掌桥专利:专业的专利平台
掌桥专利
首页

高频模块以及通信装置

文献发布时间:2023-06-19 18:35:48


高频模块以及通信装置

技术领域

本发明一般而言涉及高频模块以及通信装置。更详细而言,本发明涉及具备多个功率放大器的高频模块以及具备高频模块的通信装置。

背景技术

近年来,已知有使用包络跟踪方式(以下,称为“ET方式”)的功率放大电路(例如,参照专利文献1)。ET方式是指根据高频信号的包络线的振幅来使放大元件的电源电压的振幅变化的高频放大技术。更详细而言,ET方式是指通过使放大元件的集电极电压根据输出电压而变化,来减少在电源电压固定的情况下的动作时所产生的功率的损耗,并实现高效率化的技术。

专利文献1所记载的功率放大电路具备对输入到基极的信号进行放大并从集电极输出的晶体管,根据高频信号的包络线的振幅使晶体管的电源电压变化,并将该电源电压供给至晶体管。

专利文献1:国际公开第2003/176147号

然而,在专利文献1所记载的功率放大电路中,为了减少来自跟踪器部件的电源电压的谐波分量,在跟踪器部件与功率放大器之间的路径连接有滤波器。

然而,在专利文献1所记载的以往的功率放大电路中,在向与多个通信频带对应的功率放大器供给电源电压的路径共用的情况下,在所有的通信频带中,使功率放大器的电源电压通过相同的特性的滤波器。因此,存在根据通信频带,难以兼得低损耗和良好的衰减特性的问题。

发明内容

本发明是鉴于上述的点而完成的发明,本发明的目的在于提供一种在多个通信频带中的每个通信频带中,能够实现低损耗和良好的衰减特性双方的高频模块以及通信装置。

本发明的一个方式的高频模块具备多个功率放大器、外部连接端子、滤波器以及开关。上述多个功率放大器包括第一功率放大器和第二功率放大器。上述外部连接端子与跟踪器部件连接,该跟踪器部件向上述多个功率放大器供给电源电压。上述滤波器不设置在上述外部连接端子与上述第一功率放大器之间的第一路径上,而设置在上述外部连接端子与上述第二功率放大器之间的第二路径上。上述开关在上述第一路径和上述第二路径之间切换与上述外部连接端子的连接。

本发明的一个方式的通信装置具备上述高频模块和信号处理电路。上述信号处理电路向上述高频模块输出高频信号。

根据本发明的上述方式的高频模块以及通信装置,在多个通信频带中的每个通信频带中,能够实现低损耗和良好的衰减特性双方。

附图说明

图1是表示实施方式的高频模块的主要部分的结构的示意图。

图2是表示实施方式的高频模块以及通信装置的结构的示意图。

图3是上述的高频模块的滤波器的电路图。

图4是上述的高频模块的主视图。

图5是上述的高频模块中的图4的X1-X1线剖视图。

图6是实施方式的变形例1的高频模块的主视图。

图7是上述的高频模块中的图6的X2-X2线剖视图。

图8是上述的高频模块的后视图。

图9是实施方式的变形例2的高频模块的剖视图。

图10是实施方式的变形例3的高频模块的滤波器的电路图。

具体实施方式

以下,参照附图对实施方式的高频模块以及通信装置进行说明。在下述的实施方式等中所参照的各图是示意性的图,图中的各构成要素的大小和厚度以及各个比未必反映出实际的尺寸比。

(实施方式)

(1)高频模块

参照附图对实施方式的高频模块1的结构进行说明。

如图1所示,实施方式的高频模块1具备多个功率放大器(第一功率放大器2和第二功率放大器3)、外部连接端子4、滤波器5以及开关6(第一开关)。另外,高频模块1具备天线端子11、输入端子12、发送开关15(第二开关)以及天线开关16(第三开关)。从高频模块1输出的高频信号经由后述的天线81发送到基站(未图示)。如图2所示,高频模块1被用于通信装置8等。

在高频模块1中,在对高频信号进行放大时,使用包络跟踪方式(以下称为“ET方式”)。在ET方式中,具有模拟包络跟踪方式(以下称为“模拟ET方式”)和数字包络跟踪方式(以下称为“数字ET方式”)。

模拟ET方式是连续地检测输入到功率放大器(放大元件)的高频信号的振幅的包络线(包络)并根据上述包络使功率放大器(放大元件)的电源电压的振幅水平变化的方式。在模拟ET方式中,连续地检测包络,所以电源电压的振幅水平连续地变化。

数字ET方式是离散地检测输入到功率放大器(放大元件)的高频信号的振幅的包络线(包络)并根据上述包络使功率放大器(放大元件)的电源电压的振幅水平变化的方式。在数字ET方式中,不连续而以一定的间隔检测高频信号的振幅水平,对检测出的振幅水平进行量化。在数字ET方式中,离散地检测包络,所以电源电压的振幅水平离散地变化。

(2)通信装置

接下来,参照附图对使用了高频模块1的通信装置8进行说明。

如图2所示,通信装置8具备高频模块1、天线81、信号处理电路82以及跟踪器部件85。通信装置8例如是如智能手机那样的移动电话。此外,通信装置8并不限定于移动电话,例如也可以是如智能手表那样的可穿戴终端等。

