率。在低温弱电离等离子体风洞环境中,碰撞频率是非常重要的物理量,需要对其进行准确诊断。因此,本专利提出了一种新型算法,将微波传输诊断和激光诊断这两种方法的优势结合起来,进而获取接近实验真实情况的电子密度和电子碰撞频率。

通过上述分析,现有技术存在的问题及缺陷为:针对上述大尺寸等离子体进行微波传输诊断时,由于等离子体中电磁波的相移可能会超过多个周期(360°),因此很难准确测试相移并将其恢复。

解决以上问题及缺陷的难度为:

仅使用微波传输诊断方法或者激光诊断方法对大体积等离子体进行诊断,均无法同时获得较为准确的电子密度以及电子碰撞频率。

解决以上问题及缺陷的意义为:

本专利将微波传输诊断和激光诊断这两种诊断方法结合起来对大体积等离子体进行诊断,实现了两种诊断方法的优势互补,同时获得了接近真实值的电子密度以及电子碰撞频率。

发明内容

针对现有技术存在的问题,本发明提供了一种电子碰撞频率诊断方法、系统、介质、设备、终端及应用。

本发明是这样实现的,一种电子碰撞频率诊断方法,所述电子碰撞频率诊断方法包括:

利用激光诊断电子密度和预估初始碰撞频率获得入射电磁波的相移;

将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

判断电子密度和激光诊断电子密度的差值是否满足条件。

这些步骤描述的是具体的迭代计算过程,每一步环环相扣,因此很难明确地说明具体每一步对本方案所起的积极作用;本发明通过反复迭代,当通过公式计算出来的电子密度值与激光诊断测量出来的电子密度值基本吻合同时计算出来的电子碰撞频率收敛的时候,可以判定此时的电子密度以及电子碰撞频率是最接近真实值的,从而实现了同时获得这两个非常重要的物理量的目的。

进一步,所述电子碰撞频率诊断方法具体包括:

(1)将激光诊断电子密度ne

(2)将计算出的相移φ

(3)将ne

(4)将计算出的相移φ

(5)判断ne

进一步,所述取值范围为0.1~10GHz,代入公式为:

等离子体中入射电磁波的相移常数β:

其中,c是真空中的光速,ω

当电磁波穿过厚度为d的等离子体,其衰减量Att和相移φ分别是:

Att=20log

其中,φ

进一步,所述将计算出的相移φ

等离子体中入射电磁波的衰减常数α:

当电磁波穿过厚度为d的等离子体,其相移φ分别是:

其中,φ

进一步,所述将ne

其中,c是真空中的光速,ω

当电磁波穿过厚度为d的等离子体,其衰减量Att和相移φ分别是:

Att=20log

其中,φ

等离子体中入射电磁波的衰减常数α:

当电磁波穿过厚度为d的等离子体,其相移φ是:

其中,φ

本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:

利用激光诊断电子密度和预估初始碰撞频率获得入射电磁波的相移;

将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

判断电子密度和激光诊断电子密度的差值是否条件。

本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:

利用激光诊断电子密度和预估初始碰撞频率获得入射电磁波的相移;

将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

判断电子密度和激光诊断电子密度的差值是否条件。

本发明的另一目的在于提供一种等离子体诊断信息数据处理终端,所述等离子体诊断信息数据处理终端用于实现所述的电子碰撞频率诊断方法。

本发明的另一目的在于提供一种实施所述电子碰撞频率诊断方法的电子碰撞频率诊断系统,所述电子碰撞频率诊断系统包括:

入射电磁波相移获得模块,用于将激光诊断电子密度和预估初始碰撞频率,获得入射电磁波的相移;

电子密度和碰撞频率获得模块,用于将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

入射电磁波相移以及衰减计算模块,用于将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

电子密度和碰撞频率获得模块,用于将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

差值判断模块,用于判断电子密度和激光诊断电子密度的差值是否条件。

结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明将微波传输诊断和激光诊断这两种方法的优势结合起来,进而获取接近实验真实情况的电子密度和电子碰撞频率。电磁波通过等离子体传输之后,相移具有很大的误差和混乱。这是因为等离子体很厚,并且等离子体引起的相移可能会超过360°,测试记录的设备范围是±180°,因此很难再现真实的相移。尽管相移有所恢复,但仍然存在较大偏差啊,如图(c)所示。激光诊断也是一种常用的非接触式方法。经过分析,激光诊断系统获得的电子密度相对接近真实状态。图(b)示出了微波透射诊断和激光诊断两种方法的电子密度。从这两个诊断结果来看,由于传输后的相移不准确,微波传输的诊断存在较大误差;激光诊断可以计算出电子密度,而不能计算出碰撞频率。为了获得真实的相移,电子密度和碰撞频率,可以将微波传输衰减(图a)和激光诊断电子密度(图b)结合起来实现。具体计算过程如上所述。

