掌桥专利:专业的专利平台
掌桥专利
首页

一种基于分区式能源站的区域供冷系统

文献发布时间:2023-06-19 10:33:45


一种基于分区式能源站的区域供冷系统

技术领域

本发明属于能源供给系统,具体涉及一种基于分区式能源站的区域供冷系统。

背景技术

常规的建筑空调系统,是针对一个建筑用能单元设置制冷站,制备空调冷冻水,再通过循环水管道系统,向该建筑用能单元的空调末端系统提供冷冻水,对于一个建筑群而言,即需要各建筑用能单元自身配置制冷站,从而满足各建筑用能单元的空调需求。而区域供冷,是针对一个较大面积范围的建筑群设置集中的集中能源站,制备空调冷冻水,再通过循环水管道系统,向各建筑用能单元空调末端系统提供冷冻水。其中,建筑群中包含了多个单体建筑,一个单体建筑可能是一个建筑用能单元,也可能由于功能不同,分成多个建筑用能单元,而当几个单体建筑的功能相同且相邻时,也可能为一个建筑用能单元,总之,一定区域的建筑群中包含了多个建筑用能单元。

根据《全国民用建筑工程设计技术措施-暖通空调·动力》(2009),(1)关于常规空调系统的冷源设备选择,第6.1.5条:确定冷水机组的装机容量时,应充分考虑不同朝向和不同用途房间空调峰值负荷同时出现的机率,以及各建筑空调工况的差异,对空调负荷乘以小于1的修正系数,该修正系数一般可取0.70~0.90;建筑规模大时宜取下限,规模小时宜取上限;(2)关于区域供冷,第6.3.4条:进行容量计算时,应根据各分区的功能与用冷特点,确定同时使用系数及不保证率。一般情况下,同时使用系数宜取0.5~0.8。

可知常规空调系统的冷源设备选型修正系数一般可取0.70~0.90,而区域供冷的冷源设备选型修正系数(同时使用系数)宜取0.5~0.8,总体而言,用于区域供冷的冷源装机容量会小于各建筑用能单元分散设置冷源时的总装机容量,从而减少了冷水机组及其配套设施的初投资,也能够保持冷水机组在较高负荷率下工作,保持较高能效。

对于建筑群供冷的方案选择,从理论上来说,上述的区域供冷模式相比于各建筑用能单元分散设置冷水机组,具有较为明显的投资和运行优势,但在实践中仍存在较多问题,主要有:(1)集中能源站向各建筑用能单元输送空调冷冻水,需要新建输配空调冷冻水的供回水管,增加了系统投资;(2)较大面积范围的建筑群往往不是同时建成并投入使用,一般要经过数年的发展才能有相应的规模,但区域供冷模式初期就需要规划相应的建设规模和设备投资,导致在区域建设初期的运行经济性较差,不利于投资回收。

发明内容

本发明的目的在于提供一种基于分区式能源站的区域供冷系统,主要用于建筑群的区域供冷,当建筑群中的各建筑用能单元均设置了本发明的分区式能源站,能够利用建筑群的集中供冷管道实现各分区式能源站的冷冻水互相联通,进而实现建筑群的区域供冷,降低建筑群冷水机组及其配套设施的初投资,提高区域供冷模式下的能源站建设的灵活性,提高设备利用率及能效。

为达到上述目的,本发明采取的技术方案为:

一种基于分区式能源站的区域供冷系统,其特征在于:包括集中供冷给水管、集中供冷回水管和分区式能源站,适用于夏季需要供冷的建筑群,该建筑群包括多个建筑用能单元,集中供冷给水管和集中供冷回水管之间并联了该建筑群的多个建筑用能单元,每个建筑用能单元设置一个分区式能源站,每个建筑用能单元采用一个或者多个空调末端系统,分区式能源站与所在的建筑用能单元的空调末端系统均相互连接,形成闭合的冷冻水循环管路;

分区式能源站包括集水器、分水器、第一循环水泵、冷水机组和第二循环水泵;