通信装置8进行第一通信频带的通信以及第二通信频带的通信。更详细而言,通信装置8进行第一通信频带的发送信号(以下,称为“第一发送信号”)的发送、第一通信频带的接收信号(以下,称为“第一接收信号”)的接收。并且,通信装置8进行第二通信频带的发送信号(以下,称为“第二发送信号”)的发送以及第二通信频带的接收信号(以下,称为“第二接收信号”)的接收。

第一发送信号和第一接收信号是TDD(Time Division Duplex:时分双工)的信号。此外,第一发送信号和第一接收信号并不限定于TDD的信号,也可以是FDD(FrequencyDivision Duplex:频分双工)的信号。TDD是对无线信号中的发送和接收分配同一频带,按时间切换地进行发送和接收的无线通信技术。FDD是对无线通信中的发送和接收分配不同的频带来进行发送以及接收的无线通信技术。

第二发送信号和第二接收信号是TDD的信号。此外,第二发送信号和第二接收信号并不限定于TDD的信号,也可以是FDD的信号。

(3)高频模块的电路结构

以下,参照附图对实施方式的高频模块1的电路结构进行说明。

(3.1)第一功率放大器

虽然未图示,但图1所示的第一功率放大器2具备晶体管(放大元件)。

第一功率放大器2是使第一发送信号(TDD的发送信号)放大的放大器。更详细而言,第一功率放大器2是使通信频带为中频带的发送信号和通信频带为高频带的发送信号放大的功率放大器。第一功率放大器2使通信频带为作为5G NR用的频带的n41的发送信号作为通信频带为高频带的发送信号而放大。

第一功率放大器2的晶体管(未图示)例如是NPN晶体管,是被供给电源电压V1并放大高频信号的放大元件。晶体管对从RF信号处理电路84(参照图2)输出的高频信号进行放大。晶体管的集电极与开关6电连接。

对第一功率放大器2的晶体管供给电源电压V1。向晶体管的基极输入来自输入端子12的高频信号。从跟踪器部件85向晶体管的集电极施加根据高频信号的振幅水平而控制的电源电压V1。

在这里,如上所述,使用ET方式,所以向第一功率放大器2的晶体管供给的电源电压V1的振幅水平基于高频信号的振幅的变化而变化。

(3.2)第二功率放大器

图1所示的第二功率放大器3具备晶体管(放大元件)。第二功率放大器3的晶体管例如由HBT(Heterojunction Bipolar Transistor:异质结双极晶体管)构成。

第二功率放大器3是使第二发送信号(FDD的发送信号)放大的放大器。更详细而言,第二功率放大器3是使通信频带为中频带的发送信号和通信频带为高频带的发送信号放大的功率放大器。第二功率放大器3使通信频带为作为3GPP用的频带的Band30的发送信号作为通信频带为高频带的发送信号而放大。

第二功率放大器3的晶体管(未图示)例如是NPN晶体管,是被供给电源电压V1并放大高频信号的放大元件。晶体管对从RF信号处理电路84(参照图2)输出的高频信号进行放大。晶体管的集电极与滤波器5电连接。

对第二功率放大器3的晶体管供给电源电压V1。向晶体管的基极输入来自输入端子12的高频信号。晶体管的集电极与滤波器5连接。从跟踪器部件85向晶体管的集电极施加根据高频信号的振幅水平而控制的电源电压V1。

在这里,如上所述,使用ET方式,所以向第二功率放大器3的晶体管供给的电源电压V1的振幅水平基于高频信号的振幅的变化而变化。

(3.3)外部连接端子

如图1所示,外部连接端子4是连接跟踪器部件85的端子。外部连接端子4与跟踪器部件85直接或者间接地连接。来自跟踪器部件85的电源电压V1经由外部连接端子4被供给至第一功率放大器2或者第二功率放大器3。

(3.4)滤波器

如图1所示,滤波器5连接在开关6与第二功率放大器3之间的第二路径P2上。滤波器5例如是低通滤波器,减少电源电压V1的谐波分量。由此,能够减少由电源电压V1引起的噪声。

如图3所示,滤波器5具有电感器L1、第一电容器C1、第二电容器C2以及第三电容器C3。第一电容器C1与电感器L1并联连接。第二电容器C2连接在电感器L1的输入侧。更详细而言,第二电容器C2连接在开关6与电感器L1之间的路径与接地之间。第三电容器C3连接在电感器L1的输出侧。更详细而言,第三电容器C3连接在电感器L1与第二功率放大器3之间的路径与接地之间。滤波器5是以电感器和电容器为主要构成要素的滤波器即所谓的LC滤波器。

(3.5)开关

如图1所示,开关6是切换与外部连接端子4连接的路径的开关。换言之,开关6是从第一路径P1以及第二路径P2中切换与外部连接端子4连接的路径的开关。

开关6具有共用端子61和多个(在图示例中为两个)选择端子62、63。共用端子61与外部连接端子4连接。选择端子62与第一功率放大器2连接。选择端子63经由滤波器5与第二功率放大器3连接。

开关6例如是能够将多个选择端子62、63中的至少一个连接到共用端子61的开关。开关6例如是开关IC(Integrated Circuit:集成电路)。开关6例如由后述的信号处理电路82(参照图2)控制。开关6根据来自信号处理电路82的RF信号处理电路84(参照图2)的控制信号,来切换共用端子61与多个选择端子62、63的连接状态。

(4)高频模块的其他构成要素

另外,除了上述的构成要素以外,如图2所示,高频模块1还具备多个(在图示例中为两个)双工器72、73、第一发送滤波器74、第一接收滤波器75、多个(在图示例中为三个)低噪声放大器76a~76c、发送开关15、天线开关16以及接收开关17。并且,高频模块1具备天线端子11、输入端子12以及输出端子13。