附图说明

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。

图1是本发明实施例提供的电子碰撞频率诊断方法流程图。

图2是本发明实施例提供的电子碰撞频率诊断系统的结构示意图;

图2中:1、入射电磁波相移获得模块;2、电子密度和碰撞频率获得模块;3、入射电磁波相移以及衰减计算模块;4、电子密度和碰撞频率获得模块;5、差值判断模块。

图3是本发明实施例提供的电子碰撞频率诊断方法的实现流程图。

图4是本发明实施例提供的电磁波通过等离子体传输之后,相移具有很大的误差和混乱示意图;图中:(a)将微波传输衰减;(b)激光诊断电子密度;(c)相移有所恢复,但仍然存在较大偏差。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

针对现有技术存在的问题,本发明提供了一种电子碰撞频率诊断方法、系统、介质、设备、终端及应用,下面结合附图对本发明作详细的描述。

如图1所示,本发明提供的电子碰撞频率诊断方法包括以下步骤:

S101:将激光诊断电子密度和预估初始碰撞频率,获得入射电磁波的相移;

S102:将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

S103:将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

S104:将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

S105:判断电子密度和激光诊断电子密度的差值是否条件。

本发明提供的电子碰撞频率诊断方法业内的普通技术人员还可以采用其他的步骤实施,图1的本发明提供的电子碰撞频率诊断方法仅仅是一个具体实施例而已。

如图2所示,本发明提供的电子碰撞频率诊断系统包括:

入射电磁波相移获得模块1,用于将激光诊断电子密度和预估初始碰撞频率,获得入射电磁波的相移;

电子密度和碰撞频率获得模块2,用于将计算出的相移和测量出的衰减代入方程式,获得电子密度和碰撞频率;

入射电磁波相移以及衰减计算模块3,用于将获得电子密度和碰撞频率代入公式,计算得出入射电磁波的相移以及衰减;

电子密度和碰撞频率获得模块4,用于将计算出的相移和衰减代入方程式,获得电子密度和碰撞频率;

差值判断模块5,用于判断电子密度和激光诊断电子密度的差值是否条件。

下面结合附图对本发明的技术方案作进一步的描述。

如图3所示,本发明实施例提供的电子碰撞频率诊断方法具体包括以下步骤:

结合麦克斯韦方程,利用平面电磁波在有损耗介质中的传播定律,可以得到等离子体中电磁波的衰减和相移。反之,也可以通过等离子体中电磁波的衰减和相移来得出等离子体的电子密度和碰撞频率。

等离子体中入射电磁波的衰减常数α和相移常数β:

其中,c是真空中的光速,ω

当电磁波穿过厚度为d的等离子体,其衰减量Att和相移φ分别是:

Att=20log

其中,φ

电子密度和碰撞频率可以通过等离子体中电磁波的衰减和相移来计算,表达式如下:

如上所述,当电磁波通过较厚的等离子体进行传输之后,相移会具有很大的误差和混乱。由于测试设备的局限性很难再现真实的相移,即使相移有所恢复,也会存在很大偏差,因此,通过式(6)直接计算得到的电子密度误差很大。已有相关理论及实验证明,激光诊断系统获得的电子密度相对接近真实状态。但是,激光诊断程序无法计算碰撞频率。那么,为了获得真实的电子密度和碰撞频率,可以将微波传输衰减和激光诊断电子密度结合起来实现,具体实施步骤如下:

(1)将激光诊断电子密度ne

(2)将计算出的相移φ

(3)将ne

(4)将计算出的相移φ

(5)判断ne

如图4所示,电磁波通过等离子体传输之后,相移具有很大的误差和混乱。这是因为等离子体很厚,并且等离子体引起的相移可能会超过360°,测试记录的设备范围是±180°,因此很难再现真实的相移。尽管相移有所恢复,但仍然存在较大偏差啊,如图4中的(c)所示。激光诊断也是一种常用的非接触式方法。经过分析,激光诊断系统获得的电子密度相对接近真实状态。图4中的(b)示出了微波透射诊断和激光诊断两种方法的电子密度。从这两个诊断结果来看,由于传输后的相移不准确,微波传输的诊断存在较大误差;激光诊断可以计算出电子密度,而不能计算出碰撞频率。为了获得真实的相移,电子密度和碰撞频率,可以将微波传输衰减(图4中的(a))和激光诊断电子密度(图4中的(b))结合起来实现。具体计算过程如上所述。

应当注意,本发明的实施方式可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明的设备及其模块可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

相关技术
  • 电子碰撞频率诊断方法、系统、介质、设备、终端及应用
  • 一种登录移动应用的方法、移动终端、电子设备、系统及存储介质
技术分类

06120112581498