掌桥专利:专业的专利平台
掌桥专利
首页

制备用于烧结的陶瓷成型体的方法和制造陶瓷烧结体的方法

文献发布时间:2023-06-19 19:28:50



本申请是申请日为2019年5月10日,题为“制备用于烧结的陶瓷成型体的方法和制造陶瓷烧结体的方法”的中国专利申请201910386538.3的分案申请。

相关申请的交叉参考

该非临时申请根据35U.S.C.§119(a)要求分别于2018年5月11日和2019年4月8日在日本提交的专利申请号2018-092067和2019-073255的优先权,其全部内容经此引用并入本文。

技术领域

本发明涉及制备用于烧结的陶瓷成型体(molded body)的方法,其中残余空隙小,并且还通过在压制成型时实现压力传递与塑性流动来减少其量,以及涉及使用通过该制造方法制造的成型体制造陶瓷烧结体的方法。

背景技术

通常,由于改善了机械强度、热导率、光学透明度、电特性、长期可靠性等等,优选能减少任何陶瓷的烧结体内部的残留气泡。迄今为止,作为以高产率制造厚陶瓷的方法,广泛采用其中将粉末压制成型的方法。作为最经典的方法,存在其中在单轴压制后进行冷等静压(CIP)成型的方法,和其中将原材料粉末填充在橡胶模具和类似物中并直接施以CIP成型的方法,到目前为止,这些方法已经在工业上广泛采用。顺便提及,为了改善成型时的形状保持性和在成型与烧结时防止开裂,常常在陶瓷粉末起始材料(原材料粉末)中混合热塑性树脂(所谓粘合剂)。

当采用向原材料粉末中混合和添加热塑性树脂的步骤时,有可能提高二次聚集的原材料粉末和在造粒情况下的颗粒状原材料的压碎强度,以便在压制成型厚陶瓷时将压力充分传递到成型体内部,由此改善成型密度。此外,有可能改善成型体的形状保持性,并由此在后续步骤中防止开裂和变性。以这种方法,可以以高产率将具有相对较高成型密度的成型体成型为预期形状。但是,另一方面,还存在以下问题:原材料粉末和原材料颗粒在单轴压制和CIP成型时的塑性流动受到阻碍,在原材料粉末的成型或桥接时产生大的内部残余应力,并引发粒间空隙。因此,已知在内部存在残余应力和残余气泡,并因此在通过烧结等手段致密化成型体的情况下降低各种性质。

因此,作为改善与陶瓷粉末原材料混合并加入其中的热塑性树脂的塑性流动性并由此在陶瓷成型时促进致密化的方法,提出了温等静压(WIP)成型。例如,专利文献1(JP2858972)公开了一种制造陶瓷成型体的方法,其中在陶瓷粉末与热塑性树脂混合的情况下,将温度升高到热塑性树脂在等静压时热软化的温度区域,对该混合物施以一次成型,橡胶膜形成,和二次等静压成型,或将该混合物直接放置在橡胶模具等等中并施以等静压成型。此外,能够将温度升高和调节至热塑性树脂热软化的温度区域的等静压设备被称为“温等静压(W.I.P)”。

顺便提及,用于在低温下均匀加热全部粉末的温等静压设备,所谓WIP设备本身,在很久以前已经为人所知,并例如可以在公知的文献如专利文献2(JP-B S54-14352)中得到证实。此外,在专利文献3(JP-A S61-124503)中还公开了一种外部循环加热型WIP设备,其经过改进以具有更实用的结构。

使用此类WIP设备的与热塑性树脂混合的陶瓷的成型技术后来用作层压陶瓷的压力结合步骤的技术。例如,专利文献4(WO2012/060402)公开了一个其中可以采用温等静压(WIP)的实例和一个已知实例,其中在80℃的温度和1吨的压力下进行热压结合作为成型全固态电池的层压生坯片材的方法。或者,专利文献5(JP-A2014-57021)公开了进行温等静压(WIP)的实例,并例举了一种形式,其中层压片材在真空包装状态下预热至预定温度并随后在70℃的温度下施以温等静压作为成型层压陶瓷电子元件如层压陶瓷电容器的压制成型方法。

但是,当在玻璃化转变温度以上温度下加热的状态下压制热塑性树脂时,通常存在如下问题:主要发生塑性变形和塑性流动,并且用于将施加的压力传递到成型体内部的力被极度弱化。因此,即使是通过专门混合和添加热塑性树脂以增强其形状保持性与压碎强度和改善压力传递性质的原材料粉末,通过进行WIP处理,也存在向成型体内部的压力传递快速衰减且特别是大量空隙残留在厚成型体内部的致命缺陷。

因此,虽然WIP设备本身很久以前已为人所知,仅在制造如上所述具有薄的厚度的(薄)片材成型体时才使用WIP设备,并且自上述专利文献1以来几乎没有一个将WIP用作厚陶瓷成型技术的实例。

同时,挤出成型方法和浇注成型方法也是已知的,其中陶瓷原料与热塑性树脂湿捏合并形成为浆料,除了干原材料之外浆料在湿润时成型。通过这些成型方法成型的湿成型体往往是相当有利的成型体,在该步骤后具有较少的粗大空隙。因此判断为充分的,并且还没有发现对这些成型体进一步施以压制后成型的已知实例。例如,专利文献6(JP5523431)例举了一个实施方案,但是其例举了任意选择单轴压制成型的压制成型、等静压的冷等静压(CIP)成型、温等静压(WIP)成型和热等静压(HIP)成型、或在单轴压制成型后的等静压中的任一种作为成型原材料粉末的方法,并且作为另外的实例,其还例举了该方法可以是模具成型,如挤出成型和浇注成型。但是,还没有发现其中结合前一成型步骤和后一成型步骤的特定描述。

因此,在现有技术中还未找到关于在对挤出成型体和浇注成型体进一步施以后续的CIP成型或WIP成型时该方法如何作用于成型体的性质的知识。

引文列表

专利文献1:JP 2858972

专利文献2:JP-B S54-14352

专利文献3:JP-A S61-124503

专利文献4:WO 2012/060402

专利文献5:JP-A 2014-57021

专利文献6:JP 5523431

发明概述

鉴于上述情况作出本发明,其目的在于提供一种制备用于烧结的陶瓷成型体的方法,通过该方法可以制造具有有利的各种性质的致密陶瓷烧结体,其残余空隙显著小且该陶瓷烧结体不具有残余应力,以及提供一种制造陶瓷烧结体的方法,其中使用通过制备用于烧结的陶瓷成型体的方法制得陶瓷成型体。

为了实现上述目的,本发明提供了制备用于烧结的陶瓷成型体的下列方法和制造陶瓷烧结体的下列方法。

1.制备用于烧结的陶瓷成型体的方法,其通过将含有陶瓷粉末和具有高于室温的玻璃化转变温度的热塑性树脂的原材料粉末压制成预定形状来成型,该方法包括以下步骤:

通过将原材料粉末单轴压制成预定形状来成型单轴压制成型体,或将原材料粉末填充到橡胶模具中;

通过在低于该热塑性树脂的玻璃化转变温度的温度下等静压该单轴压制成型体或含有该原材料粉末的橡胶模具作为第一阶段等静压成型来成型第一阶段压制成型体;和

通过如下方式成型陶瓷成型体:在将该体加热至等于或高于该热塑性树脂的玻璃化转变温度的温度的情况下温等静压(WIP)第一阶段压制成型体作为第二阶段等静压成型。

2.如1所述的方法,其中第一阶段等静压成型是冷等静压(CIP)成型。

3.如1所述的方法,其中在成型该第一阶段压制成型体之后,开始加热第一阶段压制成型体,同时保持第一阶段等静压状态,并随后进行WIP成型作为第二阶段等静压成型。

4.如1至3任一项所述的方法,其中WIP成型中的压制介质是水或油。

5.如1至4任一项所述的方法,其中该热塑性树脂具有高于室温并低于WIP成型中的压制介质的沸点的玻璃化转变温度。

6.如1至5任一项所述的方法,其中该热塑性树脂是选自聚乙烯醇、聚乙酸乙烯酯、聚乙烯醇与聚乙酸乙烯酯的共聚物、甲基纤维素、乙基纤维素、聚乙烯醇缩丁醛、聚丙烯酸乙烯酯、和聚乙烯醇与聚丙烯酸乙烯酯的共聚物的至少一种。