(4.1)双工器/第一发送滤波器/第一接收滤波器

图2所示的第一发送滤波器74是使第一发送信号通过的发送滤波器。第一发送滤波器74设置于发送路径中的第一功率放大器2与天线端子11之间的路径。更详细而言,第一发送滤波器74设置于第一功率放大器2与天线开关16之间的路径。第一发送滤波器74使通过第一功率放大器2放大功率并从第一功率放大器2输出的第一发送信号通过。发送路径是为了从天线81发送高频信号而连结输入端子12和天线端子11的路径。

图2所示的第一接收滤波器75是使第一接收信号通过的接收滤波器。第一接收滤波器75设置于接收路径中的天线端子11与低噪声放大器76c之间的路径。更详细而言,第一接收滤波器75设置于天线开关16与低噪声放大器76c之间的路径。第一接收滤波器75使来自天线81的第一接收信号通过。接收路径是为了将高频信号输出到信号处理电路82而连结天线端子11和输出端子13的路径。

如图2所示,双工器72包括第二发送滤波器721和第二接收滤波器722。

第二发送滤波器721是使第二发送信号通过的发送滤波器。第二发送滤波器721设置于发送路径中的第二功率放大器3a与天线端子11之间的路径。更详细而言,第二发送滤波器721设置于第二功率放大器3a与天线开关16之间的路径。第二发送滤波器721使通过第二功率放大器3a放大功率并从第二功率放大器3a输出的第二发送信号通过。发送路径是为了从天线81发送高频信号而连结输入端子12和天线端子11的路径。

第二接收滤波器722是使第二接收信号通过的接收滤波器。第二接收滤波器722设置于接收路径中的天线端子11与低噪声放大器76a之间的路径。更详细而言,第二接收滤波器722设置于天线开关16与低噪声放大器76a之间的路径。第二接收滤波器722使来自天线81的第二接收信号通过。接收路径是为了将高频信号输出到信号处理电路82而连结天线端子11和输出端子13的路径。

如图2所示,双工器73包括第二发送滤波器731和第二接收滤波器732。

第二发送滤波器731是使第二发送信号通过的发送滤波器。第二发送滤波器731设置于发送路径中的第二功率放大器3b与天线端子11之间的路径。更详细而言,第二发送滤波器731设置于第二功率放大器3b与天线开关16之间的路径。第二发送滤波器731使通过第二功率放大器3b放大功率并从第二功率放大器3b输出的第二发送信号通过。发送路径是为了从天线81发送高频信号而连结输入端子12和天线端子11的路径。

第二接收滤波器732是使第二接收信号通过的接收滤波器。第二接收滤波器732设置于接收路径中的天线端子11与低噪声放大器76b之间的路径。更详细而言,第二接收滤波器732设置于天线开关16与低噪声放大器76b之间的路径。第二接收滤波器732使来自天线81的第二接收信号通过。接收路径是为了将高频信号输出到信号处理电路82而连结天线端子11和输出端子13的路径。

(4.2)低噪声放大器

图2所示的低噪声放大器76c以低噪声放大第一接收信号的放大器。低噪声放大器76c设置于接收路径中的第一接收滤波器75与接收开关17之间。低噪声放大器76c具有输入端子和输出端子,低噪声放大器76c的输入端子与第一接收滤波器75连接,低噪声放大器76c的输出端子经由接收开关17以及输出端子13与外部电路(例如信号处理电路82)连接。

图2所示的低噪声放大器76a是以低噪声放大第二接收信号的放大器。低噪声放大器76a设置于接收路径中的第二接收滤波器722与接收开关17之间。低噪声放大器76a具有输入端子和输出端子,低噪声放大器76a的输入端子与第二接收滤波器722连接,低噪声放大器76a的输出端子经由接收开关17以及输出端子13与外部电路(例如信号处理电路82)连接。对于低噪声放大器76b,也与低噪声放大器76a相同。

(4.3)发送开关

如图2所示,发送开关15是切换与输入端子12连接的路径的开关。换言之,发送开关15是从第一功率放大器2以及第二功率放大器3a、3b中切换与输入端子12连接的功率放大器的开关。

发送开关15具有共用端子151以及多个(在图示例中为三个)选择端子152~154。共用端子161与输入端子12连接。选择端子152与第一功率放大器2连接。选择端子153与第二功率放大器3a连接。选择端子154与第二功率放大器3b连接。

发送开关15例如是能够将多个选择端子152~154中的至少一个连接到共用端子151的开关。发送开关15例如是开关IC(Integrated Circuit)。发送开关15例如由后述的信号处理电路82控制。发送开关15根据来自信号处理电路82的RF信号处理电路84的控制信号,来切换共用端子151与多个选择端子152~154的连接状态。

(4.4)天线开关

如图2所示,天线开关16是切换与天线端子11连接的路径的开关。换言之,天线开关16是从双工器72、73、第一发送滤波器74以及第一接收滤波器75中切换与天线端子11连接的滤波器的开关。

天线开关16具有共用端子161以及多个(在图示例中为四个)选择端子162~165。共用端子161与天线端子11连接。选择端子162与第一发送滤波器74连接。选择端子163与第一接收滤波器75连接。选择端子164与双工器72连接。选择端子165与双工器73连接。