夏季供冷时,在第一循环水泵驱动下,冷水机组向分水器输送冷冻水,分水器再将冷冻水分流到空调末端系统中向建筑用能单元供冷,吸热升温后的冷冻水汇流到集水器中,再返回到冷水机组中再次被冷却降温;当建筑群中的某个分区式能源站的冷水机组提供的冷冻水量,大于该分区式能源站相连接的空调末端系统冷负荷需求时,在第二循环水泵的驱动下,该分区式能源站能够通过分水器将多余的冷冻水量分流到集中供冷给水管,而其余的某个分区式能源站在其冷水机组提供的冷冻水量小于相连接的空调末端系统冷负荷需求时,可以从集中供冷给水管上获取冷冻水到其分水器中,再输送至相连接的空调末端系统中,补充所缺的冷冻水量;

对于从集中供冷给水管上获取冷冻水的分区式能源站,该分区式能源站的集水器则将同等流量的冷冻水再分流至集中供冷回水管;

对于向集中供冷给水管输送冷冻水的分区式能源站,该分区式能源站的集水器则从集中供冷回水管上获取同等流量的冷冻水。

所述的分区式能源站还包括空调末端系统回水管接口、第一截止阀、第二截止阀、集中供冷回水管接口、集中供冷给水管接口、空调末端系统给水管接口、第三截止阀、第四截止阀、逆止阀、第五截止阀;

冷水机组的冷冻水出水口连接着第一循环水泵,第一循环水泵连接着分水器进水口,分水器出水口连接着第三截止阀,第三截止阀连接着空调末端系统给水管接口,分水器还连接着第五截止阀,第五截止阀连接着第四截止阀、第二循环水泵进水口,第二循环水泵出水口连接着逆止阀进水口,第四截止阀、逆止阀出水口又连接着集中供冷给水管接口;

空调末端系统回水管接口连接着第二截止阀,第二截止阀连接着集水器进水口,集水器出水口连接着冷水机组的冷冻水回水口,集水器还连接着第一截止阀,第一截止阀连接着集中供冷回水管接口;

空调末端系统回水管接口、空调末端系统给水管接口用于连接建筑用能单元的空调末端系统,空调末端系统与冷水机组之间能够形成闭合的冷冻水循环管路;

集中供冷回水管接口、集中供冷给水管接口分别用于连接集中供冷回水管、集中供冷给水管。

当第一截止阀连接着集水器的端口为进水口时,第五截止阀连接着分水器的端口为出水口;当第一截止阀连接着集水器的端口为出水口时,第五截止阀连接着分水器的端口为进水口;通过第一截止阀与通过第五截止阀的冷冻水流量相同,通过空调末端系统回水管接口与通过空调末端系统给水管接口的冷冻水流量相同。

冷水机组可以是螺杆式冷水机组、离心式冷水机组或者吸收式冷水机组,冷水机组数量可以是单台,也可以是多台共同使用。

T

T

K

K=Q/(Q

T

T

n为建筑群中建筑用能单元的个数;

Q为建筑群中所有的建筑用能单元的空调末端系统在建筑群的供冷高峰时段,单位时间内所消耗的冷量;

Q

V

Q

K为建筑群的同时使用系数;

K

与现有技术相比,本发明的有益效果为:

本发明的一种基于分区式能源站的区域供冷系统,主要用于建筑群的区域供冷,利用建筑群的集中供冷管道实现各分区式能源站的冷冻水互相联通,即建筑群中的某个或者多个分区式能源站,可以通过集中供冷管道向其他的某个或者多个分区式能源站提供多余的冷冻水;各个分区式能源站之间的角色可以转变,既可以将自身多余的冷冻水输送到集中供冷管道上,又可以在自身冷冻水不足时从集中供冷管道上获取冷冻水,进而通过多个分区式能源站并联实现建筑群的区域供冷。

进一步的,常规的区域供冷采用集中能源站的模式,集中能源站配置了建筑群的总冷水机组装机容量及其配套设备,占地规模较大,冷水机组及其配套设备一次性投资高,但在实际生活中,某个区域的建筑群可能是逐步建成的,建筑群中各建筑用能单元具有不同的建设时序,即投入运营、需要空调供冷的时序并不一致,而分区式能源站可以根据建筑群中各建筑用能单元的建设时序,与各建筑用能单元实现同步建设,不需要在建筑群开发初期,就按照建筑群的冷水机组总装机容量大规模建设。

