掌桥专利:专业的专利平台
掌桥专利
首页

基于实时轨迹特征分析的危险变道路段识别与管控方法

文献发布时间:2023-06-19 19:27:02


基于实时轨迹特征分析的危险变道路段识别与管控方法

技术领域

本发明属于道路驾驶安全监管技术领域,具体涉及一种基于实时轨迹特征分析的危险变道路段识别与管控方法。

背景技术

在实际生活中,驾驶员驾驶车辆在车道行驶并进行换道行为是一种基本操作,换道是人-车-路-环境对驾驶人共同作用的结果,换道行为十分影响行车安全,是道路交通安全研究的重要方面。

驾驶员在换道过程中需要注意的方面比车道保持时多很多,环境更为复杂,不能准确判断何时换道和可行性就可能造成拥堵甚至交通事故。近年来,随着居民汽车保有量的增加,因为变道而造成的交通事故逐年上升,在交通事故中,有6%的事故是由于换道不当所致;且换道交通事故所致延误时间占全类型交通事故所致延误时间的10%,在换道所致交通事故事件中有75%是由于驾驶员对换道条件判断失误所致,对于驾驶员换道行为风险识别显得十分重要。

传统方法主要着眼于车辆变道行为本身,从司机角度借助各类技术(如车载雷达)进行变道风险预警,缺乏全局意识,存在盲目性及时空局限性。本方案从全局视野出发,借助轨迹大数据研判危险变道风险行为及特征路段,为危险变道驾驶风险防范提供了新的方法和技术框架。

发明内容

针对现有技术中的上述不足,本发明提供的基于实时轨迹特征分析的危险变道路段识别与管控方法解决了传统管控方法仅着眼于车辆本身危险变道行为导致管控效率低、车辆传感设备依赖性高的问题。

为了达到上述发明目的,本发明采用的技术方案为:基于实时轨迹特征分析的危险变道路段识别与管控方法,包括以下步骤:

S1、采集目标区域的路网数据,识别道路交叉口,并根据其进行危险变道风险管控路段的语义划分;

S2、采集目标区域的动态/历史车辆轨迹数据,根据划分的危险变道风险管控路段进行轨迹出行路径匹配,并计算匹配危险变道的分向路段的危险变道风险指数;

S3、根据计算的危险变道风险指数,动态识别各分向路段的危险变道风险等级,并根据危险变道风险等级进行分类管控。

进一步地,所述步骤S1具体为:

S11、采集目标区域的路网数据,并修复异常路网数据,确定路网信息图;

S12、在路网信息图中,将100米以内的所有交汇口端点的形心识别为逻辑道路交叉口;

S13、对相邻两个逻辑道路交叉口之间的路段划分逻辑分向路段,实现危险变道风险管控路段的语义划分。

进一步地,所述步骤S2具体为:

S21、采集目标区域的历史车辆轨迹数据,对其处理并构建各车辆的历史出行轨迹集合;

同时,采集目标区域的实时车辆轨迹数据,对其处理剔除异常轨迹点数据,构建动态出行轨迹集合;

S22、对构建的历史/动态轨迹出行集合中的轨迹点数据,进行轨迹匹配,得到对应的分向路段;

S23、基于历史/动态轨迹出行集合的轨迹点数据,计算各分向路段的追尾风险指数;

S24、基于历史轨迹出行集合的轨迹点数据,计算各分向路段的平均速度指数;

S25、基于历史轨迹出行集合的轨迹点数据,计算各分向路段的变道频率指数;

S26、根据计算出的追尾风险指数对应风险等级的权重、平均速度的权重以及变道频率指数,计算各分向路段的危险变道风险指数。

进一步地,所述步骤S21中,构建历史出行轨迹集合的方法为:

S21-A1、采集目标区域的历史车辆轨迹数据,并按车辆对轨迹点数据分组;

S21-A2、对各车辆轨迹点数据按采样时间顺序排列,并剔除异常轨迹点数据,获得轨迹序列;

S21-A3、识别轨迹序列中的出行中断点,并构建中断点集合P;

S21-A4、根据构建的中断点集合P,识别车辆出行段落,进而获得各车辆的出行轨迹集合;

构建动态出行轨迹集合的方法具体为:

S21-B1、设置时段间隔,按当前时刻汇总上一时段间隔内的轨迹点数据;

S21-B2、按车辆对汇总时段的轨迹点数据分组;

S21-B3、对各车辆的轨迹点数据集合进行遍历,并剔除异常轨迹点数据,构建出动态出行轨迹集合。

进一步地,所述步骤S22具体为:

S22-1、遍历各车辆的历史/动态出行轨迹集合;