天线开关16例如是能够将多个选择端子162~165中的至少一个连接到共用端子161的开关。天线开关16例如是开关IC(Integrated Circuit)。天线开关16例如由后述的信号处理电路82控制。天线开关16根据来自信号处理电路82的RF信号处理电路84的控制信号,来切换共用端子161与多个选择端子162~165的连接状态。此外,天线开关16也可以是能够将多个选择端子162~165同时连接到共用端子161的开关。在该情况下,天线开关16是能够进行一对多的连接的开关。

(4.5)接收开关

如图2所示,接收开关17是切换与输出端子13连接的路径的开关。换言之,接收开关17是从低噪声放大器76a~76c中切换与输出端子13连接的低噪声放大器的开关。

接收开关17具有共用端子171以及多个(在图示例中三个)选择端子172~174。共用端子171与输出端子13连接。选择端子172与低噪声放大器76c连接。选择端子173与低噪声放大器76a连接。选择端子174与低噪声放大器76b连接。

接收开关17例如能够将多个选择端子172~174中的至少一个连接到共用端子171的开关。接收开关17例如是开关IC(Integrated Circuit)。接收开关17例如由后述的信号处理电路82控制。接收开关17根据来自信号处理电路82的RF信号处理电路84的控制信号,来切换共用端子171与多个选择端子172~174的连接状态。

(4.6)天线端子/输入端子/输出端子

如图2所示,天线端子11是连接后述的天线81的端子。天线端子11与天线81直接或者间接地连接。来自高频模块1的高频信号经由天线端子11输出到天线81。另外,来自天线81的高频信号经由天线端子11输出到高频模块1。

如图2所示,输入端子12是连接后述的信号处理电路82的端子。输入端子12与信号处理电路82直接或者间接地连接。来自信号处理电路82的高频信号经由输入端子12以及发送开关15输出到第一功率放大器2或者第二功率放大器3。

如图2所示,输出端子13是连接后述的信号处理电路82的端子。输出端子13与信号处理电路82直接或者间接地连接。来自低噪声放大器76a~76c的高频信号经由接收开关17以及输出端子13输出到信号处理电路82。

(5)高频模块的结构

以下,参照附图对实施方式的高频模块1的结构进行说明。

如图4和图5所示,高频模块1具备安装基板91、多个外部连接端子93以及树脂部件92。

高频模块1能够与外部基板(未图示)电连接。外部基板例如相当于移动电话以及通信设备等通信装置8(参照图2)的母基板。此外,高频模块1能够与外部基板电连接不仅是指将高频模块1直接安装在外部基板上的情况,也包括将高频模块1间接地安装在外部基板上的情况。此外,将高频模块1间接地安装在外部基板上的情况是指将高频模块1安装在已安装在外部基板上的其他模块上的情况等。

(5.1)安装基板

如图5所示,安装基板91具有第一主面911和第二主面912。第一主面911和第二主面912在安装基板91的厚度方向D1上相互对置。在将高频模块1设置于外部基板(未图示)时,第二主面912与外部基板对置。安装基板91是在第一主面911安装有电子部件的安装基板。

安装基板91是层叠有多个电介质层的多层基板。虽然未图示,但安装基板91具有多个导体图案部和多个导通孔电极(包括贯通电极)。多个导体图案部包括接地电位的导体图案部。多个导通孔电极用于安装于安装基板91的第一主面911的元件与安装基板91的导体图案部的电连接。另外,多个导通孔电极用于安装于安装基板91的第一主面911的元件与安装于安装基板91的第二主面912的元件的电连接、以及安装基板91的导体图案部与外部连接端子93的电连接。

如图4所示,在安装基板91的第一主面911配置有第二功率放大器3、滤波器5以及开关6。并且,在安装基板91的第一主面911配置有双工器72、73、第一发送滤波器74、低噪声放大器76以及匹配电路77。另外,在安装基板91的第一主面911配置有发送开关15和天线开关16。另一方面,如图5所示,在安装基板91的第二主面912配置有多个外部连接端子93。

(5.2)第二功率放大器

如图4所示,第二功率放大器3配置于安装基板91的第一主面911。此外,第二功率放大器3的一部分也可以内置于安装基板91。总之,第二功率放大器3在安装基板91配置于比第二主面912靠第一主面911侧即可。

(5.3)双工器

图4所示的双工器72如上所述包括第二发送滤波器721(参照图2)和第二接收滤波器722(参照图2)。同样地,双工器73如上所述包括第二发送滤波器731(参照图2)和第二接收滤波器732(参照图2)。以下,对双工器72(第二发送滤波器721、第二接收滤波器722)进行说明,但对于双工器73(第二发送滤波器731、第二接收滤波器732)也同样。

图2所示的第二发送滤波器721例如是包括多个串联臂谐振器以及多个并联臂谐振器的弹性波滤波器。弹性波滤波器例如是利用弹性表面波的SAW(Surface AcousticWave:表面声波)滤波器。并且,第二发送滤波器721也可以包括与多个串联臂谐振器中的任意一个串联连接的电感器以及电容器中的至少一方,也可以包括与多个并联臂谐振器中的任意一个串联连接的电感器或者电容器。

同样地,图2所示的第二接收滤波器722例如是包括多个串联臂谐振器以及多个并联臂谐振器的弹性波滤波器。弹性波滤波器例如是利用弹性表面波的SAW滤波器。并且,第二接收滤波器722也可以包括与多个串联臂谐振器中的任意一个串联连接的电感器以及电容器中的至少一方,也可以包括与多个并联臂谐振器中的任意一个串联连接的电感器或者电容器。