7.如1至6任一项所述的方法,其中使用通过喷雾干燥该原材料粉末形成的粒料来成型该单轴压制成型体,或将该粒料填充到橡胶模具中,并随后进行第一阶段等静压成型。

8.制造陶瓷烧结体的方法,该方法包括烧结通过如1至7任一项所述的制备用于烧结的陶瓷成型体的方法制备的陶瓷成型体,并进一步热等静压(HIP)该烧结陶瓷成型体的步骤。

9.如8所述的方法,进一步包括在烧结前将该陶瓷成型体脱脂的步骤。

10.如8或9所述的方法,进一步包括在HIP处理后将HIP处理体退火的步骤。

发明的有利效果

根据本发明,当压制成型陶瓷成型体,特别是厚陶瓷成型体时,可以有效地实现向成型体内部的压力传递和热塑性树脂的塑性流动,并制造致密的陶瓷成型体,其中残余空隙显著小并消除了残余应力。此外,通过烧结该陶瓷成型体,可以制造具有真正高密度和极少残余气泡的陶瓷烧结体。结果,可以提供高品质陶瓷烧结体,其表现出改善的机械强度、热导率、光学透明度等等,并由此表现出比现有技术更有利的性质。

优选实施方案描述

制备用于烧结的陶瓷成型体的方法

在下文中,描述了本发明的制备用于烧结的陶瓷成型体的方法。顺便提及,室温在本文中是压制成型用于烧结的陶瓷成型体的步骤中的环境温度,并通常为25±5℃。

本发明的制备用于烧结的陶瓷成型体的方法是制备用于烧结的陶瓷成型体的方法,其通过将含有陶瓷粉末和具有高于室温的玻璃化转变温度的热塑性树脂的原材料粉末压制成预定形状来成型,包括以下步骤:通过将原材料粉末单轴压制成预定形状来成型单轴压制成型体,或将原材料粉末填充到橡胶模具中;通过在低于该热塑性树脂的玻璃化转变温度的温度下等静压该单轴压制成型体或含有该原材料粉末的橡胶模具作为第一阶段等静压成型来成型第一阶段压制成型体;和通过如下方式成型陶瓷成型体:在将该体加热至等于或高于该热塑性树脂的玻璃化转变温度的温度的情况下温等静压(WIP)第一阶段压制成型体作为第二阶段等静压成型。

在下文中,描述本发明的细节。

原材料粉末

用于本发明的原材料粉末至少含有陶瓷粉末和热塑性树脂(粘合剂)。

其中,该陶瓷粉末构成预期的陶瓷烧结体。其组成根据预期的性质来选择,并且在本发明中没有特别的限制。换句话说,该陶瓷粉末可以是氧化物或氮化物或氟化物。此外,即使当陶瓷粉末是金属基础材料如金属间化合物时,也可以合适地采用本发明。

例如,在制造用于法拉第旋转器的透明陶瓷烧结体的情况下,要选择的优选含铽氧化物材料的实例可以包括以下三种类型,即:

(i)含铽石榴石型氧化物透明陶瓷,由含有作为主要组分的Tb和Al和作为另一组分的Sc的氧化物石榴石(TAG基复合氧化物)的烧结体组成,

(ii)含铽石榴石型氧化物透明陶瓷,由具有组成式Tb

(iii)由下式(A)表示的含铽方铁锰矿型氧化物透明陶瓷。

(Tb

(在式(A)中,x为0.4≤x≤0.7,并且R含有至少一种选自钪、钇和除铽之外的镧系元素的元素)。

进一步详述(i)的材料。

(i)的透明陶瓷是含有作为主要组分的Tb和Al和作为另一组分的Sc并具有石榴石结构作为结构的含铽氧化物。

在石榴石结构中,由于每单位长度的法拉第旋转角(Velde常数)变大,优选铽的组成比高。此外,由于铽的晶体场具有边缘且铽离子的变形减小,优选铝的组成比高。此外,由于铝在可以稳定存在于石榴石结构的氧化物中的三价离子中具有最小的离子半径,由此在铽离子的组成比保持原样的同时可以降低石榴石结构的晶格常数,由此每单位长度的法拉第旋转角(Velde常数)变大,所以优选铝的组成比高。此外,由于整个体系的热导率也得到了改善,优选铝在石榴石型氧化物中的组成比高。

顺便提及,当整个体系的阳离子位点仅被铽和铝占据时,钙钛矿结构进一步稳定,这导致生成钙钛矿型杂相。在这里,钪(Sc)是具有中间离子半径的材料,并由此可以存在于构成石榴石结构的铽位点中和以固溶体形式存在于一些铝位点中。此外,钪(Sc)也是一种缓冲材料,其可以通过调节其对铽位点与铝位点的分布比以固溶体形式存在,使得铽对铝的配比完全符合化学计量比,并由此在通过称重时的变化使铽对铝的配比偏离化学计量比的情况下尽量减小微晶生成的能量。因此,可以稳定获得由石榴石组合物单相形成的烧结体,钪由此是优选添加的元素。

因此,例如,在TAG基本组成式(Tb

此外,铽的一些位点可以被钇和镥取代。钇和镥均不会成为障碍,因为离子半径小于铽,并进一步稳定了石榴石结构。此外,即使当取代铽时,钇和镥也均不会成为障碍,因为在普通光纤激光器系统中在0.9μm以上且1.1μm以下的振荡波长带中不存在其吸收峰。

描述由(ii)的Tb

本材料是具有石榴石结构并由铽(Tb)和镓(Ga)的氧化物组成的材料。在该结构中,由于每单位长度的法拉第旋转角(Velde常数)大,优选铽的组成比高。此外,优选镓的组成比高,这是由于熔点大大降低,可以降低生产温度,并可以降低成本。此外,Tb

描述具有方铁锰矿结构并由(iii)的式(A)所表示的氧化物材料。

本材料是具有作为骨架的倍半氧化物型氧化铽结构和其中铽离子位点,即铽离子被式(A)中1-x(其中0.4≤x≤0.7)范围内的大量至少一种选自钪、钇和除铽之外的镧系元素的元素取代的结构的氧化物材料。

该结构是其中倍半氧化物结构中的铽离子浓度在几种铽氧化物结构中最高的结构。因此,由于每单位长度的法拉第旋转角(Velde常数)变大,优选铽的组成比高。

此外,即使当一些铽离子被式(A)中1-x(其中0.4≤x≤0.7)范围内的其它离子取代时,每单位长度的法拉第旋转角(Velde常数)仍可保持很高,因此优选表现出吸收的一些铽离子被不表现出吸收的其它离子取代,因为可以降低每单位晶格的来自铽离子的吸收密度。

在式(A)中,x的范围优选为0.4≤x≤0.7且再更优选为0.4≤x≤0.6。由于每单位长度的法拉第旋转角(Verde常数)降低,x小于0.4是不优选的。此外,由于来自于铽的吸收量提高至不可忽略的水平,x超过0.7是不优选的。

作为本发明的目标的各种透明陶瓷烧结体(含铽复合氧化物烧结体)含有上文所示的复合氧化物作为主要组分。在这里,“作为主要组分含有”是指以90重量%以上含有该复合氧化物的任意一种。该复合氧化物的任意一种的含量优选为99重量%以上、更优选99.9重量%以上、再更优选99.99重量%以上且特别优选99.999重量%以上。

此外,优选适当添加起烧结助剂作用的金属氧化物作为辅助组分。典型的烧结助剂包括SiO

作为本发明的目标的各透明陶瓷烧结体(含铽复合氧化物烧结体)由上述主要组分和辅助组分组成,但是可以进一步含有其它元素。其它元素的实例通常可以包括钠(Na)、磷(P)、钨(W)、钽(Ta)和钼(Mo)。

当Tb的总量视为100重量份时,其它元素的含量优选为10重量份以下、更优选0.1重量份以下和特别优选0.001重量份以下(基本为零)。

这里,作为用于制造含铽复合氧化物烧结体的陶瓷粉末,可以合适地使用金属粉末,或一系列上述元素的这些元素组或氧化物粉末等等的硝酸、硫酸、尿酸等等的水溶液(其中含有铽并混合构成各种复合氧化物的所有元素)。

此外,优选该粉末的纯度为99.9重量%以上。

按预定量称重这些元素,混合在一起,并烧制以获得具有所需组成的含有含铽氧化物的烧制原材料,具体而言,铝基石榴石型(上述(i))、镓基石榴石型(上述(ii))和与铽之外的元素形成固溶体的方铁锰矿型(上述(iii))的氧化物作为主要组分。

