掌桥专利:专业的专利平台
掌桥专利
首页

一种特异性识别PD-L1的分子印迹纳米结构及其应用

文献发布时间:2023-06-19 16:11:11



技术领域

本发明涉及细胞活体成像和纳米材料技术领域,尤其涉及一种特异性识别PD-L1的分子印迹纳米结构及其应用。

背景技术

Southern在1975年首先提出了分子印迹的概念。他将琼脂糖凝胶电泳分离的DNA片段在凝胶中进行变性使其成为单链,然后将一张硝酸纤维素(nitrocellulose,NC)膜放在凝胶上,上面放上吸水纸巾,利用毛细管作用原理使凝胶中的DNA片段转移到NC膜上,使之成为固相化分子。载有DNA单链分子的NC膜就可以在杂交液与另一种带有标记的DNA或RNA分子(即探针)进行杂交,具有互补序列的RNA或DNA结合到存在于NC膜的DNA分子上,经放射自显影或其他检测技术就可以显现出杂交分子的区带。由于这种技术类似于用吸墨纸吸收纸张上的墨迹,因此称为"blotting",译为"印迹技术"。

生物大分子印迹技术发展极为迅速,已广泛用于DNA、RNA、蛋白质的检测。通常人们将DNA印迹技术称为Southern blotting,将RNA印迹技术称为Northern blotting,将蛋白质印迹技术称为Western blotting,将不经凝胶的印迹技术称为斑点印迹(Dotblotting)。

程序性死亡1(PD-1)和程序性死亡配体1(PD-L1)的发现给临床癌症治疗带来了革命性的变化,因为PD-1/PD-L1免疫检查点封锁在抑制免疫T细胞中发挥了重要作用。通过阻断PD-1或PD-L1来激活T细胞免疫已成为一种有用的癌症治疗策略,而特异性靶向PD-1或PD-L1的抗体已被广泛用于不同癌症的治疗。

PD-L1(又称B7同源物1,B7-h1)自1999年首次被发现以来,被认为是PD-1的结合和功能伙伴,是人T细胞的抑制剂。以PD-L1为靶点的抗体,如atezolizumab、avelumab、durvalumab等,已广泛应用于多种肿瘤的治疗。然而,随着研究的深入,越来越多的证据表明,其抗体评估的PD-L1水平由于翻译后糖基化而不可靠。值得注意的是,PD-L1的n-连接糖基化可导致其抗原表位无法被常规PD-L1抗体识别。PD-L1上的n-连聚糖可通过特定酶进行剪切,而N聚糖是一种连接在蛋白质肽链中天冬酰胺残基侧链酰胺氮上的寡糖,此类寡糖通常均有一个核心的五糖和类似结构的外周糖链。一般n-连聚糖包含n-复合型,杂合型及高甘露糖型糖链。

因此,尽管免疫检查站阻断(immune checkpoint blockade,ICB)疗法在各种PD-L1阳性恶性肿瘤中具有持久的抗肿瘤作用,但由于肿瘤细胞表面PD-L1的n-链糖基化作用抑制了PD-L1抗体对PD-L1的识别,因此治疗效果有限。PD-L1和PD-L1抗体识别能力下降,给ICB治疗的应用带来了临床挑战,迫切需要开发更有效的PD-L1阻断策略,通过T细胞活化提高抗肿瘤效果。

发明内容

本发明的第一个目的在于,为了避免PD1/PD-L1结合引起肿瘤细胞的免疫逃逸,我们提出了一种特异性识别PD-L1的分子印迹纳米结构,它可以靶向PD-L1的n-连接聚糖,从而抑制PD-L1和PD-1的结合,诱导T细胞免疫的重新激活。

本发明的第二个目的在于,提供特异性识别PD-L1的分子印迹纳米结构在制备抗肿瘤药物中的应用。

为了实现上述目的,本发明提供了一种特异性识别PD-L1的分子印迹纳米结构,包括金纳米粒子核心和SiO

本发明实施例中优选用肽N-糖苷酶F(PNGase F)用于酶解PD-L1的n–连接聚糖,通过在n-聚糖的最内层GlcNAc和N-聚糖之间切开而释放出完整的双链高甘露糖和杂合型N-聚糖。

作为一个优选方案,所述SiO

特异性识别PD-L1的分子印迹纳米结构合成步骤包括:

(1)合成金胶作为种子;

(2)利用金种合成纳米金;

(3)从PDL1中提取聚糖模板:蛋白粉末加入PNGase F,孵育,其用于对PDL1上的n-连接聚糖进行切断,再将n-连接聚糖从PDL1的糖蛋白中用Amicon Utra-0.5ultrafiltration catridge,离心获得n-聚糖模板;