进一步的,本发明的区域供冷系统中各建筑用能单元均设置了分区式能源站,当建筑群中的某个分区式能源站的冷水机组出现运行故障时,其他分区式能源站可共同承担该分区式能源站的冷冻水需求,对整体的运行产生的影响较小;而常规的空调系统模式,虽然各建筑用能单元均设置了分区式能源站,可以满足自身的供冷需求,但是建筑群中的各分区式能源站没有进行互联,因此,一旦建筑群中某个分区式能源站中冷水机组出现运行故障,该建筑用能单元的空调末端系统将不能进行供冷,而其他分区式能源站的冷水机组往往都处于部分负荷下工作,仍然有制冷余量可以输出。

进一步的,空调系统进行冷水机组选型时,冷水机组装机容量等于冷负荷乘以同时使用系数,建筑用能单元的同时使用系数一般可取0.70~0.90,而本发明的分区式能源站不仅仅为所在的建筑用能单元服务,而是多个分区式能源站通过集中供冷管道互联,为建筑群供冷,整体上属于区域供冷,而建筑群区域供冷的同时使用系数一般可取0.5~0.8,可知,区域供冷系统的同时使用系数一般小于建筑用能单元的同时使用系数。因此,当区域内的建筑群统一建设并配置分区式能源站时,各分区式能源站的冷水机组选型可采用建筑群区域供冷的同时使用系数,降低了冷水机组的装机容量。

附图说明

图1为本发明的一种基于分区式能源站的区域供冷系统的示意图;

图2为本发明的分区式能源站的示意图;

图3为本发明的一种基于分区式能源站的区域供冷系统的具体使用示意图;

1为建筑用能单元,2为空调末端系统,3为空调末端系统回水管接口,4为第一截止阀,5为第二截止阀,6为集水器,7为分水器,8为第一循环水泵,9为冷水机组,10为集中供冷回水管接口,11为集中供冷给水管接口,12为空调末端系统给水管接口,13为第三截止阀,14为第四截止阀,15为逆止阀,16为第二循环水泵,17为第五截止阀,18为集中供冷给水管,19为集中供冷回水管,20为分区式能源站。

具体实施方式

下面结合附图对本发明做进一步详细说明。

本发明总的构思是:提供一种基于分区式能源站的区域供冷系统,主要用于建筑群的区域供冷,当建筑群中的各建筑用能单元均设置了本发明的分区式能源站,能够利用建筑群的集中供冷管道实现各分区式能源站的冷冻水互相联通,进而实现建筑群的区域供冷,降低建筑群冷水机组及其配套设施的初投资,提高区域供冷模式下的能源站建设的灵活性,提高设备利用率及能效。

为了详细说明本发明的技术内容以及构造和目的,下面结合附图进行具体介绍。

由图1、图2可知,一种基于分区式能源站的区域供冷系统,其特征在于:包括集中供冷给水管18、集中供冷回水管19和分区式能源站20,适用于夏季需要供冷的建筑群,该建筑群包括多个建筑用能单元1,集中供冷给水管18和集中供冷回水管19之间并联了该建筑群的多个建筑用能单元1,每个建筑用能单元1设置一个分区式能源站20,每个建筑用能单元1采用一个或者多个空调末端系统2,分区式能源站20与所在的建筑用能单元1的空调末端系统2均相互连接,形成闭合的冷冻水循环管路;

分区式能源站20包括集水器6、分水器7、第一循环水泵8、冷水机组9和第二循环水泵16;

夏季供冷时,在第一循环水泵8驱动下,冷水机组9向分水器7输送冷冻水,分水器7再将冷冻水分流到空调末端系统2中向建筑用能单元1供冷,吸热升温后的冷冻水汇流到集水器6中,再返回到冷水机组9中再次被冷却降温;当建筑群中的某个分区式能源站20的冷水机组9提供的冷冻水量,大于该分区式能源站20相连接的空调末端系统2需求时,在第二循环水泵16的驱动下,该分区式能源站20能够通过分水器7将多余的冷冻水量分流到集中供冷给水管18,而其余的某个分区式能源站20在其冷水机组9提供的冷冻水量小于相连接的空调末端系统2需求时,可以从集中供冷给水管18上获取冷冻水到其分水器7中,再输送至相连接的空调末端系统2中,补充所缺的冷冻水量;