此时需要根据组成微调烧制温度,并且不能无条件地提及,但优选为至少900℃以上且低于随后要进行的烧结的温度,更优选1000℃以上且低于随后要进行的烧结的温度。顺便提及,取决于原材料,在一定温度以上进行加热时,粘附和聚集可能快速劣化。在使用此类原材料的情况下,优选仔细地调节上限温度,并在粘附与聚集不会劣化的温度范围内进行烧制。此外,关于烧制时的升温速率和降温速率不需要如此小心,但是需要注意停留时间。当烧制停留时间不必要地延长时,粘附与聚集逐渐进行。因此,也需要在一定程度上小心地选择停留时间的上限范围。

顺便提及,“作为主要组分含有”在这里是指获自烧制原材料的粉末X射线衍射结果的主峰由衍生自所需材料的晶系的衍射峰组成。顺便提及,在其中杂相的存在浓度小于1%的情况下,在粉末X射线衍射图案中基本仅能清晰地检测衍生自主相的图案,而衍生自杂相的图案常常几乎以背景水平被掩盖。

随后,将获得的烧制原材料粉碎或分级以获得其中颗粒尺寸分布控制在预定范围内的陶瓷粉末。该陶瓷粉末的颗粒尺寸没有特殊限制,但是优选选择其中初级颗粒的表面尽可能不具有刻面表面(facet surface)的粉末,因为改善了可烧结性。此外,优选对购买的原材料施以粉碎处理如湿式球磨机粉碎、湿式珠磨机粉碎、湿式喷射磨粉碎和干式喷射磨粉碎,而不是使用原样的原材料,因为可以抑制粗大颗粒和粗大气孔的生成,由此制造致密成型体。此外,关于纯度,优选选择具有3N以上纯度的高纯度起始材料粉末,因为促进了烧结步骤中的致密化,并可以防止杂质导致的各种性能的劣化。

顺便提及,此时的粉末形状没有特殊限制,例如可以合适地采用正方形、球形和板状粉末。此外,甚至可以合适的采用施以二次聚集的粉末,并且甚至可以合适地采用通过造粒处理(如喷雾干燥处理)造粒的颗粒状粉末。

此外,制备这些陶瓷粉末的步骤没有特殊限制。可以合适地采用通过共沉淀法、粉碎法、喷雾热解法、溶胶凝胶法、醇盐水解法以及任何其它合成方法制得的陶瓷粉末。此外,可以使用湿式球磨机、珠磨机、湿式喷射磨、干式喷射磨、锤磨机等等对获得的陶瓷粉末进行适当处理。

此外,为了防止初级颗粒的过渡聚集,在湿法粉碎处理过程中可以加入各种分散剂。此外,在其中初级颗粒是无定形的且过于蓬松的情况下或其中使用具有大纵横比且体积大(bulky)的起始材料(如板状和针状材料)的情况下,可以通过在粉碎处理后进一步增加煅烧步骤来设置初级颗粒的形状。

为了制造具有复合组成的陶瓷烧结体,存在将多种陶瓷粉末混合在一起并成型的情况。在本发明中,可以使用此类混合陶瓷粉末。但是,为了在烧制前彻底混合陶瓷粉末,优选制备其中陶瓷粉末分散在溶剂中的湿浆料并对该湿浆料施以共混处理如湿式球磨机混合、湿式珠磨机混合和湿式喷射磨乳化。此外,在混合后的多种起始材料可以煅烧以导致相变成预期化合物。

此外,另一透明陶瓷烧结体的实例可以包括氟化钙/氟化锂烧结体。具体而言,另一透明陶瓷烧结体是高度透明的氟化钙烧结体,其可用于光学透镜等等,并且为了改善透明度,以优选钙重量的0.08重量%以上且小于3重量%、更优选0.08重量%以上且1重量%以下、特别优选约0.1重量%向高度透明的氟化钙烧结体中加入氟化锂。但是,需要氟化锂均匀和微细地分散在作为基础材料的氟化钙中。此外,需要小心,因为即使进行共混处理,当氟化锂以3重量%以上添加时也难以进行均匀的分散与混合。

此外,它的实例可以包括尖晶石(MgAl

此外,氮化硅基陶瓷烧结体的实例可以包括通过共混氧化物基助剂(氧化镁粉末和氧化钇粉末)与氮化硅粉末获得的烧结体。具体而言,该氮化硅基陶瓷烧结体是具有高热导率并可用于散热基板的氮化硅陶瓷烧结体,为了改善热导率,以优选硅重量的0.01重量%以上且小于1重量%、更优选0.05重量%以上且0.8重量%以下向该氮化硅陶瓷烧结体中添加氧化镁粉末。此外,为了改善绝缘体压力和弯曲强度,以优选硅重量的0.01重量%以上且小于1重量%、更优选0.05重量%以上且0.8重量%以下向该氮化硅陶瓷烧结体中添加氧化钇粉末。因为促进致密化,这些氧化物添加剂优选均匀和微细地分散在基础材料中。

优选将这些多种陶瓷粉末混合在一起并由此制备成原材料粉末。在本发明中,可以使用此类混合陶瓷粉末。但是,为了彻底混合陶瓷粉末,优选制备其中陶瓷粉末分散在溶剂中的湿浆料并对该湿浆料施以共混处理如湿式球磨机混合、湿式珠磨机混合和湿式喷射磨乳化。

选择用于制备陶瓷粉末的浆料的溶剂在本发明中也没有特殊限制。但是,通常,合适地选择选自水、乙醇或有机溶剂(除乙醇之外的醇类、丙酮等等)的一种或其两种或多种的混合物,并且尤其优选乙醇。顺便提及,在选择水作为溶剂的情况下,优选同时混合并加入分散剂、消泡剂等等。需要通过初步试验发现此时添加的这些组分各自的量的最佳范围。

此外,可以使用将在下文中描述的作为粘合剂加入的热塑性树脂溶解在其中的溶剂或该热塑性树脂不溶于其中的溶剂,但是优选选择该热塑性树脂溶解在其中的溶剂。

添加到原材料粉末中的粘合剂是具有高于室温的玻璃化转变温度的热塑性树脂,优选高于室温3℃以上,其类型没有特殊限制,但是该热塑性树脂优选选自常用的聚乙烯醇(玻璃化转变温度Tg=55℃至85℃;取决于皂化度和聚合度)、聚乙酸乙烯酯(玻璃化转变温度Tg=25℃至40℃;取决于皂化度和聚合度)、聚乙烯醇与聚乙酸乙烯酯的共聚物(玻璃化转变温度Tg=30℃至80℃;取决于皂化度和聚合度)、甲基纤维素(玻璃化转变温度Tg=-90℃至120℃;取决于水化度和取代度。在本发明中,调节该玻璃化转变温度以高于室温)、乙基纤维素(玻璃化转变温度Tg=70℃至160℃;取决于取代度)、聚乙烯醇缩丁醛(玻璃化转变温度Tg=60℃至110℃;取决于皂化度和聚合度)、聚丙烯酸乙烯酯(玻璃化转变温度Tg=10℃至45℃;取决于皂化度和聚合度。在本发明中,调节该玻璃化转变温度以高于室温)、和聚乙烯醇与聚丙烯酸乙烯酯的共聚物(玻璃化转变温度Tg=15℃至75℃;取决于皂化度和聚合度。在本发明中,调节该玻璃化转变温度以高于室温)。这些是优选的,因为这些均适当地具有粘性,其玻璃化转变温度高于室温(或调节至高于室温,优选调节至高于室温3℃以上),并在低于后续要描述的WIP成型中的压制介质(水或油)的沸点的范围内(或调节至低于该沸点,优选调节至低于该沸点5℃以上),由此容易处理这些热塑性树脂。具体而言,该热塑性树脂的玻璃化转变温度Tg优选为35℃至100℃、更优选40℃至90℃、再更优选45℃至85℃。

顺便提及,当通过差示扫描量热法(DSC)测量该热塑性树脂时,该玻璃化转变温度Tg通常是中点玻璃化转变温度值。例如,该玻璃化转变温度Tg是由通过符合JIS K7121:1987的方法在10℃/分钟的升温速率和-50℃至250℃的测量温度的条件下测得的热量变化计算的中点玻璃化转变温度。顺便提及,在其中样品中的水分影响玻璃化转变温度Tg的情况下,可以在将样品一次加热至150℃并由此干燥后进行测量。