(4)用纳米金合成能特异性识别PD-L1的包裹二氧化硅的纳米金:将氨基苯硼酸和纳米金放入摇床过夜,加入n-聚糖,通过硼酸和n-链糖之间的硼酸亲和作用,将n-聚糖模板固定在金纳米粒子表面。再加入无水乙醇持续搅拌,随后加入28%氨水,混合搅拌后加入TEOS,搅拌,使连有n-聚糖的金纳米粒子包裹上一层二氧化硅,离心,分散,从而得到具有n-聚糖印记模板的纳米结构。

(5)制备可同时识别PD-L1和剪切唾液酸的纳米金:将(4)中制备的包裹有二氧化硅壳层的纳米金上再修饰上唾液酸剪切酶,从而实现在分子印迹PDL1的同时对肿瘤细胞表面唾液酸的剪切。

为了实现上述第二个目的,本发明提供了特异性识别PD-L1的分子印迹纳米结构在制备抗肿瘤药物中的应用。

作为一个优选方案,所述抗肿瘤药物是指免疫检查点阻断治疗药物。癌症免疫治疗中的免疫检查点阻断治疗凭借着阻断免疫检查点,激活内源性抗肿瘤T细胞(开启机体天然屏障),具有杀死癌细胞的优势,这类药物主要分为两类,一类是以PD1为代表的抑制剂,一类为激活剂。

本发明的优点在于,本发明为提高免疫检查点治疗的疗效提供了一种有效的方法。我们提出了一种分子印迹纳米结构,命名为“NanoNiche”,它可以靶向PD-L1的n-连接聚糖,从而抑制PD-L1和PD-1的结合,诱导T细胞免疫的重新激活。在此基础上,为了增强T细胞浸润,进一步将纳米细胞与唾液酸酶偶联以实现SA的降解。与天然PD-L1抗体不同,印迹纳米粒子可以与PD-L1表面n–连接聚糖结合,从而更有效地封锁PD-L1。而且纳米抗体的体积比天然抗体大,进一步增强了阻断作用。考虑到细胞表面蛋白质通常是糖基化的,基于分子印迹的纳米结构可以轻易地扩展到许多其他靶点。

附图说明

图1为通过具有靶向PD-L1的n-连接聚糖的印迹纳米结构阻断PD-L1而重新激活T细胞免疫工作原理图。

图2为孵育不同时间下T细胞对于肿瘤细胞的攻击程度以及唾液酸剪切效率。

具体实施方式

下面结合具体实施例,进一步阐述本发明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。

实施例1.合成可同时检测细胞内野生型和变异p53蛋白的纳米囊泡

(1)根据已有文献,合成13nm金胶作为种子。将50mL HAuCl

(2)利用金种合成60nm的纳米金。将1mL金种溶液与100μL NH

(3)从PDL1中提取聚糖模板。将蛋白粉末配制成0.25mg/mL。取400微升,将其煮沸15min,冷却至室温。再加入10U PNGase F,在37摄氏度下孵育24h,其用于对PDL1上的n-聚糖进行切断。再将n-聚糖从PDL1的糖蛋白中用Amicon Utra-0.5ultrafiltrationcatridge,在11000rpm下离心15min从而获得n-聚糖模板。

(4)用60nm的纳米金合成能特异性识别PD-L1的包裹二氧化硅的纳米金。将0.3mg的氨基苯硼酸和1mL纳米金在室温下放入摇床过夜,加入200微升n-聚糖摇床6h,通过硼酸和n-链糖之间的硼酸亲和作用,将n-聚糖模板固定在金纳米粒子表面。再加入1mL无水乙醇持续搅拌,随后加入0.035mL28%氨水,混合搅拌5min,后加入0.3mL 10mM TEOS,搅拌40min,使连有n-聚糖的金纳米粒子包裹上一层二氧化硅。最后7000rpm,10min离心,分散于0.5mL去离子水中,从而得到具有n-聚糖印记模板的纳米结构。

(5)制备可同时识别PD-L1和剪切唾液酸的纳米金。将(4)中制备的包裹有二氧化硅壳层的纳米金上再修饰上唾液酸剪切酶,从而实现在分子印迹PDL1的同时对肿瘤细胞表面唾液酸的剪切。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

相关技术
  • 一种特异性识别PD-L1的分子印迹纳米结构及其应用
  • 一种包埋油溶性银纳米颗粒并特异性识别五氯硝基苯的分子印迹聚合物的制备方法
技术分类

06120114732308