掌桥专利:专业的专利平台
掌桥专利
首页

一种Li-B-Si-Al-O玻璃体系透波疏水涂层及其制备方法

文献发布时间:2023-06-19 16:12:48



技术领域

本发明涉及玻璃涂层领域,特别是涉及一种Li-B-Si-Al-O玻璃体系透波疏水涂层及其制备方法。

背景技术

纤维增强透波陶瓷基复合材料具有优异的力学性能、良好的介电性能、突出的耐高温性能,可实现透波及放热一体化,是目前制备天线罩的主要材料体系之一。但是纤维增强透波陶瓷基复合材料防潮性能较差,材料吸潮后,材料的透波性能受到影响。因此,防潮保护成为无机透波功能材料不容忽视的问题。

发明内容

本发明的目的是提供一种Li-B-Si-Al-O玻璃体系透波疏水涂层及其制备方法,以解决上述现有技术存在的问题,本发明提供的Li-B-Si-Al-O玻璃体系透波疏水涂层,可以在纤维增强透波陶瓷基复合材料表面做涂层处理,提高其疏水性能,防止因为材料吸水而降低其透波性能。

为实现上述目的,本发明提供了如下方案:

本发明提供一种Li-B-Si-Al-O玻璃体系透波疏水涂层,按质量份计,所述涂层的组分包括:锂铝硅30-40份、Li

进一步地,所述硼源包括硼酸或氧化硼。

进一步地,所述涂层的组分还包括石英纤维。

本发明还提供一种根据上述的Li-B-Si-Al-O玻璃体系透波疏水涂层的制备方法,包括如下步骤:

(1)将所述涂层的组分和有机溶剂混合后,干燥得到混合粉料;

(2)所述混合粉料加入分散剂,混合均匀后涂布在石英陶瓷纤维复合材料表面,之后经高温处理,即得所述Li-B-Si-Al-O玻璃体系透波疏水涂层。

进一步地,在步骤(1)中,所述有机溶剂为正己烷、无水乙醇或丙酮。

进一步地,在步骤(2)中,所述分散剂为有机树脂或无机分散剂。

进一步地,所述有机树脂为双酚A类环氧树脂。

进一步地,所述无机分散剂为饱和硅酸锂溶液。

进一步地,所述高温处理采用两阶段升温处理:先以8℃/min的升温速度升温至400-450℃,保温30min;再以3℃/min的升温速度升温至700-800℃,保温60min。

本发明还提供另一种上述的Li-B-Si-Al-O玻璃体系透波疏水涂层的制备方法,包括如下步骤:

(1)将所述涂层的组分和有机溶剂混合后,干燥得到混合粉料;

(2)所述混合粉料加入植物油后混合均匀,之后再加入蜡类物质,加热融化后加入模具之中,冷却得到涂层膏体;

(3)将所述涂层膏体刷涂在石英陶瓷纤维复合材料表面,之后经高温处理,即得所述Li-B-Si-Al-O玻璃体系透波疏水涂层。

进一步地,所述高温处理采用两阶段升温处理:先以8℃/min的升温速度升温至400-450℃,保温30min;再以3℃/min的升温速度升温至700-800℃,保温60min。

本发明应用LAS(锂铝硅)的优良性能,辅以硼的改良作用,同时加入水合硅酸锂,以调整原料的粘度,应对材料表面不同大小的孔洞,进一步加入纤维,可以提高涂层的力学性能,减少涂层的表面裂纹。

LAS(Li

超低的热膨胀系数是我们关注的重点问题。绝大多数材料由于晶格原子的热振动发生膨胀,产生“热胀冷缩”效应。材料在剧烈的热振动变化下会引起尺寸的变化丧失设计精度、材料产生非协调热膨胀产生的热应力会引起材料发生屈服及疲劳破坏。而β-锂辉石的热膨胀性质是各向异性的,温度升高时,β-锂辉石在a轴和b轴方向上收缩,而在c轴方向上却发生膨胀。但晶粒在微晶玻璃的排布是非定向的,在整体上各轴的伸缩量可以相互抵消,因此β-锂辉石呈现接近零膨胀的特性,甚至出现负膨胀现象。