为了添加热塑性树脂,优选使用其中热塑性树脂预先溶解在溶剂,例如乙醇溶剂中以便预先具有适当浓度(重量%)的一种(热塑性树脂溶液),或者即使热塑性粉末不溶解但分离的话其中将其浓度(重量%)调节至适当数值的热塑性树脂粉末分散在溶剂如乙醇中的一种(热塑性树脂分散体)。在热塑性树脂溶液或分散体中,该热塑性树脂的浓度优选为例如5重量%至40重量%。

此时,优选向其中陶瓷粉末分散在溶剂中的湿浆料中加入该热塑性树脂溶液或该热塑性树脂分散体。通常,在向湿浆料中加入热塑性树脂溶液或热塑性树脂分散体之后,优选通过进行球磨混合、珠磨混合、湿喷射磨混合等等进一步彻底搅拌该混合物中的热塑性树脂与陶瓷粉末。但是,在其中为改变陶瓷粉末的形状和结晶度以及平均初级颗粒直径而进行煅烧处理的情况下,需要在煅烧处理后添加热塑性树脂溶液或分散体以防止热分解、热变性和热挥发。

加入的热塑性树脂的量根据预期陶瓷烧结体的组成和最终用途而变,因此需要通过初步试验确定最佳比例。但是,在许多情况下,当该热塑性树脂以陶瓷粉末和热塑性树脂的总重量的优选0.2重量%以上且40重量%以下、更优选0.5重量%以上且20重量%以下和特别优选0.5重量%以上且10重量%以下的量加入时获得高品质成型体和烧结体。

顺便提及,为了在后续陶瓷制造步骤中改善品质稳定性和产率,可以向本发明中使用的原材料粉末中加入各种有机添加剂(不包括作为粘合剂的热塑性树脂)。

在本发明中,这些也没有特殊限制。换句话说,可以合适地使用各种分散剂、润滑剂、增塑剂等等。但是,作为这些有机添加剂,优选选择不含有不需要的金属离子的高纯度类型。此外,需要注意添加量,因为某些类型的分散剂具有降低热塑性树脂的玻璃化转变温度的效果。

将其中向陶瓷粉末中加入热塑性树脂溶液或热塑性树脂分散体的原料粉浆干燥以获得原材料粉末。此时,该原料粉浆可以原样干燥并固化,或者可以通过喷雾干燥或冷冻干燥来造粒并干燥。特别地,通过喷雾干燥将浆料造粒和干燥获得的粒料是优选的,因为容易在后续步骤中处理该粒料。

成型步骤

随后,描述本发明中用于烧结的陶瓷成型体的压制成型程序。

单轴压制成型等等

首先,将由此获得的原材料粉末单轴压制成具有预定形状的单轴压制成型体。此时,优选使用通过喷雾干燥该原材料粉末形成的颗粒。该单轴压制成型体的形状对应于预期的烧结体形状,并且例如是具有7至100毫米的直径和2至40毫米的长度的圆柱形。或者,该形状是具有5至80毫米的宽度、2至30毫米的厚度和5至150毫米的长度的立方体形状。

此外,单轴压制条件是例如不加热该成型体,压制环境温度:低于该热塑性树脂的玻璃化转变温度的温度(通常为室温),且施加的压力:5至50MPa。

或者,将该原材料粉末直接填充到用于等静压成型的橡胶模具中,而不进行单轴压制成型。此时,优选使用通过喷雾干燥该原材料粉末形成的粒料。该橡胶模具的模具形状对应于预期的烧结体形状,并且例如是具有8至150毫米的直径和10至300毫米的长度作为压制前的内部尺寸的圆柱形。

第一阶段等静压成型

接下来,作为第一阶段等静压成型,对由此获得的单轴压制成型体或含有该原材料粉末的橡胶模具在低于原材料粉末组分中所含热塑性树脂的玻璃化转变温度的温度下施以等静压,由此成型第一阶段压制成型体。

这里,优选第一阶段等静压成型是冷等静压(CIP)成型。换句话说,优选将填充有单轴压制成型体的橡胶模具或含有该原材料粉末的橡胶模具安装在CIP设备上并进行第一阶段等静压成型。这种情况下的压制介质是水或油。

施加的压力和压力保持时间此时根据所选陶瓷组成和最终产品的预期用途而变,并由此需要适当地调节。但是,当施加的压力通常未提高至40MPa以上时,难以获得高品质烧结体,因为成型体的密度没有提高。施加的压力的上限没有特殊限制,但是不优选将压力提高得过高,因为会发生层压开裂。在大多数陶瓷材料中,400MPa以下的施加压力通常是足够的。

此外,该压力保持时间例如优选为1至10分钟,更优选1至3分钟。

此外,压制时成型体的温度保持在低于原材料粉末组分中所含热塑性树脂的玻璃化转变温度的温度下,并且例如该温度优选保持在低于原材料粉末组分中所含热塑性树脂的玻璃化转变温度10℃以上的温度下,特别优选将成型体保持在室温下而不加热。

顺便提及,在该CIP处理中,优选在压制时将成型体的温度保持在低于向原材料粉末添加的热塑性树脂的玻璃化转变温度的温度下,因为热塑性树脂在处于预先彻底(致密地)填埋陶瓷粉末(初级颗粒)之间的缝隙的状态下的原材料粉末中牢固地凝固,当压制成型该原材料粉末时,施加到成型体表面的压力依次在彼此相邻的硬质热塑性树脂与硬质陶瓷粉末(初级颗粒)之间传递,结果,压力可靠地施加到成型体内部。

第二阶段等静压成型

随后,在将其体加热至等于或高于该热塑性树脂的玻璃化转变温度的温度的情况下对获得的第一阶段压制成型体施以温等静压(WIP)作为第二阶段等静压成型,由此成型陶瓷成型体。

优选通过以下程序进行该第二阶段等静压成型。

步骤S1

首先,在用于WIP成型的WIP设备中,预先升高用于WIP成型的加压容器部分与压制介质的温度以等于或高于加入到原材料粉末中的热塑性树脂的玻璃化转变温度并稳定化。

步骤S2

在此类加热状态下的WIP设备中,以填充在橡胶模具中或用防水膜真空包装并密封的状态装载该第一阶段压制成型体。

步骤S3

在保持填充状态的同时保留该第一阶段压制成型体,以便将第一阶段压制成型体加热到与加热的WIP设备相同的温度,随后进行WIP成型作为第二阶段等静压成型。

顺便提及,在步骤S3中,在填充第一阶段压制成型体之后,可以在将第一阶段压制成型体加热至与WIP设备相同的温度的同时进行WIP成型作为第二阶段等静压成型。

在这里,用于WIP成型的加压容器部分与压制介质的温度,即加热第一阶段压制成型体的温度,等于或高于添加到原材料粉末中的热塑性树脂的玻璃化转变温度,并优选高于该热塑性树脂的玻璃化转变温度5℃以上。顺便提及,在其中该热塑性树脂的玻璃化转变温度为50℃以下的情况下,优选将加热第一阶段压制成型体的温度设定为高于该玻璃化转变温度10℃以上的温度。此外,优选加热第一阶段压制成型体的温度的上限为130℃以下。

此外,要使用的压制介质优选是水或油,更优选为水或沸点超过100℃的油。此时,尽管压制介质根据所选热塑性树脂的种类而不同,但使用水作为压制介质是危险的,因为在其中热塑性树脂的玻璃化转变温度为91℃以上的情况下存在暴沸的可能性。因此,优选选择沸点超过100℃的油作为压制介质。顺便提及,存在各种油,因此优选适当地选择即使在加热至预期温度时也不具有暴沸风险的油。

WIP成型中施加的压力和压力保持时间根据所选陶瓷组成、热塑性树脂的种类和添加比例、以及最终产品的预期用途而改变,由此需要适当地调节。但是,除非施加的压力通常提高至40MPa以上,加热至高于玻璃化转变温度的温度的热塑性树脂难以在堆积的陶瓷成型体的间隙之间穿过和导致塑性流动,由此在CIP步骤中不会发生原材料在处于受压状态的成型体内部的重新排列和储存内部应力,并且难以降低残余应力、封闭粗大的空腔和进一步致密化该成型体。施加的压力的上限没有特殊限制,但是通常已知的是WIP设备的最大极限压力低于CIP设备的最大极限压力。这是为了安全操作该设备在生产设备中的限制,包括升温造成的整个设备的热膨胀。具体而言,一般WIP设备的最大施加压力为约200MPa,但是在本发明中,如果施加这种程度的压力,则可以充分发挥作用。