对于从集中供冷给水管18上获取冷冻水的分区式能源站20,该分区式能源站20的集水器6则将同等流量的冷冻水再分流至集中供冷回水管19;

对于向集中供冷给水管18输送冷冻水的分区式能源站20,该分区式能源站20的集水器6则从集中供冷回水管19上获取同等流量的冷冻水。

由图2可知,所述的分区式能源站20还包括空调末端系统回水管接口3、第一截止阀4、第二截止阀5、集中供冷回水管接口10、集中供冷给水管接口11、空调末端系统给水管接口12、第三截止阀13、第四截止阀14、逆止阀15、第五截止阀17;

冷水机组9的冷冻水出水口连接着第一循环水泵8,第一循环水泵8连接着分水器7进水口,分水器7出水口连接着第三截止阀13,第三截止阀13连接着空调末端系统给水管接口12,分水器7还连接着第五截止阀17,第五截止阀17连接着第四截止阀14、第二循环水泵16进水口,第二循环水泵16出水口连接着逆止阀15进水口,第四截止阀14、逆止阀15出水口又连接着集中供冷给水管接口11;

空调末端系统回水管接口3连接着第二截止阀5,第二截止阀5连接着集水器6进水口,集水器6出水口连接着冷水机组9的冷冻水回水口,集水器6还连接着第一截止阀4,第一截止阀4连接着集中供冷回水管接口10;

空调末端系统回水管接口3、空调末端系统给水管接口12用于连接建筑用能单元1的空调末端系统2,空调末端系统2与冷水机组9之间能够形成闭合的冷冻水循环管路;

集中供冷回水管接口10、集中供冷给水管接口11分别用于连接集中供冷回水管19、集中供冷给水管18。

当第一截止阀4连接着集水器6的端口为进水口时,第五截止阀17连接着分水器7的端口为出水口;当第一截止阀4连接着集水器6的端口为出水口时,第五截止阀17连接着分水器7的端口为进水口;通过第一截止阀4与通过第五截止阀17的冷冻水流量相同,通过空调末端系统回水管接口3与通过空调末端系统给水管接口12的冷冻水流量相同。

冷水机组9可以是螺杆式冷水机组、离心式冷水机组或者吸收式冷水机组,冷水机组9数量可以是单台,也可以是多台共同使用。

本发明的一种用于区域供冷的分区式能源站的使用方法如下:

图1为本发明的一种基于分区式能源站的区域供冷系统,由图1可知,对于一个区域的建筑群,存在A、B、C、D、E、F、G、H等两个以上建筑用能单元1,建筑群配备了集中供冷给水管18和集中供冷回水管19,在集中供冷给水管18和集中供冷回水管19上并联了多个分区式能源站20,各分区式能源站20又连接着对应的建筑用能单元1。某个或多个分区式能源站20能够与其余的某个或多个分区式能源站20通过集中供冷给水管18和集中供冷回水管19形成闭合的冷冻水循环回路。

夏季供冷时,各分区式能源站20的工作流程可能不一致,主要存在两种供冷工况:第一种,分区式能源站20能够提供的冷冻水量大于该分区式能源站20所在的建筑用能单元1的实时冷负荷,可以将多余的冷冻水量输送到集中供冷给水管18;第二种,分区式能源站20能够提供的冷冻水量小于该分区式能源站20所在的建筑用能单元1的实时冷负荷,可以从集中供冷给水管18上获取所缺的冷冻水量,即第一种供冷工况下的分区式能源站20可以向第二种供冷工况下的分区式能源站20提供冷冻水。