如图4所示,双工器72配置于安装基板91的第一主面911。此外,也可以将双工器72的一部分内置于安装基板91。总之,双工器72在安装基板91配置在比第二主面912靠第一主面911侧即可。

(5.4)外部连接端子

如图5所示,多个外部连接端子93是用于使安装基板91与外部基板(未图示)电连接的端子。多个外部连接端子93包括图2所示的天线端子11、输入端子12和输出端子13、外部连接端子4以及多个接地端子(未图示)。

多个外部连接端子93配置于安装基板91的第二主面912。多个外部连接端子93分别例如是设置在安装基板91的第二主面912上的球状的电极。各外部连接端子93例如是焊料凸块。多个外部连接端子93的材料例如是金属(焊料等)。

在高频模块1中,从高频模块1向外部基板(母基板)的安装性、增加高频模块1的接地端子的数量的观点等考虑,设置有多个外部连接端子93。

(5.5)树脂部件

如图5所示,树脂部件92设置于安装基板91的第一主面911,覆盖配置于安装基板91的第一主面911的电子部件以及安装基板91的第一主面911。树脂部件92具有确保配置于安装基板91的第一主面911的电子部件的机械强度以及耐湿性等的可靠性的功能。

(6)高频模块的各构成要素的详细结构

(6.1)安装基板

图5所示的安装基板91例如是印刷布线板、LTCC(Low Temperature Co-firedCeramics:低温共烧陶瓷)基板。在这里,安装基板91例如是包括多个电介质层以及多个导体图案部的多层基板。多个电介质层以及多个导体图案部在安装基板91的厚度方向D1上层叠。多个导体图案部分别形成为规定图案。多个导体图案部分别在与安装基板91的厚度方向D1正交的一个平面内包括一个或者多个导体部。各导体图案部的材料例如为铜。

安装基板91的第一主面911以及第二主面912在安装基板91的厚度方向D1上分离,并与安装基板91的厚度方向D1交叉。安装基板91中的第一主面911例如与安装基板91的厚度方向D1正交,但例如也可以包括导体部的侧面等作为不与厚度方向D1正交的面。另外,安装基板91中的第二主面912例如与安装基板91的厚度方向D1正交,但例如也可以包括导体部的侧面等作为不与厚度方向D1正交的面。另外,安装基板91的第一主面911以及第二主面912也可以形成有微小的凹凸或者凹部或者凸部。

(6.2)滤波器

对图2所示的双工器72、73、第一发送滤波器74以及第一接收滤波器75的详细结构进行说明。在以下的说明中,不区分双工器72、73、第一发送滤波器74以及第一接收滤波器75而为滤波器。

滤波器是单芯片的滤波器。在这里,在滤波器中,例如多个串联臂谐振器以及多个并联臂谐振器分别由弹性波谐振器构成。在该情况下,滤波器例如具备基板、压电体层以及多个IDT电极(Interdigital Transducer:叉指换能器)。基板具有第一面和第二面。压电体层设置于基板的第一面。压电体层设置在低声速膜上。多个IDT电极设置在压电体层上。在这里,低声速膜直接或间接地设置在基板上。另外,压电体层直接或间接地设置在低声速膜上。在低声速膜中,传播的体波的声速比在压电体层中传播的弹性波的声速低。在基板中,传播的体波的声速比在压电体层中传播的弹性波的声速高。压电体层的材料例如是钽酸锂。低声速膜的材料例如是氧化硅。基板例如是硅基板。例如,在将由IDT电极的电极指周期决定的弹性波的波长设为λ时,压电体层的厚度为3.5λ以下。低声速膜的厚度例如为2.0λ以下。

压电体层例如由钽酸锂、铌酸锂、氧化锌、氮化铝以及锆钛酸铅中的任意一个形成即可。另外,低声速膜包括选自由氧化硅、玻璃、氮氧化硅、氧化钽、向氧化硅添加了氟或者碳或者硼而成的化合物构成的组中的至少一种材料即可。另外,基板包括选择由硅、氮化铝、氧化铝、碳化硅、氮化硅、蓝宝石、钽酸锂、铌酸锂、石英、氧化铝、氧化锆、堇青石、莫来石、滑石、镁橄榄石、氧化镁以及金刚石构成的组中的至少一种材料即可。

滤波器例如还具备间隔层和盖部件。间隔层和盖部件设置于基板的第一面。在从基板的厚度方向俯视时,间隔层包围多个IDT电极。在从基板的厚度方向俯视时,间隔层为框状(矩形框状)。间隔层具有电绝缘性。间隔层的材料例如是环氧树脂、聚酰亚胺等合成树脂。盖部件是平板状。在从基板的厚度方向俯视时,盖部件为长方形,但并不局限于此,例如,也可以是正方形。在滤波器中,在从基板的厚度方向俯视时,盖部件的外形尺寸、间隔层的外形尺寸以及盖部件的外形尺寸大致相同。盖部件配置于间隔层,以使得在基板的厚度方向上与基板对置。盖部件在基板的厚度方向上与多个IDT电极重叠,并且在基板的厚度方向上与多个IDT电极分离。盖部件具有电绝缘性。盖部件的材料例如是环氧树脂、聚酰亚胺等合成树脂。滤波器具有由基板、间隔层以及盖部件围起的空间。在滤波器中,气体进入空间。气体例如是空气、惰性气体(例如,氮气)等。多个端子从盖部件露出。多个端子分别例如是凸块。各凸块例如是焊料凸块。各凸块并不局限于焊料凸块,例如也可以是金凸块。