此外,该压力保持时间例如优选为1至10分钟和更优选1至3分钟。

顺便提及,第一阶段等静压成型和第二阶段等静压成型可以如下进行,而不是如上文所述的其实施方案那样。

第一阶段等静压成型

将填充有单轴压制成型体的橡胶模具或填充有原材料粉末的橡胶模具安装在WIP设备上,并在第一阶段等静压成型的条件下进行成型(制造第一阶段压制成型体)。

第二阶段等静压成型

在成型第一阶段压制成型体后,开始加热第一阶段压制成型体,同时保持第一阶段等静压状态(也就是说,第一阶段压制成型体安装在WIP设备上并压制),随后在第二阶段等静压成型的条件下进行WIP成型。

在本发明中必要的是,以该顺序进行第一阶段压制成型(在低于热塑性树脂的玻璃化转变温度的温度下的等静压成型,优选CIP成型)步骤和第二阶段等静压成型(WIP成型)步骤。

例如,在观察陶瓷粉末与粘合剂(热塑性树脂)在单轴压制成型之后的单轴压制成型体中的分布状态的情况下,陶瓷粉末和粘合剂(热塑性树脂)处于其中陶瓷粉末和粘合剂(热塑性树脂)相对均匀分散的状态,或其中存在粘合剂(热塑性树脂)以填埋陶瓷粉末之间的间隙的状态,但是成型体的密度处于相对较低的状态。

接着,等静压成型前半部分中的第一阶段压制成型(在低于热塑性树脂的玻璃化转变温度的温度下的等静压成型,优选CIP成型)具有相对于单轴压制成型体将施加的压力传递至厚成型体内部的功能。此时,在第一阶段压制成型体中,虽然保持着其中陶瓷粉末和粘合剂(热塑性树脂)相对均匀分散在单轴压制成型体中的状态或其中存在粘合剂(热塑性树脂)以填埋陶瓷粉末之间的间隙的状态,但第一压制成型体的密度在一定程度上变得大于单轴压制成型体的密度。

接着,等静压成型后半部分中的第二阶段等静压成型(WIP成型)步骤具有消除第一阶段压制成型步骤造成的负面作用的功能,也就是说,通过相对于第一阶段压制成型体的塑性流动和重新排列,消除成型体的内部应力变形和部分粗大空隙的生成。此时,在该陶瓷成型体中,虽然保持着其中陶瓷粉末和粘合剂(热塑性树脂)相对均匀分散在第一阶段压制成型体中的状态或其中存在粘合剂(热塑性树脂)以填埋陶瓷粉末之间的间隙的状态,但该陶瓷成型体的密度仍大于第一阶段压制成型体的密度。

只要这些第一和第二阶段的等静压成型的一系列行动正确地起作用,在这两个等静压成型步骤中不同地设置的条件范围就是任意的。

但是,需要证实和验证这系列行动正确地起作用。优选通过以下方法进行该证实和验证。

换句话说,第一种证实方法是证实成型体的密度d

此外,作为第二种证实方法,是证实成型体的密度d

如上所述,根据本发明的制备用于烧结的陶瓷成型体的方法,当压制成型特别是厚陶瓷成型体时,可以有效地实现向成型体内部的压力传递和热塑性树脂的塑性流动,并能够获得其中残余空隙显著小且消除了残余应力的致密陶瓷成型体。

制造陶瓷烧结体的方法(陶瓷的致密化处理)

本发明的制造陶瓷烧结体的方法是通过烧结由本发明的制备用于烧结的陶瓷成型体的方法制备的陶瓷成型体获得陶瓷烧结体,并进一步热等静压(HIP)所述烧结的陶瓷成型体以便进一步致密化。

此时,该方法优选进一步包括在烧结前将陶瓷成型体脱脂的步骤。此外,该方法优选进一步包括在HIP处理后将HIP处理体退火的步骤。

具体而言,进行以下处理。

脱脂

在本发明的制造方法中,可以适当地采用常规脱脂步骤。换句话说,可以使用普通加热炉进行程序升温脱脂步骤。此外,此时的气氛气体种类也没有特殊限制,空气、氧气、含氧混合气体、氢气、氟气、氢氟酸气体、氮气、氨气等等可以合适地采用。该脱脂温度也没有特殊限制,但是在其中添加热塑性树脂以及分散剂和其它有机物质的情况下,优选该温度升至其所有有机组分可以被完全分解和消除的温度并保持在该温度下。

烧结

在本发明的制造方法中,可以合适地采用一般烧结步骤。换句话说,可以合适地采用通过电阻加热法或感应加热法进行的加热与烧结步骤。此时的气氛没有特殊限制,可以在各种类型的气氛如惰性气体、氧气、氢气、氟气、氢氟酸气体、氩气、氮气和氨气中或在减压下(在真空中)烧结。但是,由于有利的相容性气体随要加工的陶瓷材料种类而变,优选正确地应对该条件。例如,在氧化物陶瓷的情况下该气氛优选选自氧基气体组或减压气氛,在氟化物陶瓷的情况下该气氛优选选自氟气、氢氟酸基气体组、惰性气体如氩气和氮气、或减压气氛,并且在氮化物陶瓷的情况下该气氛优选选自氮气、氨基气体组、或减压气氛。此外,毋庸置疑,炉子的材料选择和气密性管理应根据所用气体种类来进行。

本发明的烧结步骤中的烧结温度需要根据所选组成和晶系来适当地调节。通常,优选在低于具有预期最终组成的陶瓷材料的熔点几十至几百度的温度区域内进行烧结处理。此外,烧结步骤中烧结停留时间为几小时通常是足够的。但是,烧结体的相对密度需要提高到至少95%以上,除非有意制造多孔烧结体。此外,更优选的是通过进行烧结处理10小时以上的长时间将烧结体的相对密度提高至99%以上,因为进一步改善了透明陶瓷烧结体的最终透明度。

顺便提及,选择烧结步骤中的升温速率相当重要。优选选择尽可能小的升温速率,但是由于生产率和成本限制,也存在限度。因此,优选可以确保最低100℃/小时。优选可以将升温速率设定为小的程度,因为可以促进致密化、改善透明度和抑制偏析与开裂。

热等静压(HIP)

在本发明的制造方法中,在烧结步骤后附加地进行热等静压(HIP)处理。

顺便提及,作为此时的压制气体介质的种类,可以合适地采用氩气、惰性气体如氮气、或Ar-O

顺便提及,在其中所选烧结体为氟化物的情况下,优选进行所谓胶囊HIP处理,其中在用低碳钢胶囊等密封烧结体之后进行HIP处理。

此外,HIP处理时的温度(预定保持温度)设定在1,000℃至1,800℃和优选1,100℃至1,700℃的范围内。热处理温度超过1,800℃是不优选的,因为介质气体渗透到烧结体中或烧结体与HIP炉熔融且彼此粘连的风险提高。此外,当热处理温度低于1,000℃时,几乎无法获得改善烧结体致密化的效果。顺便提及,在该热处理温度下的停留时间没有特殊限制,但是停留时间过长是不优选的,因为烧结体内部的缺陷逐渐累积。通常,该停留时间合适地设定为1至3小时。

顺便提及,HIP处理中使用的加热器材料、隔热材料和处理容器没有特殊限制,但是可以合适地采用石墨或钼(Mo)、钨(W)和铂(Pt),此外氧化钇、氧化钆、碳化硅和碳化钽也可以合适地用作处理容器。顺便提及,优选该烧结体是在相对低温条件下的烧结体组,其中HIP处理温度为1,500℃以下,因为铂(Pt)可以用作加热器材料、隔热材料和处理容器,要选择的气氛的选择自由度提高,可以降低获得的烧结体中的点缺陷浓度。此外,在其中该处理温度为1,500℃以上的情况下,石墨优选作为加热器材料和隔热材料。