硼原料的加入可以在LAS基体中以玻璃态的B

硅酸锂水合物加入量的改变除了调整平衡新玻璃系统的Li-Si元素比之外,更主要是可以在常温处理工艺环节改善和优化涂层浆料的粘度,对于孔径均一细小的孔,粘度低的浆料封堵效果更好,意味着硅酸锂水合物的含量提高。反之,粘度高的浆料,适用于封堵孔径大的材料。

适量石英纤维的加入不影响涂层材料透波性能,同时在形成玻璃体系在高温形成熔体过程中,一部分作为Li-B-Al-Si-O玻璃系统熔体富硅结构的锚固点参与熔融相的形成并提高微观微区的高温粘度,进而调控和改善热处理后段微晶玻璃的析晶取向而避免LAS的分相析出;一部分在热处理过程中保存下来线性纤维结构作为结构增强相。进而,通过这两种特殊作用,提高Li-B-Al-Si-O系统的力学性能,使玻璃涂层在形成过程中出现的裂纹扩展能够通过给系统带来的粘度-温度的敏感性发生可控的自适应弥合,从而降低涂层表面的裂纹的产生概率。随着石英纤维的含量增多,热处理后保留的纤维增多,力学性能会因为涂层材料更趋近于Li-B-Al-Si-O/SiO

本发明公开了以下技术效果:

(1)本发明基于微观结构自适应的材料设计思想,设计反应条件简单,操作步骤少,成本低,很容易实现,具有广阔的应用前景。

(2)力学性能方面:本发明制备得到的Li-B-Si-Al-O玻璃体系透波疏水涂层,表面光亮,连续性和均匀性较好,不易脱落。附着力可达到1级,硬度最高达到9H,剪切强度最高可达到11MPa。

(3)疏水性能方面:本发明制备得到的Li-B-Si-Al-O玻璃体系透波疏水涂层,防潮效果好。其水接触角大于155°,滚动角小于8.5°,8d的吸湿率小于0.03%。

(4)透波性能方面:介电性能优良。涂层的介电常数小于2.0,介质损耗小于0.013。

具体实施方式

现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。

应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。

除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。

在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。

关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。

实施例1

本实施例的Li-B-Si-Al-O玻璃体系透波疏水涂层制备过程为:

(1)分别称20g硅酸锂,10g氧化硼,30gLAS,50mL正己烷,在室温下混合2h,得到涂层浆料A。

(2)涂层浆料A经100℃,0.5h干燥,得到混合粉料B。

(3)称取10g混合粉料B,加入10mL饱和硅酸锂溶液,室温下混合2h,得到涂层浆料C。

(4)将涂层浆料C喷涂在石英陶瓷纤维复合材料表面,表干后进行高温处理,高温条件是先以8℃/min的升温速度升温至400℃,保温30min;再以3℃/min的升温速度升温至700℃,保温60min。

(5)待冷却至室温,取出高温处理的样品,表面疏水涂层制备完毕。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为156.8°,滚动接触角8.4°。附着力可达到1级,硬度9H,剪切强度7.9MPa。8d的吸湿率为0.02%。介电常数为1.8,介质损耗为0.011。

实施例2

本实施例的Li-B-Si-Al-O玻璃体系透波疏水涂层制备过程为:

(1)分别称18g硅酸锂,11g硼酸,35gLAS,60mL正己烷,在室温下混合2h,得到涂层浆料A。

(2)涂层浆料A经100℃,0.5h干燥,得到混合粉料B。

(3)称取10g混合粉料B,加入8mL双酚A类环氧树脂,室温下混合2h,得到涂层浆料C。

(4)将涂层浆料C刷涂在石英陶瓷纤维复合材料表面,表干后进行高温处理,高温处理过程是先升温至450℃,保温30min,升温速度是8℃/min,然后以升温速度是3℃/min升温至800℃,保温60min。

(5)待冷却至室温,取出高温处理的样品,表面疏水涂层制备完毕。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为155.7°,滚动接触角8.3°。附着力可达到1级,硬度9H,剪切强度7.0MPa。8d的吸湿率为0.02%。介电常数为1.9,介质损耗为0.013。