S22-2、对历史/动态出行轨迹集合中的轨迹点,获取其临近范围内的临近连接线集合;

S22-3、对临近连接线集合不为空的轨迹点,遍历其对应的临近连接线集合,并确定该轨迹点的方位角射线与各临近连接线切线的夹角;

S22-3、根据夹角大小,匹配分向路段:

当存在小于45度的夹角时,将最小夹角的临近连接线作为匹配连接线,其对应的虚拟分向路段作为匹配的分向路段;

当所有夹角均大于45度时,则若临近连接线最大夹角大于135度,则以该连接线对应分向路段的反向路段作为匹配的分向路段。

进一步地,所述步骤S23中的追尾风险指数

REIndi

式中,

其中,相对疲劳指数对应的风险等级根据分向路段的相对疲劳指数进行1~10级的风险等级划分,绝对疲劳风险等级根据分向路段的绝对疲劳风险指数,按自然间断法分10级进行间断排序得到,流量指数权重根据动态时段平均车道流量所属范围确定。

进一步地,所述步骤S24具体为:

S24-1、获取历史轨迹出行集合中各轨迹点对应的匹配连接线集合;

S24-2、依次确定各轨迹点处的车速,对车速大于0的轨迹点,根据匹配连接线集合,统计该匹配连接线对应的分向路段的行驶距离和行驶时间;

S24-3、将总行驶距离与总采样行驶时间的比值作为该分向路段的平均速度。

进一步地,所述步骤S25具体为:

S25-1、遍历各车辆的历史轨迹出行集合中的轨迹点;

S25-2、根据前向相邻两个轨迹点对应的临近连接线之间的距离和运动方向夹角,识别变道事件;

S25-3、按各轨迹点匹配的分向路段所属临近连接线对应的日均变道次数,作为该分向路段的变道频率指数。

进一步地,所述步骤S26中危险变道风险指数

LaneCRisk

其中,

进一步地,所述步骤S3中,动态识别风险等级的方法为:

根据当前时刻,筛选上一时段车辆采样数大于50次的分向路段,根据其对应的危险变道风险指数,按自然间断法分10级进行间断排序,获得各分向路段的危险变道风险等级;

所述步骤S3中,进行分类管控的方法具体为:

对危险变道风险等级小于4的分向路段,不进行管控;

对危险变道风险等级为5~7的分向路段,联动电子导航地图进行提醒;

对危险变道风险等级为8~10的分向路段,对分向路段间隔1公里设置提醒标识,同时联动电子导航地图进行提醒;

对危险变道风险指数为目标区域内前100的分向路段,对分向路段间隔1公里设置提醒标识、联动电子导航地图进行提醒并设置临时休息区。

本发明的有益效果为:

本发明方法实现了基于车辆实时轨迹数据分析的危险变道风险路段动态识别管控,包括基于道路结构特征的车辆危险变道风险分析路段语义分割、基于实时轨迹特征分析的加权危险变道指数统计(追尾指数+速度指数+变道频率指数)、危险变道路段分类动态识别,风险路段分类管控,该方法突破了传统管控方法仅着眼于车辆本身危险变道行为导致管控效率低、车辆传感设备依赖性高的局限,可显著提高道路网络整体危险变道风险路段动态识别管控水平,降低相关事故风险。

附图说明

图1为本发明提供的基于实时轨迹特征分析的危险变道路段识别与管控方法流程图。

图2为本发明提供的路段语义划分前示意图。

图3为本发明提供的路段语义划分后示意图。

图4为本发明提供的异常轨迹点数据剔除示意图。

图5为本发明提供的轨迹点匹配临近连接线示意图。

图6为本发明提供的轨迹点减速速度估计示意图。

图7为本发明提供的轨迹点变道识别示意图。

具体实施方式

下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

本发明实施例提供了一种基于实时轨迹特征分析的危险变道路段识别与管控方法,如图1所示,包括以下步骤:

S1、采集目标区域的路网数据,识别道路交叉口,并根据其进行危险变道风险管控路段的语义划分;

S2、采集目标区域的动态/历史车辆轨迹数据,根据划分的危险变道风险管控路段进行轨迹出行路径匹配,并计算匹配危险变道的分向路段的危险变道风险指数;

S3、根据计算的危险变道风险指数,动态识别各分向路段的危险变道风险等级,并根据危险变道风险等级进行分类管控。

在本发明实施例的步骤S1中,原始地理信息GIS路网数据由于具有不规则的底层数据结构,其中道路连接线数据无法直接作为研究统计分析对象,需首先根据连接线数据特征进行语义划分,划分后的分向路段逻辑单元作为研究统计对象单元。基于此,本发明实施例的步骤S1具体为:

S11、采集目标区域的路网数据,并修复异常路网数据,确定路网信息图;

S12、在路网信息图中,将100米以内的所有交汇口端点的形心识别为逻辑道路交叉口;

S13、对相邻两个逻辑道路交叉口之间的路段划分逻辑分向路段,实现危险变道风险管控路段的语义划分。

本实施例的步骤S11中,获取目标区域内的路网GIS底层数据,并人工修复异常数据,如悬挂线和数据逻辑错误的。

在本实施例的步骤S12中,如图2所示,定义路网信息图中两条连接线断点距离小于1米为相交状态,对于三条连接线及以上具有相交状态的端点,识别为交汇点,即图2中的GIS连线端点a~h;对于100米以内的所有交汇口端点的形心,识别为逻辑道路交叉口,即图2中的虚拟点AB。

在本实施例的步骤S13中,以图2为例,对于识别出的临近两个逻辑道路交叉口A,B之间的连线进行语义路段划分,划分方法具体为:

S13-1、连接相邻两个逻辑道路交叉口,获得射线AB;

S13-2、根据射线AB的长度,划分逻辑分向路段,并进行路段编号;

当射线AB小于400米时,将射线AB作为逻辑分向路段,并进行路段编号;

当射线AB大于400米时,以逻辑道路交叉口A为起点,200米为间隔对射线AB依次进行逻辑分向路段划分,直到最后一个划分点C至逻辑道路交叉口B的距离小于400米时,以射线CB中点进行切割划分得到对应两段逻辑分向路段,对每个划分出的逻辑分向路段,依次进行路段编号;

其中,进行路段编号的方法为:

将逻辑道路交叉口A到B方向的逻辑分向路段依次编号为1,2,3,…,s,将逻辑道路交叉口B到A方向的逻辑分向路段依次编号为s+1,s+2,s+3,…,s+s;s为划分出的逻辑分向路段数量,s为正整数。

划分出的逻辑分向路段如图3所示,具体地:

(1)当射线AB小于400时,则对应与AB同向的连接线如cd、dg、gh,赋同一分向路段编号s,与AB反向的连接线如fe、eb、ba,赋另一分向路段编号s+1;

(2)当射线AB大于400米时,从A出发,按1公里为单位打断AB,直至剩余段落距离不足400米时,在中点打断,如图3所示,划分对应逻辑分向路段并编号。

本发明实施例的步骤S2具体为:

S21、采集目标区域的历史车辆轨迹数据,对其处理并构建各车辆的历史出行轨迹集合;

同时,采集目标区域的实时车辆轨迹数据,对其处理剔除异常轨迹点数据,构建动态出行轨迹集合;

S22、对构建的历史/动态轨迹出行集合中的轨迹点数据,进行轨迹匹配,得到对应的分向路段;

S23、基于历史/动态轨迹出行集合的轨迹点数据,计算各分向路段的追尾风险指数;

S24、基于历史轨迹出行集合的轨迹点数据,计算各分向路段的平均速度指数;

S25、基于历史轨迹出行集合的轨迹点数据,计算各分向路段的变道频率指数;

S26、根据计算出的追尾风险指数对应风险等级的权重、平均速度的权重以及变道频率指数,计算各分向路段的危险变道风险指数。

本实施例步骤S21中,构建历史出行轨迹集合的方法为:

S21-A1、采集目标区域的历史车辆轨迹数据,并按车辆对轨迹点数据分组;

S21-A2、对各车辆轨迹点数据按采样时间顺序排列,并剔除异常轨迹点数据,获得轨迹序列;

S21-A3、识别轨迹序列中的出行中断点,并构建中断点集合P;

S21-A4、根据构建的中断点集合P,识别车辆出行段落,进而获得各车辆的出行轨迹集合;

在步骤S21-A1中,通过采样车辆卫星定位、国际货运监管平台、网络货运平台等数据源获取货车轨迹数据,其中获取的轨迹点数据格式如表1所示;

表1 轨迹点字段属性

在步骤S21-A2中,剔除异常轨迹点数据的方法为:

如图4所示,按轨迹点数据的时间顺序遍历起始轨迹点到到达轨迹点之间的所有轨迹点

在步骤S21-A3中,将对前向车速为0的轨迹点,若累积停止时间超过30分钟的轨迹点识别为出行中断点,进而获得中断点集合。

在步骤S21-A4中,将每个出行中断点后第一个速度不为0的轨迹点视为起点,到下一个出行中断点间连续过个轨迹点,识别为一个出行段落,进而获得各车辆的出行轨迹集合。

在本实施例步骤S21-1中,构建动态出行轨迹集合的方法具体为:

S21-B1、设置时段间隔,按当前时刻汇总上一时段间隔内的轨迹点数据;

S21-B2、按车辆对汇总时段的轨迹点数据分组;

S21-B3、对各车辆的轨迹点数据集合进行遍历,并剔除异常轨迹点数据,构建出动态出行轨迹集合。

在步骤S21-B1中,通过采样车辆卫星定位、国际货运监管平台、网络货运平台等数据源获取车辆实时轨迹数据,其中获取的轨迹点数据格式同表1所示;以10分钟时段间隔,按当前时刻上一时段汇总上传轨迹点,如当前时刻为早8点11分,则所处时段为早8点10分-8点20分时段,上一时段即为早8点-8点10分时段。

在步骤S21-B3中,剔除异常轨迹点数据的方法同步骤S21-A2。

本实施例的步骤S22具体为:

S22-1、遍历各车辆的历史/动态出行轨迹集合;

S22-2、对历史/动态出行轨迹集合中的轨迹点,获取其临近范围内的临近连接线集合;

S22-3、对临近连接线集合不为空的轨迹点,遍历其对应的临近连接线集合,并确定该轨迹点的方位角射线与各临近连接线切线的夹角;

S22-3、根据夹角大小,匹配分向路段:

当存在小于45度的夹角时,将最小夹角的临近连接线作为匹配连接线,其对应的虚拟分向路段作为匹配的分向路段;

当所有夹角均大于45度时,则若临近连接线最大夹角大于135度,则以该连接线对应分向路段的反向路段作为匹配的分向路段。

在步骤S22-2中,临近连接线是指地图GIS数据中的最底层连接线单元,每个连接线由一系列道路节点连接组成,有对应道路属性、等级、反向(单向或双向)、起点编号、终点编号以及前面确定的分向路段编号;对于每一个轨迹点,获取临近范围内临近连接线集合,首选搜索30米范围内临近连接线集合,若为空集则进一步扩大搜索范围为40米,依次类推,直至60米,若60米内仍无临近连接线,则输出该记录并进行路网检查。

在步骤S22-3中,虚拟分向路段是指通过逻辑道路交叉口A指向B的射线划分的逻辑路段;在匹配分向路段的过程中,当所有角均大于45度但小于135度时,表示连接线匹配失败,即不认为轨迹点从该连接线经过。

在步骤S22-3中,对轨迹点匹配连接线如图5所示,其中

本实施例的步骤S23具体为:

S23-1、采集目标区域的路网数据,并进行追尾风险路段语义划分;

S23-2、采集目标区域的动态/历史车辆轨迹数据,进行轨迹出行路径匹配,得到追尾风险对应的分向路段;

S23-3、根据目标区域的动态/历史车辆轨迹数据,计算匹配分向路段的追尾风险指数;其中,追尾风险指数的影响因素包括疲劳指数、流量指数以及急减速指数。

在上述步骤S23-1~S23-2中,进行追尾风险路段的语义划分方法与进行危险变道风险路段语义划分的方法及匹配分向路段的方法相同,在此不再赘述。

在上述步骤S23-3中,计算疲劳指数的方法为:

按照上述S23-1~S23-2中的方法进行疲劳驾驶风险路段的语义划分及轨迹路径匹配,获得疲劳驾驶对应的分向路段;其中,在进行逻辑分向路段划分时,划分方法为:

当射线AB小于1公里时,将射线AB作为逻辑分向路段,并进行路段编号;

当射线AB大于1公里但小于2公里时,以射线AB中点进行切割划分,获得两段逻辑分向路段,并进行路段编号;

当射线AB大于2公里时,以逻辑道路交叉口A为起点,1公里为间隔对射线AB依次进行逻辑分向路段划分,直到最后一个划分点C至逻辑道路交叉口B的距离小于2公里时,以射线CB中点进行切割划分得到对应两段逻辑分向路段,对每个划分出的逻辑分向路段,依次进行路段编号;其中路段编号方式与危险变道路段中的路段编号方式相同。

在上述步骤S23-3中,计算疲劳指数的方法为:

对于匹配的分向路段,在设定时段内,统计设定时间间隔内的出行次数,以及平均连续驾驶时长;根据统计的出行次数及平均连续驾驶时长,计算各分向路段的相对疲劳指数和绝对疲劳指数;其中,在统计出行次数时,属于同一辆车的一个或多个轨迹点在该时段内匹配连接线对应分向路段出行次数+1;所有车辆轨迹遍历后,即可统计出个分向路段对应各时段经过车辆数及平均连续驾驶时长;