滤波器例如也可以包括夹在低声速膜与压电体层之间的紧贴层。紧贴层例如由树脂(环氧树脂、聚酰亚胺树脂)构成。另外,滤波器也可以在低声速膜与压电体层之间、压电体层上、低声速膜下中的任意之一具备电介质膜。

另外,滤波器例如也可以具备夹在基板与低声速膜之间的高声速膜。在这里,高声速膜直接或间接地设置在基板上。低声速膜直接或间接地设置在高声速膜上。压电体层直接或间接地设置在低声速膜上。在高声速膜中,传播的体波的声速比在压电体层中传播的弹性波的声速高。在低声速膜中,传播的体波的声速比在压电体层中传播的弹性波的声速低。

高声速膜由类金刚石碳、氮化铝、氧化铝、碳化硅、氮化硅、硅、蓝宝石、钽酸锂、铌酸锂、石英等压电体、氧化铝、氧化锆、堇青石、莫来石、滑石、镁橄榄石等各种陶瓷、氧化镁、金刚石、或者以上述各材料为主要成分的材料、以上述各材料的混合物为主要成分的材料构成。

关于高声速膜的厚度,由于高声速膜具有将弹性波限制在压电体层以及低声速膜的功能,所以高声速膜的厚度越厚越好。压电体基板也可以具有紧贴层、电介质膜等,作为高声速膜、低声速膜以及压电体层以外的其他膜。

多个串联臂谐振器以及多个并联臂谐振器分别并不局限于上述的弹性波谐振器,例如,也可以是SAW谐振器或者BAW(Bulk Acoustic Wave:体声波)谐振器。在这里,SAW谐振器例如包括压电体基板和设置在压电体基板上的IDT电极。滤波器在多个串联臂谐振器以及多个并联臂谐振器分别由SAW谐振器构成的情况下,在一个压电体基板上,具有与多个串联臂谐振器一对一地对应的多个IDT电极以及与多个并联臂谐振器一对一地对应的多个IDT电极。压电体基板例如是钽酸锂基板、铌酸锂基板等。

(6.3)功率放大器

对图2所示的第一功率放大器2以及第二功率放大器3的详细结构进行说明。在以下的说明中,不区分第一功率放大器2和第二功率放大器3而为功率放大器。

功率放大器例如是具有基板和放大功能部的单芯片的IC。基板具有相互对置的第一面和第二面。基板例如是砷化镓基板。放大功能部包括形成于基板的第一面的至少一个晶体管。放大功能部是具有放大规定频带的发送信号的功能的功能部。晶体管例如是HBT(Heterojunction Bipolar Transistor:异质结双极晶体管)。在功率放大器中,对HBT的集电极-发射极间施加来自跟踪器部件85的电源电压V1。功率放大器除了放大功能部以外,例如也可以包括直流截止用的电容器。功率放大器例如倒装安装于安装基板91的第一主面911,以使得基板的第一面成为安装基板91的第一主面911侧。在从安装基板91的厚度方向D1俯视时,功率放大器的外周形状为四边形。

(6.4)低噪声放大器

对图2所示的低噪声放大器76a~76c的详细结构进行说明。在以下的说明中,不区分低噪声放大器76a~76c而为低噪声放大器。

低噪声放大器例如是具备基板和放大功能部的一个IC芯片。基板具有相互对置的第一面以及第二面。基板例如是硅基板。放大功能部形成于基板的第一面。放大功能部是具有放大规定频带的接收信号的功能的功能部。低噪声放大器例如倒装安装于安装基板91的第二主面912,以使得基板的第一面成为安装基板91的第二主面912侧。在从安装基板91的厚度方向D1俯视时,低噪声放大器的外周形状为四边形。

(7)通信装置的各构成要素

以下,参照图2对实施方式的通信装置8的各构成要素进行说明。如上所述,通信装置8具备高频模块1、天线81、信号处理电路82以及跟踪器部件85。

(7.1)天线

如图2所示,天线81与高频模块1的天线端子11连接。天线81具有通过电波放射从高频模块1输出的高频信号(发送信号)的发送功能和从外部接收高频信号(接收信号)作为电波并输出到高频模块1的接收功能。

(7.2)信号处理电路

如图2所示,信号处理电路82具备基带信号处理电路83和RF信号处理电路84。信号处理电路82对第一发送信号和第一接收信号、以及第二发送信号和第二接收信号进行处理。

基带信号处理电路83例如是BBIC(Baseband Integrated Circuit:基带集成电路),进行针对高频信号的信号处理。高频信号的频率例如是数百MHz至数GHz左右。

基带信号处理电路83根据基带信号生成I相信号以及Q相信号。基带信号例如是从外部输入的声音信号、图像信号等。基带信号处理电路83通过对I相信号和Q相信号进行合成来进行IQ调制处理,并输出发送信号。此时,发送信号被生成为对规定频率的载波信号以比该载波信号的周期长的周期进行振幅调制而得到的调制信号(IQ信号)。从基带信号处理电路83输出的调制信号作为IQ信号输出。IQ信号是指在IQ平面上表示振幅以及相位的信号。IQ信号的频率例如是数MHz至数10MHz左右。

