掌桥专利:专业的专利平台
掌桥专利
首页

一种有雾环境下的病虫害检测方法

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及病虫害图像检测方法领域,具体是一种有雾环境下的病虫害检测方法。

背景技术

随着智慧农业的发展,通过视频监控农作物的生长已经朝着视频结构化时代迈进,但是仍然有一些不可控的自然因素,以雾霾天气对视频监控的影响为例,在雾霾天气下,视频监控的距离、图像清晰度都将有所下降,因此,如何对监控摄影机去雾是智慧农业视频监控产品需要直面的难题。

雾度是导致物体外观和对比度明显下降的重要因素。在朦胧场景下捕获的图像显著影响高级计算机视觉任务的性能,以前的去雾技术专注于通过显着增加去雾模型的深度或宽度来提高去雾性能,而不考虑内存或计算开销,这限制它们在资源有限的环境中使用,例如移动或嵌入式设备。目前已有的检测技术还存在以下问题:

(1)大多数现有方法通常采用清晰的图像作为训练样本,对有雾环境下检测的方法较少,并且在有雾的环境下,检测性能不佳。

(2)现有除雾方法无法处理图像的细节,会导致处理过后图像边缘不清晰。

(3)人工检测成本高,效率低且准确率低。

发明内容

本发明的目的是提供一种有雾环境下的病虫害检测方法,以解决现有技术病虫害检测方法存在的有雾效果不理想的问题。

为了达到上述目的,本发明所采用的技术方案为:

一种有雾环境下的病虫害检测方法,包括以下步骤:

步骤1、获取清晰图像数据和病虫害图像数据,并以清晰图像数据构建第一训练集,以病虫害图像数据构建第二训练集;

步骤2、分别对步骤1得到的第一训练集、第二训练集进行预处理,其中第二训练集中的图像数据在预处理时进行加雾处理;

步骤3、构建并训练Optimized-AECR-Net模型:

以AECR-Net模型为基础构建Optimized-AECR-Net模型,所述AECR-Net模型包括对比正则化网络和类自动编码器网络,其中的类自动编码器网络包括4倍下采样模块、由6个特征注意力块构成的特征融合模块、2个动态特征增强模块、4倍上采样模块;将类自动编码器网络中的特征融合模块中特征注意力块增设为8个,其中的动态特征增强模块增设为4个,并在特征融合模块、4个动态特征增强模块之间增设由两层隐藏层构成的多层感知器,由此得到Optimized-AECR-Net模型;所述Optimized-AECR-Net模型中的类自动编码器网络包括4倍下采样模块、由8个特征注意力块构成的特征融合模块、多层感知器、4个动态特征增强模块、4倍上采样模块;

将步骤2预处理后的第一训练集输入至所述Optimized-AECR-Net模型中进行训练,训练后得到Optimized-AECR-Net模型的最优配置参数;

步骤4、构建并训练OACER-Swin Transformer模型:

以步骤3得到的最优配置参数下的Optimized-AECR-Net模型,以及SwinTransformer模型为基础,将所述Optimized-AECR-Net模型的输出连接所述SwinTransformer模型的输入,由此构成OACER-Swin Transformer模型;

将步骤2预处理后的第二训练集输入至所述OACER-Swin Transformer模型中进行训练,训练后得到OACER-Swin Transformer模型的最优配置参数;

步骤5、将待检测的有雾的病虫害图像输入至步骤4得到的最优配置参数下的OACER-Swin Transformer模型,由OACER-Swin Transformer模型输出病虫害识别结果。

进一步的,步骤2中进行预处理时,首先滤除第一训练集、第二训练集中损坏的图像数据和重复的图像数据,并删除异常数据,然后再对第二训练集中的图像数据进行加雾处理。

进一步的,通过标准光学模型对第二训练集中的图像数据进行加雾处理。

进一步的,步骤3中,Optimized-AECR-Net模型的类自动编码器网络中每个动态特征增强模块分别采用可变形二维卷积核。

进一步的,步骤3中OACER-Swin Transformer模型训练时,对每次训练后OACER-Swin Transformer模型输出结果进行误差计算,然后将误差结果反向传播到OACER-SwinTransformer模型的参数中,由此经过多次训练,得到误差计算结果符合预期时的OACER-Swin Transformer模型的配置参数作为最优配置参数。

进一步的,每次训练后对OACER-Swin Transformer模型的健壮性进行测试,基于测试结果排除偶然因素对OACER-Swin Transformer模型的影响。

本发明在AECR-Net模型的基础上构建Optimized-AECR-Net模型,并将Optimized-AECR-Net模型与Swin Transformer模型结合得到OACER-Swin Transformer模型。基于Optimized-AECR-Net模型对比正则化网络和改进的类自动编码器网络形成自动编码器的去雾网络,通过高度紧凑的去雾模型有效地生成更自然高质量的无雾图像。本发明提出的Optimized-AECR-Net模型实现了最佳的参数性能权衡,再将训练后的Optimized-AECR-Net模型的输出作为Swin Transformer的输入进行连接构成OACER-Swin Transformer模型,能够显著提高已有的去雾网络性能。