如图3所示,本发明采用分区式能源站A向分区式能源站B提供冷冻水,为典型示例具体分析,此时其余分区式能源站20只向所对应的建筑用能单元1供冷,不参与分区式能源站20之间的冷冻水互联。而实际运行中,也可以是“分区式能源站A、B向分区式能源站C提供冷冻水”、“分区式能源站A向分区式能源站B、C提供冷冻水”等情况,即某个或多个分区式能源站20能够向其余的某个或多个分区式能源站20提供冷冻水,运行过程与典型示例类似。或者在各建筑用能单元1的冷负荷均不高时,各分区式能源站20仅需要向所对应的空调末端系统2供冷,不从集中供冷给水管18上获取冷冻水,也不向集中供冷给水管18上输送冷冻水。

分区式能源站A的供冷工况:

关闭第四截止阀14,开启第一截止阀4、第二截止阀5、第三截止阀13、第五截止阀17,再开启第一循环水泵8、冷水机组9、第二循环水泵16。

在第一循环水泵8的驱动下,冷水机组9制取的冷冻水经第一循环水泵8进入分水器7中,分水器7中的冷冻水分成两部分,一部分冷冻水经第三截止阀13、空调末端系统给水管接口12分流到各空调末端系统2中吸热,即向建筑用能单元1供冷,吸热后的冷冻水经空调末端系统回水管接口3、第二截止阀5汇集到集水器6中;在第二循环水泵16的驱动下,另一部分冷冻水经第五截止阀17、第二循环水泵16、逆止阀15、集中供冷给水管接口11流入集中供冷给水管18,同时,同流量的吸热升温后的冷冻水经集中供冷回水管19流入分区式能源站A,经集中供冷回水管接口10、第一截止阀4进入集水器6中;集水器6中的冷冻水再次回流到冷水机组9被冷却降温。

分区式能源站B的供冷工况:

关闭第二循环水泵16,开启第一截止阀4、第二截止阀5、第三截止阀13、第四截止阀14、第五截止阀17,再开启第一循环水泵8、冷水机组9。

在第一循环水泵8的驱动下,冷水机组9制取的冷冻水经第一循环水泵8进入分水器7中,同时,集中供冷给水管18的冷冻水经集中供冷给水管接口11、第四截止阀14、第五截止阀17后进入分水器7中,分水器7中的冷冻水经第三截止阀13、空调末端系统给水管接口12分流到各空调末端系统2中吸热,即向建筑用能单元1供冷,吸热后的冷冻水经空调末端系统回水管接口3、第二截止阀5汇集到集水器6中,集水器6中的冷冻水分成两部分,一部分冷冻水再次回流到冷水机组9被冷却降温,另一部分冷冻水经第一截止阀4、集中供冷回水管接口10流入集中供冷回水管19,通过集中供冷回水管19再次返回到分区式能源站A中。

其中,逆止阀15确保流动方向,当反方向流过来的水不能通过逆止阀15。

其中,当T

因为,建筑群的分区式能源站20最早投入使用时间与最晚投入使用时间不超过120个供冷日时,这说明该建筑群中各分区式能源站20投入使用时间相对统一,可以在短期内形成有效的区域供冷模式,各分区式能源站20的冷水机组9可以按照建筑群的同时使用系数进行选型,因为不同建筑业态的建筑用能单元1的逐时冷负荷变化规律并不一致,冷负荷峰值时刻也不相同,建筑群的冷负荷峰值一定小于各建筑用能单元1的冷负荷峰值之和,即建筑群的同时使用系数更小,当采用区域供冷时,建筑群中所有的建筑用能单元1的冷负荷可以同时考虑,因此相比于各个建筑用能单元1按照自己的最大冷负荷进行冷水机组9选型,区域供冷所需的总的冷水机组9装机容量更小。这时,通过各分区式能源站20协同工作,自用冷冻水或者再分配冷冻水,能够满足各建筑用能单元1的冷负荷需求。

T

因为,分区式能源站20最早投入使用时间与最晚投入使用时间超过120个供冷日时,这说明该建筑群中各分区式能源站20投入使用时间相对分散,短时间内还不能形成有效的区域供冷模式,各分区式能源站20得先满足所对应的建筑用能单元1的冷负荷需求,所以各分区式能源站20的冷水机组9的装机容量应按照所在的建筑用能单元1的同时使用系数选型。

相关技术
  • 一种基于分区式能源站的区域供冷系统
  • 一种基于分区式能源站的区域供冷实现方法
技术分类

06120112590620