RF信号处理电路84例如是RFIC(Radio Frequency Integrated Circuit:射频集成电路),进行针对高频信号的信号处理。RF信号处理电路84例如对从基带信号处理电路83输出的调制信号(IQ信号)进行规定的信号处理。更详细而言,RF信号处理电路84对从基带信号处理电路83输出的调制信号进行上转换(upconversion)等信号处理,将进行了信号处理后的高频信号输出至高频模块1。此外,RF信号处理电路84并不限定于进行从调制信号向高频信号的直接转换。RF信号处理电路84也可以将调制信号转换为中间频率(Intermediate Frequency:IF)信号,根据转换后的IF信号生成高频信号。

信号处理电路82向跟踪器部件85输出电源控制信号。电源控制信号是包括与高频信号的振幅的变化相关的信息的信号,为了使电源电压V1的振幅变化而从信号处理电路82输出至跟踪器部件85。电源控制信号例如是I相信号和Q相信号。

(7.3)跟踪器部件

如图2所示,跟踪器部件85被构成为向第一功率放大器2以及第二功率放大器3供给电源电压V1。更详细而言,跟踪器部件85生成与从高频信号的调制信号取出的包络相应的水平的电源电压V1,并将电源电压V1供给至高频模块1。

跟踪器部件85具备输入电源控制信号的输入端子(未图示)和生成电源电压V1的电压生成部(未图示)。输入端子与信号处理电路82连接,从信号处理电路82输入电源控制信号。跟踪器部件85基于被输入至输入端子的电源控制信号来生成电源电压V1。此时,跟踪器部件85基于来自信号处理电路82的电源控制信号使电源电压V1的振幅变化。换言之,跟踪器部件85是生成根据从信号处理电路82输出的高频信号的振幅的包络线(包络)变动的电源电压V1的包络跟踪电路。跟踪器部件85例如由DC-DC转换器构成,根据I相信号以及Q相信号检测高频信号的振幅水平,并使用检测出的振幅水平生成电源电压V1。

根据上述,跟踪器部件85通过ET方式将电源电压V1经由外部连接端子4供给至高频模块1。

(8)高频模块的动作

接下来,参照图1对实施方式的高频模块1中的向第一功率放大器2以及第二功率放大器3的电源电压V1的供给动作进行说明。从跟踪器部件85供给电源电压V1的第一功率放大器2以及第二功率放大器3所对应的通信频带为第一通信频带和第二通信频带。

首先,对在开关6中共用端子61与选择端子62连接的情况进行说明。若跟踪器部件85输出电源电压V1,则由于在第一路径P1上不设置滤波器5,所以来自跟踪器部件85的电源电压V1被直接供给至第一功率放大器2。若对第一功率放大器2供给电源电压V1,则第一功率放大器2使高频信号放大。

接下来,对在开关6中共用端子61与选择端子63、64连接的情况进行说明。若跟踪器部件85输出电源电压V1,则由于在第二路径P2上(在图2中为第二路径P21、P22上)设置有滤波器5(在图2中为滤波器5a、5b),所以滤波器5使来自跟踪器部件85的电源电压V1通过。滤波器5使电源电压V1的谐波分量减少。即,滤波器5截止电源电压V1的谐波分量,使电源电压V1的基本波分量通过。之后,向第二功率放大器3供给通过了滤波器5的电源电压V1。若向第二功率放大器3供给电源电压V1,则第二功率放大器3使高频信号放大。

如上述那样通过开关6切换不设置滤波器5的第一路径P1和设置有滤波器5的第二路径P2,能够切换是否使来自跟踪器部件85的电源电压V1通过滤波器5。即,能够切换是否除去电源电压V1的谐波分量。

在第二功率放大器3使FDD的发送信号放大的情况下,由于能够通过滤波器5使电源电压V1的谐波分量减少,所以能够减少对FDD的接收信号的噪声。另一方面,在第一功率放大器2使TDD的发送信号放大的情况下,电源电压V1保持原样。

(9)效果

在实施方式的高频模块1中,在第一功率放大器2以及第二功率放大器3中的第二功率放大器3与外部连接端子4之间的第二路径P2上设置有滤波器5。由此,在向多个功率放大器供给电源电压V1的情况下,能够根据各功率放大器来变更是否需要滤波器5,所以在各功率放大器中,能够实现低损耗和良好的衰减特性双方。

(变形例)

以下,对实施方式的变形例进行说明。

(1)变形例1

作为实施方式的变形例1,高频模块1a也可以不是单面安装的结构,而如图6~图8所示是双面安装的结构。

如图7和图8所示,变形例1的高频模块1a代替具备多个外部连接端子93而具备多个外部连接端子95。

多个外部连接端子95中的每个外部连接端子95不是凸块结构,而具有柱状电极。多个外部连接端子95配置于安装基板91的第二主面912。各外部连接端子95例如是设置在安装基板91的第二主面912上的柱状(例如,圆柱状)的电极。多个外部连接端子95的材料例如是金属(铜、铜合金等)。各外部连接端子95在安装基板91的厚度方向D1上具有与安装基板91的第二主面912接合的基端部和与基端部相反侧的前端部。各外部连接端子95的前端部例如也可以包括镀金层。

变形例1的高频模块1a具有覆盖安装基板91的第二主面912侧的树脂部件94。

(2)变形例2

作为实施方式的变形例2,高频模块1b也可以是如图9所示那样的结构。

高频模块1b具备凸块结构的多个外部连接端子96,而不具备柱状的外部连接端子95。在高频模块1b中,省略了树脂部件94(参照图7)。

(3)变形例3

作为实施方式的变形例3,滤波器5c也可以是如图10所示那样的可变滤波器。图10所示的滤波器5c是可变低通滤波器。滤波器5c具有电感器L1、L3和DTC(Digitally TunableCapacitor:数字可调谐电容器)51。