本发明中,通过将ACER-Net模型中的类自动编码器网络改进为8个特征注意力块和4个动态特征增强模块,同时为了改善层之间的信息流并融合更多的空间结构化信息,添加多层感知器,使改进后得到的Optimized-AECR-Net模型具有显著减少了内存存储、非常强的自适应、自学习功能,并能够充分融合空间信息,使用Swin Transformer作为进一步检测骨干网络,能够有效提高检测精度。

本发明方法能够有效避免因雾天拍摄的图片质量差导致的模型性能差,该方法适用于有雾环境下的各种农作物病虫害检测。

附图说明

图1是本发明方法流程框图。

图2是本发明Optimized-AECR-Net模型的结构图。

图3是本发明动态特征增强模块中可变形卷积核的说明图。

图4是本发明OACER-Swin Transformer模型的结构图。

具体实施方式

下面结合附图和实施例对本发明进一步说明。

如图1所示,本发明一种有雾环境下的病虫害检测方法,包括以下步骤:

(1)准备数据集:

收集任意背景下的清晰的图像数据作为第一训练集,并收集农作物病虫害的图像作为第二训练集。

(2)处理数据集:

对第一训练集、第二训练集中的数据分别进行预处理,预处理时首先滤除数据集中损坏的图像和重复的图像,并将异常数据进行删除。然后再通过标准光学模型合成有雾的图像对第二训练集中的数据进行加雾处理,加雾处理公式如下:

其中

(3)构建并训练Optimized-AECR-Net模型:

采用AECR-Net模型作为基础模型,该AECR-Net模型由对比正则化网络和类自动编码器网络组成,AECR-Net模型通过在恢复图像上计算图像重建损失和正则化项两个损失对模型进行反向传播。

AECR-Net模型中的类自动编码器网络首先采用两个步长为 2 的卷积层构建的4倍下采样模块进行4倍下采样,然后采用FFA-Net中的密集的6个特征注意力块在低分辨率空间中学习特征表示,接着使用2个动态特征增强模块提取更丰富的信息,之后采用两个步长为 2 的卷积层构建的4倍上采样模块进行4 倍上采样以将图像恢复原来的大小。

本发明中,在AECR-Net模型的基础上,将原来AECR-Net模型中类自动编码器网络的6个特征注意力块增加到 8个,同时为了改善层之间的信息流并融合更多的空间结构化信息;将原来AECR-Net模型中类自动编码器网络的2个动态特征增强模块增加到4个,通过融合更多的空间结构化信息来增强转换能力;本发明还在类自动编码器网络的动态特征增强模块后增加了多层感知器,多层感知器由两层隐藏层构成,隐藏层的输出维度是输入维度的四倍,目的是为了更好的融合空间信息。由此,本发明以AECR-Net模型为基础,构建得到Optimized-AECR-Net模型,Optimized-AECR-Net模型中的类自动编码器网络如图2所示,包括4倍下采样模块、由8个特征注意力块构成的特征融合模块、多层感知器、4个动态特征增强模块、4倍上采样模块。

Optimized-AECR-Net模型训练时的损失函数如下:

其中第一项是重建损失,

AECR-Net模型中原有的动态特征增强模块以前的工作通常采用常规的卷积核形状(例如3x3),空间不变的卷积核可能会导致图像纹理受损和过度平滑伪影。为了使采样网格实现更自由的变形,本发明Optimized-AECR-Net模型的动态特征增强模块采用如图3所示的一种可变形的二维卷积核来增强图像去噪的特征,通过可变形卷积引入动态特征增强模块来扩展具有自适应形状的感受野,可以捕获更重要的信息,并提高模型的转换能力以实现更好的图像去雾功能,网络可以动态地更加关注兴趣区域的计算,以融合更多的空间结构信息,在深层之后部署的动态特征增强模块比浅层实现了更好的性能。

本发明中,采用步骤(2)预处理后的第一训练集输入至Optimized-AECR-Net模型中进行训练,训练后得到Optimized-AECR-Net模型的最优配置参数。

(4)构建并训练OACER-Swin Transformer模型:

采用Swin Transformer模型,将步骤(3)训练后的最优配置参数下的Optimized-AECR-Net模型的输出作为Swin Transformer模型的输入进行连接,得到OACER-SwinTransformer模型,OACER-Swin Transformer模型架构如图4所示。

将步骤(2)预处理后的第二训练集输入至OACER-Swin Transformer模型中进行训练,训练后得到OACER-Swin Transformer模型的最优配置参数。

OACER-Swin Transformer模型进行训练时,对每次训练后OACER-SwinTransformer模型输出结果进行误差计算,然后将误差结果映射到OACER-SwinTransformer模型的每个参数中,调整OACER-Swin Transformer模型的配置参数,并对模型的健壮性进行测试,排除偶然因素对模型的影响,由此经过多次训练,得到误差结果符合预期时的OACER-Swin Transformer模型的最优配置参数,并由最优配置参数下的OACER-SwinTransformer模型作为最终的模型。

(5)采用OACER-Swin Transformer模型进行病虫害检测:

利用最优配置参数下的OACER-Swin Transformer模型,对待检测的有雾的病虫害图像进行识别,将待检测的病虫害图像数据输入至最优配置参数下的OACER-SwinTransformer模型,由OACER-Swin Transformer模型输出病虫害识别结果。

本发明所述的实施例仅仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。

相关技术
  • 一种有雾环境下的病虫害检测方法
  • 一种雾霾环境下绝缘材料表面污秽形貌的检测装置及方法
技术分类

06120114722760