实施例3

本实施例的Li-B-Si-Al-O玻璃体系透波疏水涂层制备过程为:

(1)分别称20g硅酸锂,15g硼酸,40gLAS,100mL丙酮,在室温下混合2h,得到涂层浆料A。

(2)涂层浆料A经100℃,0.5h干燥,得到混合粉料B。

(3)称取15g混合粉料B,加入30mL橄榄油,常温混合30min,接着加入蜂蜡10g,用水加热至完全融化,最后加入模具之中,冷却30min,得到涂层膏体C。

(4)将涂层膏体C刷涂在石英陶瓷纤维复合材料表面,表干后进行高温处理,高温条件是先升温至450℃,保温30min,升温速度是8℃/min,然后以升温速度是3℃/min升温至790℃,在790℃下,保温60min。

(5)待冷却至室温,取出高温处理的样品,表面疏水涂层制备完毕。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为158.0°,滚动接触角8.0°。附着力可达到1级,硬度9H,剪切强度7.3MPa。8d的吸湿率为0.01%。介电常数为2.0,介质损耗为0.011。

实施例4

同实施例3,区别在于,在步骤(3)中,将蜂蜡替换为小烛树蜡。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为155.2°,滚动接触角8.3°。附着力可达到1级,硬度9H,剪切强度6.5MPa。8d的吸湿率为0.02%。介电常数为1.8,介质损耗为0.010。

实施例5

同实施例3,区别在于,在步骤(3)中,将蜂蜡替换为巴西棕榈树蜡。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为156.3°,滚动接触角8.0°。附着力可达到1级,硬度9H,剪切强度7.5MPa。8d的吸湿率为0.02%。介电常数为1.8,介质损耗为0.012。

实施例6

本实施例的Li-B-Si-Al-O玻璃体系透波疏水涂层制备过程为:

(1)分别称18g硅酸锂,11g硼酸,35gLAS,7g石英纤维、60mL正己烷,在室温下混合2h,得到涂层浆料A。

(2)涂层浆料A经100℃,0.5h干燥,得到混合粉料B。

(3)称取10g混合粉料B,加入8mL双酚A类环氧树脂,室温下混合2h,得到涂层浆料C。

(4)将涂层浆料C刷涂在石英陶瓷纤维复合材料表面,表干后进行高温处理,高温处理过程是先升温至450℃,保温30min,升温速度是8℃/min,然后以升温速度是3℃/min升温至800℃,保温60min。

(5)待冷却至室温,取出高温处理的样品,表面疏水涂层制备完毕。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。经测试,水珠与材料表面的稳定接触角为155.7°,滚动接触角8.3°。附着力可达到1级,硬度9H,剪切强度10.5MPa。8d的吸湿率为0.02%。介电常数为1.9,介质损耗为0.012。

实施例7

同实施例6,区别仅在于,石英纤维的添加量为1g。

水珠与材料表面的稳定接触角为156.3°,滚动接触角8.0°。附着力可达到1级,硬度9H,剪切强度10.0MPa。8d的吸湿率为0.02%。介电常数为1.8,介质损耗为0.011。

实施例8

同实施例6,区别仅在于,石英纤维的添加量为15g。

水珠与材料表面的稳定接触角为156.4°,滚动接触角8.2°。附着力可达到1级,硬度9H,剪切强度11.0MPa。8d的吸湿率为0.01%。介电常数为1.7,介质损耗为0.010。

对比例1

同实施例2,区别在于,在步骤(4)中,高温处理过程是以3℃/min的升温速度直接升温至790℃,在790℃下,保温90min。

步骤(5)高温处理后的样品表面滴水后直接凝结成水珠在表面滚动,且无滚动痕迹。但涂层表面出现裂纹。经测试,水珠与材料表面的稳定接触角为157.9°,滚动接触角7.9°。附着力可达到1级,硬度9H,剪切强度7.4MPa。8d的吸湿率为0.02%。介电常数为1.8,介质损耗为0.013。

以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

技术分类

06120114744881