退火

在本发明的制造方法中,存在如下情况:在制造透明陶瓷烧结体时,在HIP处理终止后获得的透明陶瓷烧结体中生成点缺陷,该透明陶瓷烧结体具有浅灰色或黑灰色外观。在此类情况下,优选的是在等于或低于HIP处理温度的温度(通常为1,000℃至1,500℃)下,在氧化物的情况下在氧气气氛中、在氟化物的情况下在氟气或氢氟酸气氛中和在氮化物的情况下在氮气或氨气气氛中进行退火处理(缺陷恢复处理)。这种情况下的停留时间优选为3小时或更久,因为需要确保足够的时间来恢复点缺陷。顺便提及,将退火处理步骤中的设定温度提高至超过1,500℃或将停留时间过度延长至几十小时是不优选的,因为气泡会在透明陶瓷材料中各处重新生成(这被称为反弹现象)。

光学评估

在本发明的制造方法中,在制造透明陶瓷烧结体的情况下,为了评估已经进行一系列上述制造步骤的烧结体的光学品质,优选光学抛光至少一个表面。光学表面精度此时没有特殊限制。但是,当光学表面的翘曲太过严重时,难以进行正确的光学评估,因此光学表面精度优选为λ以下、更优选λ/2以下和特别优选λ/4以下,例如在其中测量波长λ=633nm的情况下。顺便提及,通过在光学抛光表面上适当地形成防反射膜,还可以进一步减少光学损失。

通过以上述方式经光学抛光表面显微观察内部,通过交叉Nicol图像等等可以观察和评估残余气泡、粗大空腔和残余变形的存在或不存在。

如上所述,根据本发明的制造陶瓷烧结体的方法,可以制造具有真正高密度和显著少残余气泡的陶瓷烧结体,结果,可获得表现出改善的机械强度、热导率、光学透明度、电特性、长期可靠性等等并由此表现出与现有技术相比更有利的性质的高品质陶瓷烧结体。

实施例

在下文中,参照实施例和对比例更具体地描述本发明,但是本发明不限于实施例。

实施例1

获得Shin-Etsu Chemical Co.,Ltd.制造的氧化铽粉末和氧化钪粉末与TAIMEICHEMICALS CO.,LTD.制造的氧化铝粉末。此外,获得KISHIDA CHEMICAL Co.,Ltd.制造的正硅酸四乙酯(TEOS)的液体。粉末原材料的纯度均为99.9重量%以上,液体原材料的纯度为99.999重量%以上。

使用该原材料并调节其混合比来制备具有表1中所示最终组成的石榴石型氧化物原材料(混合原材料No.1)。

换句话说,通过称重原材料制备其中铽和铝和钪的摩尔数各自为表1中所示组成中的摩尔比的混合粉末。随后,称重TEOS并添加到原材料中,以使其加入量按SiO

随后,将颗粒状原材料放入氧化钇坩埚并使用高温马弗炉在1,200℃下烧制3小时的停留时间,由此获得烧制的原材料(烧制原材料No.1)。使用Malvern Panalytical Ltd.制造的粉末X射线衍射仪分析获得的烧制原材料的衍射图案(XRD分析)。由实测图案与X射线衍射图案的参考数据的比较来鉴定该样品的晶系。由该结果证实了该烧制原材料仅由石榴石单相(立方)构成。

表1

获得的氧化物原材料(烧制原材料No.1)使用尼龙球磨设备在乙醇中再次分散和混合。处理时间为20小时。由此获得的浆料原材料分为两组,将其中作为粘合剂的由JAPANVAM&POVAL CO.,LTD.制造的聚乙烯醇和聚乙酸乙烯酯的共聚物(玻璃化转变温度:48℃)溶解在乙醇中至20重量%的热塑性树脂溶液添加到一组中,使得聚乙烯醇和聚乙酸乙烯酯的共聚物以全部原材料粉末(烧制原材料No.1+粘合剂)重量的1重量%的量存在,随后将添加了粘合剂的浆料(原料粉浆)搅拌并混合3小时。此时,粘合剂溶解在该浆料中。未向另一组中加入粘合剂,另一组以原样的原料粉浆使用。

将分为这两组的原料粉浆各自喷雾干燥,同时防止相互混合,由此制造各自具有20μm的平均颗粒直径的颗粒状原材料(原材料粉末)。获得的两种原材料粉末各自使用具有8毫米的直径的模具单轴压制成型以制备多个单轴压制成型体(单轴压制条件:压力30MPa,压力保持时间;0.1分钟)。

获得的单轴压制成型体如表2中所示进一步分为五组(实施例1-1和对比例1-1至1-4)。随后,在表2(在该表中,标记“○”表示进行压制处理,标记“-”表示未进行压制处理(以下同样适用))中所示的条件下通过压制成型程序制造陶瓷成型体样品(三种水平的单轴压制-CIP处理-WIP处理、单轴压制-CIP处理、和单轴压制-WIP处理)。

顺便提及,该压制成型程序中的室温为20℃。CIP条件设定如下:压制介质:水,压制介质温度:20℃,施加的压力:196MPa,压制时间:2分钟。此外,WIP条件设定如下:压制介质:水,压制介质温度:60℃,CIP成型体加热温度:60℃,施加的压力:196MPa,压制时间:2分钟。

对于获得的陶瓷成型体,测量各样品的重量w(克),还测量直径r(毫米)和长度L(毫米),并通过下列方程式计算确定各成型体的密度。

成型体密度(g/cm

接着,将各陶瓷成型体在马弗炉中在1,000℃和2小时的条件下脱脂。随后,将脱脂的陶瓷成型体装入氧气氛炉中,并在1,730℃下烧结3小时以获得烧结体。此外,将各烧结体装入碳加热器制成的HIP炉中,并在Ar气氛中在施加的压力为200MPa、加热温度为1,600℃且停留时间为2小时的条件下施以HIP处理。随后,将获得的各HIP处理的烧结体装入氧气氛炉并在1,350℃的加热温度下施以退火处理4小时停留时间以获得其中恢复氧缺乏的陶瓷烧结体。

将由此获得的各陶瓷烧结体研磨并抛光以具有5毫米的直径和15毫米的长度,并进一步对各陶瓷烧结体的两光学端面施以最终光学抛光以具有光学表面精度λ/2(测量波长λ=633nm的情况),由此获得用于评估的样品。

接着,如下对各个样品测量总透光率和前向散射系数。这里,样品的n值均设定为3,测量结果的平均值视为各样品的实测值(以下同样适用)。

测量总透光和前向散射系数的方法

使用JASCO Corporation制造的分光光度计V-670测量1,064nm的波长下的总透光率。作为测量方法,首先,在分光光度计V-670中照射通过分光光度计光谱衍射的光(波长为1,064nm的光(以下同样适用))而不设置用于评估的样品,光被预先设置在该设备中的积分球接收,并通过检测器接收会聚光。获得的照度表示为I

此外,连续测量前向散射系数。换句话说,将积分球的设置切换成其中除去线性透射光的模式,使在其中设置用于评估的样品的状态下再次光谱衍射的光入射在用于评估的样品上,除透射光中的线性透射光之外的光通过积分球会聚并由检测器接收。获得的照度表示为I

总透光率(%/15mm) = I/I

前向散射系数(%/15mm) = Is/I

上面的结果总结在表2中。

表2

/>

*1:粘合剂:聚乙烯醇和聚乙酸乙烯酯的共聚物(Tg:48℃)

*2:CIP条件:压制介质温度20℃,施加的压力196MPa,压制时间2分钟

*3:WIP条件:压制介质温度60℃,施加的压力196MPa,压制时间2分钟

由上述结果,在使用向其加入粘合剂(热塑性树脂)的原材料粉末进行单轴压制-CIP处理-WIP处理的压制成型的实施例1-1中,成型体密度得到最大提高,烧结后的总透光率最高,并且前向散射系数最低。即使在以相同方式向其中加入粘合剂的原材料粉末的情况下,在其中进行单轴压制-CIP处理和单轴压制-WIP处理的压制成型的对比例1-1和1-2中,成型体密度几乎没有提高,总透光率与实施例1-1相比还略微降低,前向散射系数也劣化。顺便提及,由对比例1-1和对比例1-2之间的比较可以证实,在单轴压制-WIP处理的压制成型条件下制造的成型体的密度高于在单轴压制-CIP处理的压制成型条件下制造的成型体的密度,但是该成型体在烧结时在总透光率和前向散射系数方面不佳。此外,在未向其中加入粘合剂的原材料粉末(对比例1-3和1-4)中证实,成型体密度并未改善,并且总透光率与前向散射系数在单轴压制-CIP处理和单轴压制-CIP处理-WIP处理的两种压制成型条件下均劣化。