其中,对于任一时段内,任一路段连续驾驶

式中,λ为预设的时段权重,

对于任一时段内,任一路段连续驾驶

式中,

具体地,对于每一路段,按20分钟时间间隔统计该间隔内的出行次数,若同一出行轨迹在同一路段上有连续多个轨迹点,则以最后轨迹点对应驾驶时间为准,不重复统计;并统计预设时段内,每一时间间隔下的平均连续驾驶时长,统计结果如表2所示;

表2 连续驾驶时间统计

在计算相对疲劳指数时,时段1权重为0.5,时段2权重为1.5,时段3权重为1.0,时段4权重为3.0。

在计算绝对疲劳指数时,

表3 连续驾驶时间权重

在上述步骤S23-3中,计算流量指数的方法为:

对于匹配的追尾风险方向路段,获取历史轨迹出行集合中各轨迹点对应的匹配连接线集合;依次确定各轨迹点处的车速,对于车速大于0的轨迹点,参考其匹配连接线,统计对应分向路段各时段各车道流量;将分向路段内动态时段的平均车道流量作为该分向路段的流量指数;具体地,对于同一车辆同一追尾风险分向路段仅统计一次,不重复统计。

在上述步骤S23-3中,计算急减速指数的方法为:

(1)对于匹配的追尾风险方向路段,遍历各车辆的历史轨迹点出行集合中的轨迹点;

(2)根据前向连续三个轨迹点之间的速度关系,识别减速事件;

(3)计算减速事件中中间轨迹点的减速速度;

(4)将各分向路段中所属连接线中轨迹点减速速度大于预设值的次数与减速事件总次数的比值,作为该分向路段的急减速指数。

在上述步骤(2)中,当轨迹点

在上述步骤(3)中,如图6所示,中间轨迹点

式中,

其中,

在上述步骤(4)中,减速速度预设值为3.0m/s

基于上述追尾风险指数确定方法,本实施例步骤S23中的追尾风险指数追尾风险指数

REIndi

式中,

其中,相对疲劳指数对应的风险等级根据分向路段的相对疲劳指数进行1~10级的风险等级划分,绝对疲劳风险等级根据分向路段的绝对疲劳风险指数,按自然间断法分10级进行间断排序得到,流量指数权重根据动态时段平均车道流量所属范围确定。

本实施例的步骤S24中,与车道设计车速相比,根据历史轨迹数据统计得到的车速分布更符合实际局部车道车速状态,因此本部分基于历史轨迹数据进行车道车速指数计算,作为危险变道风险权重之一;因此,本实施例的步骤S24具体为:

S24-1、获取历史轨迹出行集合中各轨迹点对应的匹配连接线集合;

S24-2、依次确定各轨迹点处的车速,对车速大于0的轨迹点,根据匹配连接线集合,统计该匹配连接线对应的分向路段的行驶距离和行驶时间;

S24-3、将总行驶距离与总采样行驶时间的比值作为该分向路段的平均速度。

本实施例的步骤S25具体为:

S25-1、遍历各车辆的历史轨迹出行集合中的轨迹点;

S25-2、根据前向相邻两个轨迹点对应的临近连接线之间的距离和运动方向夹角,识别变道事件;

S25-3、按各轨迹点匹配的分向路段所属临近连接线对应的日均变道次数,作为该分向路段的变道频率指数。

在步骤S25-2中,以图7所示轨迹点为例,对于前向的连续两个轨迹点

本实施例的步骤S26中危险变道风险指数

LaneCRisk

其中,

表4 追尾风险等级权重参考

平均速度权重

表5 路段速度权重参考

本发明实施例的步骤S3中,动态识别风险等级的方法为:

根据当前时刻,筛选上一时段车辆采样数大于50次的分向路段,根据其对应的危险变道风险指数,按自然间断法分10级进行间断排序,获得各分向路段的危险变道风险等级。

本实施例的步骤S3中,进行分类管控的方法具体为:

对危险变道风险等级小于4的分向路段,不进行管控;

对危险变道风险等级为5~7的分向路段,联动电子导航地图进行提醒;

对危险变道风险等级为8~10的分向路段,对分向路段间隔1公里设置提醒标识,同时联动电子导航地图进行提醒;

对危险变道风险指数为目标区域内前100的分向路段,对分向路段间隔1公里设置提醒标识、联动电子导航地图进行提醒并设置临时休息区。

本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

相关技术
  • 基于货车制动重刹特性的长大纵坡危险路段识别方法
  • 基于货车制动重刹特性的长大纵坡危险路段识别方法
技术分类

06120115918614