在变形例3的高频模块1中,作为设置在第二路径P2上的滤波器5c的低通滤波器是可变低通滤波器。由此,在第二功率放大器3使多个通信频带的高频信号放大的情况下,能够根据通信频带,改变滤波器5c的特性。其结果是,能够对每个通信频带,实现良好的特性。

(4)其他变形例

作为实施方式的其他变形例,滤波器5也可以不是低通滤波器,而是陷波滤波器(频带去除滤波器)。

TDD的高频信号的通信频带与FDD的高频信号的通信频带的组合在实施方式中是作为3GPP用的频带的Band30与作为5G NR用的频带的n41的组合,但并不限定于该组合。TDD的高频信号的通信频带与FDD的高频信号的通信频带的组合例如也可以是作为3GPP用的频带的Band30与作为5G NR用的频带的n38的组合。

另外,作为实施方式的其他变形例,双工器72、73、第一发送滤波器74以及第一接收滤波器75并不局限于弹性表面波滤波器,也可以是弹性表面波滤波器以外的滤波器。双工器72、73、第一发送滤波器74以及第一接收滤波器75例如也可以是使用了BAW(BulkAcoustic Wave)的弹性波滤波器、LC共振滤波器以及电介质滤波器中的任意一个。

以上说明的实施方式以及变形例只是本发明的各种实施方式以及变形例的一部分。另外,实施方式以及变形例只要能够实现本发明的目的,则能够根据设计等进行各种变更。

(方式)

在本说明书中,公开了以下的方式。

第一方式的高频模块(1;1a;1b)具备多个功率放大器、外部连接端子(4)、滤波器(5;5c)以及开关(6)。多个功率放大器包括第一功率放大器(2)和第二功率放大器(3)。外部连接端子(4)与跟踪器部件(85)连接,该跟踪器部件(85)向多个功率放大器供给电源电压(V1)。滤波器(5;5c)不设置在外部连接端子(4)与第一功率放大器(2)之间的第一路径(P1)上,而设置在外部连接端子(4)与第二功率放大器(3)之间的第二路径(P2)上。开关(6)在第一路径(P1)和第二路径(P2)之间切换与外部连接端子(4)的连接。

根据第一方式的高频模块(1;1a;1b),在向多个功率放大器(第一功率放大器2、第二功率放大器3)供给电源电压(V1)的情况下,能够根据各功率放大器变更是否需要滤波器(5),所以在各功率放大器中,能够实现低损耗和良好的衰减特性双方。

在第二方式的高频模块(1;1a;1b)中,在第一方式中,第一功率放大器(2)被构成为使TDD的高频信号放大。第二功率放大器(3)被构成为使FDD的高频信号放大。

在第三方式的高频模块(1;1a;1b)中,在第二方式中,TDD的高频信号的通信频带为Band30。FDD的高频信号的通信频带为n41。

在第四方式的高频模块(1;1a;1b)中,在第二方式中,TDD的高频信号的通信频带为Band30。FDD的高频信号的通信频带为n38。

在第五方式的高频模块(1;1a;1b)中,在第一~第四方式中的任意一个方式中,滤波器(5)是低通滤波器。

在第六方式的高频模块(1;1a;1b)中,在第五方式中,低通滤波器是可变低通滤波器。

根据第六方式的高频模块(1;1a;1b),在第二功率放大器(3)使多个通信频带的高频信号放大的情况下,能够根据通信频带,改变滤波器(5)的特性。其结果是,能够对每个通信频带,实现良好的特性。

在第七方式的高频模块(1;1a;1b)中,在第一~第六方式中的任意一个方式中,电源电压(V1)是通过包络跟踪方式生成的电源电压。

第八方式的通信装置(8)具备第一~第七方式中的任意一个高频模块(1;1a;1b)和信号处理电路(82)。信号处理电路(82)向高频模块(1;1a;1b)输出高频信号。

根据第八方式的通信装置(8),在高频模块(1;1a;1b)中,在向多个功率放大器(第一功率放大器2、第二功率放大器3)供给电源电压(V1)的情况下,能够根据各功率放大器变更是否需要滤波器(5),所以在各功率放大器中,能够实现低损耗和良好的衰减特性双方。

附图标记说明:1、1a、1b…高频模块;11…天线端子;12…输入端子;13…输出端子;15…发送开关;151…共用端子;152、153、154…选择端子;16…天线开关;161…共用端子;162、163、164、165…选择端子;17…接收开关;171…共用端子;172、173、174…选择端子;2…第一功率放大器;3、3a、3b…第二功率放大器;4…外部连接端子;5、5a、5b、5c…滤波器;51…DTC;6…开关;61…共用端子;62、63、64…选择端子;72、73…双工器;721、731…第二发送滤波器;722、732…第二接收滤波器;74…第一发送滤波器;75…第一接收滤波器;76、76a、76b、76c…低噪声放大器;77…匹配电路;8…通信装置;81…天线;82…信号处理电路;83…基带信号处理电路;84…RF信号处理电路;85…跟踪器部件;91…安装基板;911…第一主面;912…第二主面;92、94…树脂部件;93、95、96…外部连接端子;C1…第一电容器;C2…第二电容器;C3…第三电容器;L1…电感器;L3…电感器;P1…第一路径;P2…第二路径;V1…电源电压;D1…厚度方向。

技术分类

06120115628472