实施例2

获得Shin-Etsu Chemical Co.,Ltd.制造的氧化铽粉末和氧化钇粉末和ThermoFisher Scientific Inc.制造的氧化铪粉末。其纯度均为99.9重量%以上。

使用该原材料并调节其混合比来制造具有表3中所示最终组成的方铁锰矿型氧化物原材料(烧制原材料No.2)。

换句话说,通过称重原材料制备其中铽和钇的摩尔数各自为表3中所示组成中的摩尔比(即1:1)的混合粉末。随后,称重铪并添加到原材料中,以使其加入量按HfO

随后,将该颗粒状原材料放入氧化钇坩埚并使用高温马弗炉在1,100℃下烧制3小时的停留时间,由此获得烧制的原材料(烧制原材料No.2)。使用Malvern PanalyticalLtd.制造的粉末X射线衍射仪分析获得的烧制原材料的衍射图案(XRD分析)。由实测图案与X射线衍射图案的参考数据的比较来鉴定该样品的晶系。由该结果证实了该烧制原材料仅由方铁锰矿单相(立方)构成。

表3

使用氧化锆球磨设备在乙醇中再次分散和混合氧化物原材料(烧制原材料No.2)。处理时间为20小时。由此获得的浆料原材料分为两组,将其中作为粘合剂的由JAPAN VAM&POVAL CO.,LTD.制造的聚乙烯醇和聚乙酸乙烯酯的共聚物(玻璃化转变温度:48℃)溶解在乙醇中至20重量%的热塑性树脂溶液添加到一组中,使得聚乙烯醇和聚乙酸乙烯酯的共聚物以全部原材料粉末(烧制原材料No.2+粘合剂)重量的1重量%的量存在,随后将添加了粘合剂的浆料(原料粉浆)搅拌并混合3小时。此时,粘合剂溶解在该浆料中。未向另一组中加入粘合剂,另一组以原样的原料粉浆使用。

将分为这两组的原料粉浆各自喷雾干燥,同时防止相互混合,由此制造各自具有20μm的平均颗粒直径的颗粒状原材料(原材料粉末)。获得的两种原材料粉末各自使用具有8毫米的直径的模具单轴压制成型以制备多个单轴压制成型体(单轴压制条件:压力30MPa,压力保持时间;0.1分钟)。

获得的单轴压制成型体如表4中所示进一步分为五组(实施例2-1和对比例2-1至2-4)。随后,在表4中所示的条件下通过压制成型程序制造陶瓷成型体样品(三种水平的单轴压制-CIP处理-WIP处理、单轴压制-CIP处理、和单轴压制-WIP处理)。

顺便提及,该压制成型程序中的室温为20℃。CIP条件设定如下:压制介质:水,压制介质温度:20℃,施加的压力:196MPa,压制时间:2分钟。此外,WIP条件设定如下:压制介质:水,压制介质温度:60℃,CIP成型体加热温度:60℃,施加的压力:196MPa,压制时间:2分钟。

对于获得的陶瓷成型体,测量各样品的重量w(克),还测量直径r(毫米)和长度L(毫米),并通过下列方程式计算确定各成型体的密度。

成型体密度(g/cm

接着,将各陶瓷成型体在马弗炉中在300℃和2小时的条件下脱脂。随后,将脱脂的陶瓷成型体装入真空加热炉中,并在1,550℃下烧结3小时以获得烧结体。此外,将各烧结体装入碳加热器制成的HIP炉中,并在Ar气氛中在施加的压力为200MPa、加热温度为1,600℃且停留时间为2小时的条件下施以HIP处理。随后,将获得的各HIP处理的烧结体装入真空加热炉并在600℃的加热温度下施以退火处理4小时停留时间以获得其中恢复氧缺乏的陶瓷烧结体。

将由此获得的各陶瓷烧结体研磨并抛光以具有5毫米的直径和15毫米的长度,并进一步对各陶瓷烧结体的两个光学端面施以最终光学抛光以具有光学表面精度λ/2(测量波长λ=633nm的情况),由此获得用于评估的样品。

对由此获得的各样品,在与实施例1相同的测量条件下测量总透光率和前向散射系数。所得结果概括在表4中。

表4

/>

*1:粘合剂:聚乙烯醇和聚乙酸乙烯酯的共聚物(Tg:48℃)

*2:CIP条件:压制介质温度20℃,施加的压力196MPa,压制时间2分钟

*3:WIP条件:压制介质温度60℃,施加的压力196MPa,压制时间2分钟

由上述结果,在使用向其加入粘合剂(热塑性树脂)的原材料粉末进行单轴压制-CIP处理-WIP处理的压制成型的实施例2-1中,成型体密度得到最大提高,烧结后的总透光率最高,并且前向散射系数最低。即使在以相同方式向其加入粘合剂的原材料粉末的情况下,在其中进行单轴压制-CIP处理和单轴压制-WIP处理的压制成型的对比例2-1和2-2中,成型体密度几乎没有提高,总透光率与实施例2-1相比还略微降低,前向散射系数也劣化。顺便提及,由对比例2-1和对比例2-2之间的比较已经证实,在单轴压制-WIP处理的压制成型条件下制造的成型体的密度高于在单轴压制-CIP处理的压制成型条件下制造的成型体的密度,但是该成型体在烧结时在总透光率和前向散射系数方面不佳。此外,在未向其加入粘合剂的原材料粉末(对比例2-3和2-4)中,成型体密度略低于实施例2-1,并且总透光率与前向散射系数在单轴压制-CIP处理和单轴压制-CIP处理-WIP处理的两种压制成型条件下均略微劣化,尽管在本实施例的组合物中表现出相当稳定的性质。

实施例3

获得Thermo Fisher Scientific Inc.制造的氟化钙粉末和氟化锂粉末。其纯度均为99.9重量%以上。

将原材料称重,以使锂按LiF计以钙重量的0.1重量%的量存在,并混合在一起以制备起始材料(混合的原材料No.1),随后,该起始材料用氧化铝球磨设备在乙醇中分散并混合。处理时间为15小时。由此获得的浆料原材料分为两组,将其中作为粘合剂的由JAPANVAM&POVAL CO.,LTD.制造聚乙烯醇和聚乙酸乙烯酯的共聚物(玻璃化转变温度:48℃)溶解在乙醇中至20重量%的热塑性树脂溶液添加到一组中,使得聚乙烯醇和聚乙酸乙烯酯的共聚物以全部原材料粉末(混合的原材料No.1+粘合剂)重量的1重量%的量存在,随后将添加了粘合剂的浆料(原料粉浆)搅拌并混合3小时。此时,粘合剂溶解在该浆料中。未向另一组中加入粘合剂,另一组以原样的原料粉浆使用。

将分为这两组的原料粉浆各自喷雾干燥,同时防止相互混合,由此制造各自具有20μm的平均颗粒直径的颗粒状原材料(原材料粉末)。获得的两种原材料粉末各自使用具有8毫米的直径的模具单轴压制成型以制备多个单轴压制成型体(单轴压制条件:压力30MPa,压力保持时间;0.1分钟)。

获得的单轴压制成型体如表5中所示进一步分为五组(实施例3-1和对比例3-1至3-4)。随后,在表5中所示的条件下通过压制成型程序制造陶瓷成型体样品(三种水平的单轴压制-CIP处理-WIP处理、单轴压制-CIP处理、和单轴压制-WIP处理)。

顺便提及,该压制成型程序中的室温为20℃。CIP条件设定如下:压制介质:水,压制介质温度:20℃,施加的压力:196MPa,压制时间:2分钟。此外,WIP条件设定如下:压制介质:水,压制介质温度:60℃,CIP成型体加热温度:60℃,施加的压力:196MPa,压制时间:2分钟。

对于获得的陶瓷成型体,测量各样品的重量w(克),还测量直径r(毫米)和长度L(毫米),并通过下列方程式计算确定各成型体的密度。

成型体密度(g/cm

接着,将各陶瓷成型体在马弗炉中在600℃和2小时的条件下脱脂。随后,将脱脂的陶瓷成型体装入真空加热炉中,并在850℃下烧结3小时以获得烧结体。此外,将各烧结体装入铂加热器制成的HIP炉中,并在Ar气氛中在200MPa的压力、700℃的加热温度且2小时的停留时间的条件下施以HIP处理(氟化钙/氟化锂烧结体)。

将由此获得的各陶瓷烧结体研磨并抛光以具有5毫米的直径和15毫米的长度,并进一步对各陶瓷烧结体的两个光学端面施以最终光学抛光以具有光学表面精度λ/2(测量波长λ=633nm的情况),由此获得用于评估的样品。

对由此获得的各个用于评估的样品,在与实施例1相同的测量条件下测量总透光率和前向散射系数。获得的结果概括在表5中。

表5

*1:混合的原材料No.1:氟化钙粉末+氟化锂粉末(按LiF计相对于Ca为0.1重量%的Li)

*2:粘合剂:聚乙烯醇与聚乙酸乙烯酯的共聚物(Tg:48℃)

*3:CIP条件:压制介质温度20℃,施加的压力196MPa,压制时间2分钟

*4:WIP条件:压制介质温度60℃,施加的压力196MPa,压制时间2分钟

由上述结果,在使用向其加入粘合剂(热塑性树脂)的原材料粉末进行单轴压制-CIP处理-WIP处理的压制成型的实施例3-1中,成型体密度得到最大改善,烧结后的总透光率最高,并且前向散射系数最低。即使在以相同方式向其中加入粘合剂的原材料粉末的情况下,在其中进行单轴压制-CIP处理和单轴压制-WIP处理的压制成型的对比例3-1和3-2中,成型体密度几乎没有提高,总透光率与实施例3-1相比还略微降低,前向散射系数也劣化。顺便提及,由对比例3-1和对比例3-2之间的比较已经证实,在单轴压制-WIP处理的压制成型条件下制造的成型体的密度高于在单轴压制-CIP处理的压制成型条件下制造的成型体的密度,但是该成型体在烧结时在总透光率和前向散射系数方面不佳。此外,在未向其加入粘合剂的原材料粉末(对比例3-3和3-4)中,成型体密度略低于实施例3-1,并且总透光率与前向散射系数在单轴压制-CIP处理和单轴压制-CIP处理-WIP处理的两种压制成型条件下均略微劣化,尽管在本实施例的组合物中表现出相当稳定的性质。

实施例4

获得Thermo Fisher Scientific Inc.制造的氮化硅粉末、TAIMEI CHEMICALSCO.,LTD.制造的氧化镁粉末和Shin-Etsu Chemical Co.,Ltd.制造的氧化钇粉末。其纯度均为99.9重量%以上。

将原材料称重,以使镁按MgO计以硅重量的0.1重量%的量存在且钇按Y

将分为这两组的原料粉浆各自喷雾干燥,同时防止相互混合,由此制造各自具有20μm的平均颗粒直径的颗粒状原材料(原材料粉末)。获得的两种原材料粉末各自使用具有50毫米×15毫米的尺寸的矩形模具单轴压制成型以制备多个具有块状的单轴压制成型体(单轴压制条件:压力50MPa,压力保持时间;1分钟)。

获得的单轴压制成型体如表6中所示进一步分为五组(实施例4-1和对比例4-1至4-4)。随后,在表6中所示的条件下通过压制成型程序制造陶瓷成型体样品(三种水平的单轴压制-CIP处理-WIP处理、单轴压制-CIP处理、和单轴压制-WIP处理)。

顺便提及,该压制成型程序中的室温为20℃。CIP条件设定如下:压制介质:水,压制介质温度:20℃,施加的压力:196MPa,压制时间:2分钟。此外,WIP条件如下:压制介质:水,压制介质温度:85℃,CIP成型体加热温度:85℃,施加的压力:196MPa,压制时间:2分钟。

对于获得的陶瓷成型体样品,测量各样品的重量w(克),还测量了尺寸S(毫米

成型体密度(g/cm

接着,将各陶瓷成型体在马弗炉中在700℃和2小时的条件下脱脂。随后,将脱脂的陶瓷成型体装入氮气氛加热炉中,并在1,750℃下烧结2小时以获得烧结体。此外,将各烧结体装入由碳加热器制成的HIP炉中,并在氮气气氛中在200MPa的压力、1,600℃的加热温度和2小时的停留时间的条件下施以HIP处理以获得陶瓷烧结体(氮化硅基陶瓷烧结体)。

将由此获得的各陶瓷烧结体切割成长度为40毫米、宽度为4毫米且厚度为3毫米的条形和直径为10毫米且厚度为1毫米的圆盘形状,研磨并抛光,再次测量各陶瓷烧结体的密度以确定烧结体的密度ρ。随后,通过以下程序测量和评估获得的用于评估的样品的热导率和三点弯曲强度。

测量热导率的方法

使用由NETZSCH GmbH制造的闪光灯分析仪LFA 467HT,将直径为10毫米且厚度为1毫米的圆盘样品(用于评估的样品)设置在该设备中,并通过激光闪光法测量热扩散率α和比热容C。热导率κ通过等式(3)由这些值和预先测定的烧结体的密度ρ来计算。

热导率κ(W/m·K)=α×C×ρ(3)

测量三点弯曲强度的方法

使用由Shimadzu Corporation制造的陶瓷弯曲试验机,基于JIS R1601,将长度为40毫米、宽度为4毫米且厚度为3毫米的弯曲测试样品(用于评估的样品)设置在该设备中,支点之间的距离设定为30毫米,对每种条件在五个点处测量弯曲强度,确定其平均值作为各种条件的室温三点弯曲强度。

上述结果概括在表6中。

表6

*1:混合的原材料No.2:氮化硅粉末+氧化镁粉末(按MgO计相对于Si为0.1重量%的Mg)+氧化钇粉末(按Y

*2:粘合剂:聚乙烯醇缩丁醛(Tg:78℃)

*3:CIP条件:压制介质温度20℃,施加的压力196MPa,压制时间2分钟

*4:WIP条件:压制介质温度85℃,施加的压力196MPa,压制时间2分钟

由上述结果,在其中使用向其加入粘合剂(热塑性树脂)的原材料粉末进行单轴压制-CIP处理-WIP处理的压制成型的实施例4-1中,成型体密度得到最大提高,且烧结后的热导率和三点弯曲强度最高。即使在以相同方式向其加入粘合剂的原材料粉末的情况下,在其中进行单轴压制-CIP处理和单轴压制-WIP处理的压制成型的对比例4-1和4-2中,成型体密度几乎没有提高,热导率与三点弯曲强度与实施例4-1相比略微降低。顺便提及,由对比例4-1和对比例4-2之间的比较已经证实,在单轴压制-WIP处理的压制成型条件下制造的成型体的密度高于在单轴压制-CIP处理的压制成型条件下制造的成型体的密度,但是该成型体在烧结时在热导率与三点弯曲强度方面不佳。此外,在未向其中加入粘合剂的原材料粉末(对比例4-3和4-4)中,成型体密度略低于实施例4-1,并且热导率与三点弯曲强度在单轴压制-CIP处理和单轴压制-CIP处理-WIP处理的两种压制成型条件下均略微劣化,尽管在本实施例的组合物中表现出相当稳定的性质。

如上所述,如本发明的实施例中所示,在成型陶瓷粉末时,当预先通过添加热塑性树脂制备原材料粉末,在等于或低于该热塑性树脂的玻璃化转变温度的温度下单轴压制该原材料粉末或者在橡胶模具中直接填充该原材料粉末并随后在等于或低于该热塑性树脂的玻璃化转变温度的室温下施以冷等静压(CIP),并随后在等于或高于该热塑性树脂的玻璃化转变温度的温度下加热的同时对CIP成型体施以温等静压(WIP)成型时,可以制造其中残余空隙显著小且消除残余应力的致密且有利的陶瓷成型体。此外,通过使用该陶瓷成型体进行烧结处理,可以制造具有真正高密度和显著少残余气泡的陶瓷烧结体。结果,可以提供高品质的陶瓷烧结体,其表现出改善的光学透明度、机械强度和热导率,并由此表现出比现有技术更有利的性质。

顺便提及,使用上述实施方案描述了本发明,但是本发明不限于该实施方案,并且本发明可以在本领域技术人员的范围内进行修改,如其它实施方案、添加、修改和删除,只要发挥本发明的效果,任何方面都在本发明的范围内。

日本专利申请号2018-092067和2019-073255经此引用并入本文。

尽管已经描述了一些优选实施方案,但鉴于上述教导可以对其进行许多修改和变化。因此要理解的是本发明可以以不同于具体描述的方式来实施而不离开所附权利要求的范围。

技术分类

06120115928104